1
|
Zhang J, Zhu M, Ouyang X, Yuan Y, Tang S, Yin H. Co-metabolism degradation of tetrabromobisphenol A by the newly isolated Sphingobium sp. strain QY1-1: Multiple metabolic pathways, toxicity evaluation, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137440. [PMID: 39889608 DOI: 10.1016/j.jhazmat.2025.137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Tetrabromobisphenol A (TBBPA), a hydrophobic and persistent brominated flame retardant, has attracted considerable attention due to its potential ecotoxicity. Herein, a newly isolated Sphingobium sp. strain QY1-1 was employed to degrade TBBPA under optimized conditions determined by response surface methodology and kinetic analysis. Complete degradation of TBBPA was achieved by the fourth day under optimal conditions. Five main transformation pathways, i.e., debromination, hydroxylation, O-methylation, sulfation, and glycosylation, were proposed for TBBPA biodegradation based on 19 intermediates including two novel transformation products. The toxicity prediction of TBBPA and its degradation products suggested that the biodegradation of TBBPA by strain QY1-1 could effectively reduce its biotoxicity in aquatic environments. Moreover, transcriptomic analysis revealed significant up-regulation of multiple genes encoding oxidoreductases, lyases, free radical proteins, transporter proteins, and efflux transporters, particularly in the presence of glucose. This indicated that these functional enzymes could be involved in the transmembrane transport and catabolism of TBBPA and its by-products. Additionally, the overexpression of genes encoding chemotactic proteins and antioxidant-defense-related enzymes implied that the addition of glucose could heighten the adaptability of strain QY1-1 to TBBPA stress. This study provides new insights into the biodegradation of TBBPA by Sphingobium sp. and potential strategies for its enhancement.
Collapse
Affiliation(s)
- Junxin Zhang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China; Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiaofang Ouyang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yibo Yuan
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Xu G, He H, Tang D, Lu Q, Mai B, He Z, Adrian L, He J, Dolfing J, Wang S. High-Throughput Screening of Microbial Reductive Dechlorination of Polychlorinated Biphenyls: Patterns in Reactivity and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7712-7721. [PMID: 40193699 DOI: 10.1021/acs.est.4c13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Polychlorinated biphenyls (PCBs) are pervasive pollutants that pose risks to ecosystems and human health. Microbial reductive dehalogenation plays crucial roles in attenuating PCBs, but comprehensive insights into PCB dechlorination pathways, reactivity, and governing factors are limited by the vast number of congeners and costly experimental approaches. We address this challenge by establishing a high-throughput in vitro assay approach of reductive dehalogenation (HINVARD), which increases dechlorination test throughput by 30-fold and enhances reagents and cell utilization efficiency by over 10-fold compared to conventional assay methods. Using HINVARD, we screened 61 PCB congeners across 9 enrichment cultures and 3 Dehalococcoides isolates, identifying active dechlorination of 31-44 congeners. Results showed that PCB congener properties (chlorine substitution patterns, steric hindrance, and solubility) primarily determine the dechlorination potential, leading to consistent reactivity trends across cultures. In contrast, different organohalide-respiring bacteria catalyzed distinct dechlorination pathways, preferentially removing para- or meta-chlorines. Structural modeling of reductive dehalogenases revealed unique binding orientations governing substrate specificity, offering molecular insights into these pathways. This study provides a high-efficiency strategy for investigating microbial reductive dehalogenation, yielding the first comprehensive understanding of PCB dechlorination patterns and mechanisms. These findings guide the design of tailored microbial consortia for effective PCB bioremediation.
Collapse
Affiliation(s)
- Guofang Xu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Haozheng He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Daoyu Tang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Qihong Lu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, The People's Republic of China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| | - Lorenz Adrian
- UFZ Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig 04318, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, Berlin 13355, Germany
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Shanquan Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| |
Collapse
|
3
|
Shafi Kuttiyathil M, Ali L, Altarawneh M. Thermochemical Recycling and Degradation Strategies of Halogenated Polymers (F-, Cl-, Br-): A Holistic Review Coupled with Mechanistic Insights. CHEM REC 2025:e202500022. [PMID: 40195574 DOI: 10.1002/tcr.202500022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Handling the waste associated with halogenated polymers is a daunting task due to the well-documented emission of halogen-bearing toxicants during the disposal or recycling operation. According to the Stockholm Convention treaty, most of these products are classified as persistent organic pollutants due to their potential health hazards. This review aims to provide a holistic overview of the recent updates for treating halogenated polymeric waste through physical, chemical and biological approaches. In the line of inquiry, critical analysis of the obstacles and prospects associated with each degradation technique on the halogenated polymer has been performed, assessing based on the degradation efficiency, treatment upscaling, pollution control, and feasibility. Though many treatments show promising results, they also entail drawbacks. Thermal treatment exploiting various metal oxides, especially calcium additives, is considered the most executable technique for halogenated polymer valorization coupled with mineralization/metal extraction due to its intuitive operational feasibility and potential scalability. Strategies for combating the soaring halogenated polymeric wastes summarized herein tap into promoting a circular economy approach for their sustainable disposal and recycling.
Collapse
Affiliation(s)
- Mohamed Shafi Kuttiyathil
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
4
|
Lin YJ, Hsieh PH, Mao CC, Shih YH, Chen SH, Lin CY. Interpretation of machine learning-based prediction models and functional metagenomic approach to identify critical genes in HBCD degradation. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136976. [PMID: 39740553 DOI: 10.1016/j.jhazmat.2024.136976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/01/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Hexabromocyclododecane (HBCD) poses significant environmental risks, and identifying HBCD-degrading microbes and their enzymatic mechanisms is challenging due to the complexity of microbial interactions and metabolic pathways. This study aimed to identify critical genes involved in HBCD biodegradation through two approaches: functional annotation of metagenomes and the interpretation of machine learning-based prediction models. Our functional analysis revealed a rich metabolic potential in Chiang Chun soil (CCS) metagenomes, particularly in carbohydrate metabolism. Among the machine learning algorithms tested, random forest models outperformed others, especially when trained on datasets reflecting the degradation patterns of species like Dehalococcoides mccartyi and Pseudomonas aeruginosa. These models highlighted enzymes such as EC 1.8.3.2 (thiol oxidase) and EC 4.1.1.43 (phenylpyruvate decarboxylase) as inhibitors of degradation, while EC 2.7.1.83 (pseudouridine kinase) was linked to enhanced degradation. This dual-methodology approach not only deepens our understanding of microbial functions in HBCD degradation but also provides an unbiased view of the microbial and enzymatic interactions involved, offering a more targeted and effective bioremediation strategy.
Collapse
Affiliation(s)
- Yu-Jie Lin
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Ping-Heng Hsieh
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Chun-Chia Mao
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Shu-Hwa Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan; Institute of Fisheries Science, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
5
|
Khani L, Studzian M, Martins L, Gorzkiewicz M, Pułaski Ł. Tetrabromobisphenol A, but not bisphenol A, disrupts plasma membrane homeostasis in myeloid cell models - A novel threat from an established persistent organic pollutant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178284. [PMID: 39798458 DOI: 10.1016/j.scitotenv.2024.178284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/25/2024] [Accepted: 12/22/2024] [Indexed: 01/15/2025]
Abstract
Bisphenol A (BPA, a plastic polymer component) and tetrabromobisphenol A (TBBPA, a brominated flame retardant) are industrial compounds and representative persistent organic pollutants (POPs) with similar chemical structure. We studied their impact on biological membrane dynamics, which is an emerging and understudied target for environmental contaminants, using a set of state-of-the-art methods. We found that exposure to TBBPA, but not to BPA, leads to disruption of biophysical homeostasis of the plasma membrane in myeloid cell lines HL-60, THP-1 and Mono Mac 6. Applied methods include: pyrene excimer formation, fluorescence anisotropy, solvatochromic shift ratiometry (using di-4-ANEPPDHQ, NR12A and laurdan) and fluorescence recovery after photobleaching. TBBPA increased rotational and lateral mobility and decreased general polarity and lipid order in plasma membranes of myeloid cells, but decreased mobility and increased rigidity in internal membranes of the same cells. Strikingly, BPA had no significant membrane effects in these cells, suggesting a specific molecular interaction mechanism of TBBPA action which may potentially lead to disruption of immune function. Identification of this novel threat from an established pollutant with documented exposure pathways highlights the possibility that immunotoxicity of POPs may contribute to their environmental toxicity burden.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Maciej Studzian
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland
| | - Leonardo Martins
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
6
|
Lin XQ, Li ZL, Chen XQ, Wang L, Wang AJ. Simultaneous deep removal of nitrate and tetrabromobisphenol A in microbial electrochemical system-constructed wetland. BIORESOURCE TECHNOLOGY 2025; 416:131723. [PMID: 39477166 DOI: 10.1016/j.biortech.2024.131723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Microbial electrochemical system-constructed wetland (MES-CW) is environmentally friendly in removing organic contaminants from wastewater. Tetrabromobisphenol A (TBBPA) is an emerging pollutant that is inefficiently removed in conventional wastewater treatment. The feasibility of deep removal of TBBPA and nitrate and the related mechanism in MES-CW remains unclear. This study demonstrated the enhanced TBBPA detoxification in MES-CW accompanied by nitrate removal. Nitrate significantly suppressed the TBBPA reductive debromination and methane generation. It altered the microbial community and enriched Acinetobacter in the electrode, stimulating the TBBPA hydrolytic debromination and metabolite oxidation. The biocathode supplied electrons for dehalogenators in TBBPA reductive debromination, while the anode served as the electron acceptor for function bacteria in TBBPA metabolite oxidation. Nitrate and anodic electricity optimized the microbial community and provided electron acceptors for TBBPA metabolites oxidation in MES-CW, guiding the deep removal of nitrate and emerging pollutants in wastewater.
Collapse
Affiliation(s)
- Xiao-Qiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xue-Qi Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
7
|
Liu J, Xu G, Zhao S, He J. Plastisphere Microbiomes Respiring Persistent Organohalide Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14740-14752. [PMID: 39103310 DOI: 10.1021/acs.est.4c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Plastics are invading nearly all ecosystems on earth, acting as emerging repositories for toxic organic pollutants and thereby imposing substantial threats to ecological integrity. The colonization of plastics by microorganisms, forming the plastisphere, has garnered attention due to its potential influence on biogeochemical cycles. However, the capability of plastisphere microorganisms to attenuate organohalide pollutants remains to be evaluated. This study revealed that the plastisphere, collected from coastal ecosystems, harbors unique microbiomes, while the natural accumulation of organohalide pollutants on plastics may favor the proliferation of organohalide-respiring bacteria (OHRB). Laboratory tests further elucidated the high potential of plastisphere microbiota to reductively dehalogenate a variety of organohalide pollutants. Notably, over 70% tested plastisphere completely debrominated tetrabromobisphenol A (TBBPA) and polybrominated diphenyl ethers (PBDEs) to nonhalogenated products, whereas polychlorinated biphenyls (PCBs) were converted to lower congeners under anaerobic conditions. Dehalococcoides, Dehalogenimonas, and novel Dehalococcoidia populations might contribute to the observed dehalogenation based on their growth during incubation and positive correlations with the quantity of halogens removed. Intriguingly, large fractions of these OHRB populations were identified in a lack of the currently known TBBPA/PBDEs/PCBs reductive dehalogenase (RDase) genes, suggesting the presence of novel RDase genes. Microbial community analyses identified organohalides as a crucial factor in determining the composition, diversity, interaction, and assembly of microbes derived from the plastisphere. Collectively, this study underscores the overlooked roles of the plastisphere in the natural attenuation of persistent organohalide pollutants and sheds light on the unignorable impacts of organohalide compounds on the microbial ecology of the plastisphere.
Collapse
Affiliation(s)
- Jinting Liu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
8
|
Liu G, Liu S, Yang J, Zhang X, Lu L, Xu H, Ye S, Wu J, Jiang J, Qiao W. Complete biodegradation of tetrabromobisphenol A through sequential anaerobic reductive dehalogenation and aerobic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134217. [PMID: 38583197 DOI: 10.1016/j.jhazmat.2024.134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Tetrabromobisphenol A (TBBPA), a common brominated flame retardant and a notorious pollutant in anaerobic environments, resists aerobic degradation but can undergo reductive dehalogenation to produce bisphenol A (BPA), an endocrine disruptor. Conversely, BPA is resistant to anaerobic biodegradation but susceptible to aerobic degradation. Microbial degradation of TBBPA via anoxic/oxic processes is scarcely documented. We established an anaerobic microcosm for TBBPA dehalogenation to BPA facilitated by humin. Dehalobacter species increased with a growth yield of 1.5 × 108 cells per μmol Br- released, suggesting their role in TBBPA dehalogenation. We innovatively achieved complete and sustainable biodegradation of TBBPA in sand/soil columns columns, synergizing TBBPA reductive dehalogenation by anaerobic functional microbiota and BPA aerobic oxidation by Sphingomonas sp. strain TTNP3. Over 42 days, 95.11 % of the injected TBBPA in three batches was debrominated to BPA. Following injection of strain TTNP3 cells, 85.57 % of BPA was aerobically degraded. Aerobic BPA degradation column experiments also indicated that aeration and cell colonization significantly increased degradation rates. This treatment strategy provides valuable technical insights for complete TBBPA biodegradation and analogous contaminants.
Collapse
Affiliation(s)
- Guiping Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Songmeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jie Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xiaoyang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Lianghua Lu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Shujun Ye
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| | - Wenjing Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
9
|
Xu G, Ng HL, Chen C, Rogers MJ, He J. Combatting multiple aromatic organohalide pollutants in sediments by bioaugmentation with a single Dehalococcoides. WATER RESEARCH 2024; 255:121447. [PMID: 38508042 DOI: 10.1016/j.watres.2024.121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Dehalococcoides are capable of dehalogenating various organohalide pollutants under anaerobic conditions, and they have been applied in bioremediation. However, the presence of multiple aromatic organohalides, including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and tetrabromobisphenol A (TBBPA), at contaminated sites may pose challenges to Dehalococcoides-mediated bioremediation due to the lack of knowledge about the influence of co-contamination on bioremediation. In this study, we investigated the bioremediation of aromatic organohalides present as individual and co-contaminants in sediments by bioaugmentation with a single population of Dehalococcoides. Bioaugmentation with Dehalococcoides significantly increased the dehalogenation rate of PCBs, PBDEs, and TBBPA in sediments contaminated with individual pollutants, being up to 19.7, 27.4 and 2.1 times as that in the controls not receiving bioinoculants. For sediments containing all the three classes of pollutants, bioaugmentation with Dehalococcoides also effectively enhanced dehalogenation, and the extent of enhancement depended on the bioinoculants and types of pollutants. Interestingly, in many cases co-contaminated sediments bioaugmented with Dehalococcoides mccartyi strain CG1 displayed a greater enhancement in dehalogenation rates compared to the sediments polluted with individual pollutant. For instance, when augmented with a low quantity of strain CG1, the dehalogenation rates of Aroclor1260 and PBDEs in co-contaminated sediments were approximately two times as that in sediments containing individual pollutants (0.428 and 9.03 vs. 0.195 and 4.20 × 10-3d-1). Additionally, D. mccartyi CG1 grew to higher abundances in co-contaminated sediments. These findings demonstrate that a single Dehalococcoides population can sustain dehalogenation of multiple aromatic organohalides in contaminated sediments, suggesting that co-contamination does not necessarily impede the use of Dehalococcoides for bioremediation. The study also underscores the significance of anaerobic organohalide respiration for effective bioremediation.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Hung Liang Ng
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576.
| |
Collapse
|
10
|
Huang C, Zeng Y, Jiang Y, Zhang Y, Lu Q, Liu YE, Guo J, Wang S, Luo X, Mai B. Comprehensive exploration of the anaerobic biotransformation of polychlorinated biphenyls in Dehalococcoides mccartyi CG1: Kinetics, enantioselectivity, and isotope fractionation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123650. [PMID: 38402932 DOI: 10.1016/j.envpol.2024.123650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Anaerobic microbial transformation is a key pathway in the natural attenuation of polychlorinated biphenyls (PCBs). Much less is known about the transformation behaviors induced by pure organohalide-respiring bacteria, especially kinetic isotope effects. Therefore, the kinetics, pathways, enantioselectivity, and carbon and chlorine isotope fractionation of PCBs transformation by Dehalococcoides mccartyi CG1 were comprehensively explored. The results indicated that the PCBs were mainly dechlorinated via removing their double-flanked meta-chlorine, with their first-order kinetic constants following the order of PCB132 > PCB174 > PCB85 > PCB183 > PCB138. However, PCBs occurred great loss of stoichiometric mass balance during microbial transformation, suggesting the generation of other non-dehalogenation products and/or stable intermediates. The preferential transformation of (-)-atropisomers and generation of (+)-atropisomers were observed during PCB132 and PCB174 biotransformation with the enantiomeric enrichment factors of -0.8609 ± 0.1077 and -0.4503 ± 0.1334 (first half incubation times)/-0.1888 ± 0.1354 (second half incubation times), respectively, whereas no enantioselectivity occurred during PCB183 biotransformation. More importantly, although there was no carbon and chlorine isotope fractionation occurring for studied substrates, the δ13C values of dechlorination products, including PCB47 (-28.15 ± 0.35‰ ∼ -27.77 ± 0.20‰), PCB91 (-36.36 ± 0.09‰ ∼ -34.71 ± 0.49‰), and PCB149 (-28.08 ± 0.26‰ ∼ -26.83 ± 0.10‰), were all significantly different from those of their corresponding substrates (PCB85: -30.81 ± 0.02‰ ∼ -30.22 ± 0.21‰, PCB132: -33.57 ± 0.15‰ ∼ -33.13 ± 0.14‰, and PCB174: -26.30 ± 0.09‰ ∼ -26.01 ± 0.07‰), which further supported the generation of other non-dehalogenation products and/or stable intermediates with enrichment or depletion of 13C. These findings provide deeper insights into the anaerobic microbial transformation behaviors of PCBs.
Collapse
Affiliation(s)
- Chenchen Huang
- China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou 221116, Jiangsu, China; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou, 310015, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yiye Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Yin-E Liu
- China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou 221116, Jiangsu, China; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jian Guo
- Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
11
|
Fang S, Geng Y, Wang L, Zeng J, Zhang S, Wu Y, Lin X. Coupling between 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) debromination and methanogenesis in anaerobic soil microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169831. [PMID: 38185166 DOI: 10.1016/j.scitotenv.2023.169831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent pollutants that may undergo microbial-mediated debromination in anoxic environments, where diverse anaerobic microbes such as methanogenic archaea co-exist. However, current understanding of the relations between PBDE pollution and methanogenic process is far from complete. To address this knowledge gap, a series of anaerobic soil microcosms were established. BDE-47 (2, 2', 4, 4'-tetrabromodiphenyl ether) was selected as a model pollutant, and electron donors were supplied to stimulate the activity of anaerobes. Debromination and methane production were monitored during the 12 weeks incubation, while obligate organohalide-respiring bacteria (OHRBs), methanogenic, and the total bacterial communities were examined at week 7 and 12. The results demonstrated slow debromination of BDE-47 in all microcosms, with considerable growth of Dehalococcoides and Dehalogenimonas over the incubation observed in most BDE-47 spiked treatments. In addition, the accumulation of intermediate metabolites positively correlated with the abundance of Dehalogenimonas at week 7, suggesting potential role of these OHRBs in debromination. Methanosarcinaceae were identified as the primary methanogenic archaea, and their abundance were correlated with the production of debrominated metabolites at week 7. Furthermore, it was observed for the first time that BDE-47 considerably enhanced methane production and increased the abundance of mcrA genes, highlighting the potential effects of PBDE pollution on climate change. This might be related to the inhibition of reductive N- and S-transforming microbes, as revealed by the quantitative microbial element cycling (QMEC) analysis. Overall, our findings shed light on the intricate interactions between PBDE and methanogenic processes, and contribute to a better understanding of the environmental fate and ecological implication of PBDE under anaerobic settings.
Collapse
Affiliation(s)
- Shasha Fang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yue Geng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jun Zeng
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shimin Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yucheng Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiangui Lin
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
12
|
Liu G, Chen K, Wu Z, Ji Y, Lu L, Liu S, Li ZL, Ji R, Liu SJ, Jiang J, Qiao W. Genome-Centric Metatranscriptomic Characterization of a Humin-Facilitated Anaerobic Tetrabromobisphenol A-Dehalogenating Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1299-1311. [PMID: 38113523 DOI: 10.1021/acs.est.3c06118] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant in electronics manufacturing, has caused global contamination due to improper e-waste disposal. Its persistence, bioaccumulation, and potential carcinogenicity drive studies of its transformation and underlying (a)biotic interactions. This study achieved an anaerobic enrichment culture capable of reductively dehalogenating TBBPA to the more bioavailable bisphenol A. 16S rRNA gene amplicon sequencing and quantitative PCR confirmed that successive dehalogenation of four bromide ions from TBBPA was coupled with the growth of both Dehalobacter sp. and Dehalococcoides sp. with growth yields of 5.0 ± 0.4 × 108 and 8.6 ± 4.6 × 108 cells per μmol Br- released (N = 3), respectively. TBBPA dehalogenation was facilitated by solid humin and reduced humin, which possessed the highest organic radical signal intensity and reducing groups -NH2, and maintained the highest dehalogenation rate and dehalogenator copies. Genome-centric metatranscriptomic analyses revealed upregulated putative TBBPA-dehalogenating rdhA (reductive dehalogenase) genes with humin amendment, cprA-like Dhb_rdhA1 gene in Dehalobacter species, and Dhc_rdhA1/Dhc_rdhA2 genes in Dehalococcoides species. The upregulated genes of lactate fermentation, de novo corrinoid biosynthesis, and extracellular electron transport in the humin amended treatment also stimulated TBBPA dehalogenation. This study provided a comprehensive understanding of humin-facilitated organohalide respiration.
Collapse
Affiliation(s)
- Guiping Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhiming Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Lianghua Lu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Songmeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Wenjing Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| |
Collapse
|
13
|
Huang C, Zeng Y, Hu K, Jiang Y, Zhang Y, Lu Q, Liu YE, Gao S, Wang S, Luo X, Mai B. Anaerobic biotransformation of two novel brominated flame retardants: Kinetics, isotope fractionation and reaction mechanisms. WATER RESEARCH 2023; 243:120360. [PMID: 37481998 DOI: 10.1016/j.watres.2023.120360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
1,2,5,6-tetrabromocyclooctane (TBCO) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), as safer alternatives to traditional brominated flame retardants, have been extensively detected in various environmental media and pose emerging risks. However, much less is known about their fate in the environment. Anaerobic microbial transformation is a key pathway for the natural attenuation of contaminants. This study investigated, for the first time, the microbial transformation behaviors of β-TBCO and DPTE by Dehalococcoides mccartyi strain CG1. The results indicated that both β-TBCO and DPTE could be easily transformed by D. mccartyi CG1 with kobs values of 0.0218 ± 0.0015 h-1 and 0.0089 ± 0.0003 h-1, respectively. In particular, β-TBCO seemed to undergo dibromo-elimination and then epoxidation to form 4,5-dibromo-9-oxabicyclo[6.1.0]nonane, while DPTE experienced debromination at the benzene ring (ortho-bromine being removed prior to para-bromine) rather than at the carbon chain. Additionally, pronounced carbon and bromine isotope fractionations were observed during biotransformation of β-TBCO and DPTE, suggesting that C-Br bond breaking is the rate-limiting step of their biotransformation. Finally, coupled with identified products and isotope fractionation patterns, β-elimination (E2) and Sn2-nucleophilic substitution were considered the most likely microbial transformation mechanisms for β-TBCO and DPTE, respectively. This work provides important information for assessing the potential of natural attenuation and environmental risks of β-TBCO and DPTE.
Collapse
Affiliation(s)
- Chenchen Huang
- School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Keqi Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yiye Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Yin-E Liu
- School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Liu J, Xu G, Zhao S, Chen C, Rogers MJ, He J. Mechanistic and microbial ecological insights into the impacts of micro- and nano- plastics on microbial reductive dehalogenation of organohalide pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130895. [PMID: 36758435 DOI: 10.1016/j.jhazmat.2023.130895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Micro- and nano-plastics are prevalent in diverse ecosystems, but their impacts on biotransformation of organohalide pollutants and underpinning microbial communities remain poorly understood. Here we investigated the influence of micro- and nano-plastics on microbial reductive dehalogenation at strain and community levels. Generally, microplastics including polyethylene (PE), polystyrene (PS), polylactic acid (PLA), and a weathered microplastic mixture increased dehalogenation rate by 10 - 217% in both the Dehalococcoides isolate and enrichment culture, whereas the effects of polyvinyl chloride (PVC) and a defined microplastic mixture depended on their concentrations and cultures. Contrarily, nano-PS (80 nm) consistently inhibited dehalogenation due to increased production of reactive oxygen species. Nevertheless, the enrichment culture showed higher tolerance to nano-PS inhibition, implying crucial roles of non-dehalogenating populations in ameliorating nanoplastic inhibition. The variation in dehalogenation activity was linked to altered organohalide-respiring bacteria (OHRB) growth and reductive dehalogenase (RDase) gene transcription. Moreover, microplastics changed the community structure and benefited the enrichment of OHRB, favoring the proliferation of Dehalogenimonas. More broadly, the assembly of microbial communities on plastic biofilms was more deterministic than that in the planktonic cells, with more complex co-occurrence networks in the former. Collectively, these findings contribute to better understanding the fate of organohalides in changing environments with increasing plastic pollution.
Collapse
Affiliation(s)
- Jinting Liu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, 119077, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore.
| |
Collapse
|
15
|
Shang Y, Zhang S, Cheng Y, Feng G, Dong Y, Li H, Fan S. Tetrabromobisphenol a exacerbates the overall radioactive hazard to zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120424. [PMID: 36272602 DOI: 10.1016/j.envpol.2022.120424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The major health risks of dual exposure to two hazardous factors of plastics and radioactive contamination are obscure. In the present study, we systematically evaluated the combinational toxic effects of tetrabromobisphenol A (TBBPA), one of the most influential plastic ingredients, mainly from electronic wastes, and γ-irradiation in zebrafish for the first time. TBBPA (0.25 μg/mL for embryos and larvae, 300 μg/L for adults) contamination aggravated the radiation (6 Gy for embryos and larvae, 20 Gy for adults)-induced early dysplasia and aberrant angiogenesis of embryos, further impaired the locomotor vitality of irradiated larvae, and worsened the radioactive multiorganic histologic injury, neurobehavioural disturbances and dysgenesis of zebrafish adults as well as the inter-generational neurotoxicity in offspring. TBBPA exaggerated the radiative toxic effects not only by enhancing the inflammatory and apoptotic response but also by further unbalancing the endocrine system and disrupting the underlying gene expression profiles. In conclusion, TBBPA exacerbates radiation-induced injury in zebrafish, including embryos, larvae, adults and even the next generation. Our findings provide new insights into the toxicology of TBBPA and γ-irradiation, shedding light on the severity of cocontamination of MP components and radioactive substances and thereby inspiring novel remediation and rehabilitation strategies for radiation-injured aqueous organisms and radiotherapy patients.
Collapse
Affiliation(s)
- Yue Shang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Yajia Cheng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China.
| |
Collapse
|
16
|
Song W, Li M, Xu S, Wang Z, Li J, Zhang X, Qiu W, Wang Z, Song Q, Bhatt K, Fu C. Performance and mechanisms for tetrabromobisphenol A efficient degradation in a novel homogeneous advanced treatment based on S 2O 42- activated by Fe 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120579. [PMID: 36336186 DOI: 10.1016/j.envpol.2022.120579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a representative brominated flame retardant (BFR), generally could be debrominated and degraded effectively in photolysis systems with the high energy consumption. In this study, the novel sulfate radical (SO4•-) generation resource of dithionite (S2O42-), activated by the common transition metal of Fe3+, has been applied for establishing an innovative homogeneous advance treatment system for BFR treatment in water. When coupling Fe3+ with S2O42-, TBBPA degradation efficiency could be remarkably improved from 38.7% to 93.8% with the debromination and mineralization efficiency of 83.9% and 18.5% in 60 min, respectively. The primary reactive species also have been identified as SO3•-, SO4•- and •OH responsible for TBBPA treatment and the contributions of SO4•- and •OH have been calculated as 43.8% and 28.4% for TBBPA degradation, respectively. In Fe3+/S2O42- system, TBBPA was effectively degraded in a wide initial pH range (3.0-9.0), whose activation energy was calculated as 32.01 kJ mol-1. Due to the only operation of reagents dosing, the energy consumption and cost could be decreasing significantly without any light energy input and reaction conditions (e.g., pH and dissolved oxygen) adjustment compared with the general photolysis process. Moreover, some possible degradation approaches of TBBPA also have been proposed via GC-MS including debromination, hydroxylation, methylation, and mineralization in Fe3+/S2O42- system. And these probable degradation pathways also have been confirmed with the decreased Gibbs free energy (ΔG) based on density functional theory (DFT). This study has revealed that it was promising of Fe3+/S2O42- system for BFRs degradation and detoxification efficiently through the simple operation and mild condtions.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Mu Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Sen Xu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhuoyue Wang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Qi Song
- Henan Medscience Pharmaceuticals Co., Ltd., Zhumadian, 463000, China
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Caixia Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
17
|
Xu G, He J. Resilience of organohalide-detoxifying microbial community to oxygen stress in sewage sludge. WATER RESEARCH 2022; 224:119055. [PMID: 36126627 DOI: 10.1016/j.watres.2022.119055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Organohalide pollutants are prevalent in the environment, causing harms to wildlife and human. Organohalide-respiring bacteria (OHRB) could detoxify these pollutants in anaerobic environments, but the most competent OHRB (i.e., Dehalococcoides) is susceptible to oxygen. This study reports exceptional resistance and resilience of sewage sludge microbial communities to oxygen stress for attenuation of structurally distinct organohalide pollutants, including tetrachloroethene, tetrabromobisphenol A, and polybrominated diphenyl ethers. The dehalogenation rate constant of these organohalide pollutants in oxygen-exposed sludge microcosms was maintained as 74-120% as that in the control without oxygen exposure. Subsequent top-down experiments clarified that sludge flocs and non-OHRB contributed to alleviating oxygen stress on OHRB. In the dehalogenating microcosms, multiple OHRB (Dehahlococcoides, Dehalogenimonas, and Sulfurospirillum) harboring distinct reductive dehalogenase genes (pceA, pteA, tceA, vcrA, and bdeA) collaborated to detoxify organohalide pollutants but responded differentially to oxygen stress. Comprehensive microbial community analyses (taxonomy, diversity, and structure) demonstrated certain resilience of the sludge-derived dehalogenating microbial communities to oxygen stress. Additionally, microbial co-occurrence networks were intensified by oxygen stress in most microcosms, as a possible stress mitigation strategy. Altogether the mechanistic and ecological findings in this study contribute to remediation of organohalide-contaminated sites encountering oxygen disturbance.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, 119077, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, 119077, Singapore.
| |
Collapse
|
18
|
Zhao S, Ding C, Xu G, Rogers MJ, Ramaswamy R, He J. Diversity of organohalide respiring bacteria and reductive dehalogenases that detoxify polybrominated diphenyl ethers in E-waste recycling sites. THE ISME JOURNAL 2022; 16:2123-2131. [PMID: 35710945 PMCID: PMC9381789 DOI: 10.1038/s41396-022-01257-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
Widespread polybrominated diphenyl ethers (PBDEs) contamination poses risks to human health and ecosystems. Bioremediation is widely considered to be a less ecologically disruptive strategy for remediation of organohalide contamination, but bioremediation of PBDE-contaminated sites is limited by a lack of knowledge about PBDE-dehalogenating microbial populations. Here we report anaerobic PBDE debromination in microcosms established from geographically distinct e-waste recycling sites. Complete debromination of a penta-BDE mixture to diphenyl ether was detected in 16 of 24 investigated microcosms; further enrichment of these 16 microcosms implicated microbial populations belonging to the bacterial genera Dehalococcoides, Dehalogenimonas, and Dehalobacter in PBDE debromination. Debrominating microcosms tended to contain either both Dehalogenimonas and Dehalobacter or Dehalococcoides alone. Separately, complete debromination of a penta-BDE mixture was also observed by axenic cultures of Dehalococcoides mccartyi strains CG1, CG4, and 11a5, suggesting that this phenotype may be fairly common amongst Dehalococcoides. PBDE debromination in these isolates was mediated by four reductive dehalogenases not previously known to debrominate PBDEs. Debromination of an octa-BDE mixture was less prevalent and less complete in microcosms. The PBDE reductive dehalogenase homologous genes in Dehalococcoides genomes represent plausible molecular markers to predict PBDE debromination in microbial communities via their prevalence and transcriptions analysis.
Collapse
Affiliation(s)
- Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chang Ding
- Helmholtz Centre for Environmental Research - UFZ, Environmental Biotechnology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Rajaganesan Ramaswamy
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
19
|
Wang Z, Song L, Jin S, Ye N, Zhang F, Luo T, Wang DG. Dissolved organic matter heightens the toxicity of tetrabromobisphenol A to aquatic organisms. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:725-734. [PMID: 35357622 DOI: 10.1007/s10646-022-02539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a new type of persistent organic pollutant, which causes environmental pollution and health problems, and has attracted the attention of the international research community. Once released into the environment, TBBPA can interact with dissolved organic matter (DOM), which affects its behavior. However, the effect of DOM on the biological toxicity of TBBPA remains unclear. The toxic effects of TBBPA on three model aquatic organisms (Chlorella pyrenoidosa, Daphnia magna, and Danio rerio), in the absence and presence of DOM were investigated. The order of acute toxicity of TBBPA to the three aquatic organisms was D. magna > D. rerio > C. pyrenoidosa. In the presence of DOM the median effect/lethal concentrations values of TBBPA to the three aquatic organisms decreased by at least 32 (C. pyrenoidosa), 52 (D. magna), and 6.6% (D. rerio), implying that DOM enhanced the acute toxicity of TBBPA to all the organisms. Moreover, the higher the concentration of DOM, the higher the acute toxicity of TBBPA. Furthermore, the presence of DOM increased total reactive oxygen species (ROS) induced by TBBPA in a concentration-dependent manner. A tracking analysis of total ROS in the three aquatic organisms also showed that the presence of DOM aggravated the accumulation of total ROS induced by TBBPA, indicating that oxidative stress is a characteristic mechanism of toxicity of TBBPA to aquatic organisms when DOM is present. In addition, the evaluated risk quotient indicated that the ecological risk of TBBPA to aquatic organisms can increase in environments rich in DOM.
Collapse
Affiliation(s)
- Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Lan Song
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Shiguang Jin
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Nan Ye
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Fan Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Tianlie Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, 610059, Chengdu, China
| | - De-Gao Wang
- College of Environmental Sciences and Engineering, Dalian Maritime University, 116026, Dalian, China
| |
Collapse
|
20
|
Xu G, Ng HL, Chen C, Zhao S, He J. Efficient and Complete Detoxification of Polybrominated Diphenyl Ethers in Sediments Achieved by Bioaugmentation with Dehalococcoides and Microbial Ecological Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8008-8019. [PMID: 35549250 DOI: 10.1021/acs.est.2c00914] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are prevalent environmental pollutants, but bioremediation of PBDEs remains to be reported. Here we report accelerated remediation of a penta-BDE mixture in sediments by bioaugmentation with Dehalococcoides mccartyi strains CG1 and TZ50. Bioaugmentation with different amounts of each Dehalococcoides strain enhanced debromination of penta-BDEs compared with the controls. The sediment microcosm spiked with 6.8 × 106 cells/mL strain CG1 showed the highest penta-BDEs removal (89.9 ± 7.3%) to diphenyl ether within 60 days. Interestingly, co-contaminant tetrachloroethene (PCE) improved bioaugmentation performance, resulting in faster and more extensive penta-BDEs debromination using less bioinoculants, which was also completely dechlorinated to ethene by introducing D. mccartyi strain 11a. The better bioaugmentation performance in sediments with PCE could be attributed to the boosted growth of the augmented Dehalococcoides and capability of the PCE-induced reductive dehalogenases to debrominate penta-BDEs. Finally, ecological analyses showed that bioaugmentation resulted in more deterministic microbial communities, where the augmented Dehalococcoides established linkages with indigenous microorganisms but without causing obvious alterations of the overall community diversity and structure. Collectively, this study demonstrates that bioaugmentation with Dehalococcoides is a feasible strategy to completely remove PBDEs in sediments.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School─Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077
| | - Hung Liang Ng
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
21
|
Peng X, Zheng Q, Liu L, He Y, Li T, Jia X. Efficient biodegradation of tetrabromobisphenol A by the novel strain Enterobacter sp. T2 with good environmental adaptation: Kinetics, pathways and genomic characteristics. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128335. [PMID: 35121290 DOI: 10.1016/j.jhazmat.2022.128335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
T2, a gram-positive bacterium capable of rapidly degrading tetrabromobisphenol A (TBBPA), and affiliated with the genus Enterobacter, was isolated for the first time from sludge that had been contaminated for several years. The TBBPA degradation data fitted the first-order model well. Under optimal conditions (pH of 7, temperature of 31 °C, TBBPA concentration of 5 mg L-1, and inoculum size of 5%), 99.4% of the initially added TBBPA was degraded after 48 h. TBBPA degradation fitted the first-order model with the half-life of 3.3 h. These results illustrated that the TBBPA degradation capability of strain T2 was significantly better than that of previously reported bacteria. A total of 17 intermediates were detected, among which five were reported for the first time. Whole-genome sequencing revealed that strain T2 had a chromosome with the total length of 4 854 376 bp and a plasmid with the total length of 21 444 bp. It harbored essential genes responsible for debromination, such as cyp450, gstB, gstA, and HADH, and genes responsible for subsequent complete mineralization, such as bioC, yrrM, Tam, and Ubil. A key protein of haloacid dehalogenases responsible for the biodegradation of TBBPA may also be involved in the regulation of TBBPA degradation in natural environment. In soil bioremediation experiments, strain T2 showed excellent environmental adaptation. It was able to biodegrade TBBPA and its typical intermediate bisphenol A efficiently. Therefore, it could potentially be applied to treat TBBPA-contaminated sites.
Collapse
Affiliation(s)
- Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Qihang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| |
Collapse
|
22
|
Xu G, Zhao S, Chen C, Zhao X, Ramaswamy R, He J. Dehalogenation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls Catalyzed by a Reductive Dehalogenase in Dehalococcoides mccartyi Strain MB. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4039-4049. [PMID: 35298122 DOI: 10.1021/acs.est.1c05170] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are notorious persistent organic pollutants. However, few organohalide-respiring bacteria that harbor reductive dehalogenases (RDases) capable of dehalogenating these pollutants have been identified. Here, we report reductive dehalogenation of penta-BDEs and PCBs byDehalococcoides mccartyi strain MB. The PCE-pregrown cultures of strain MB debrominated 86.6 ± 7.4% penta-BDEs to di- to tetra-BDEs within 5 days. Similarly, extensive dechlorination of Aroclor1260 and Aroclor1254 was observed in the PCE-pregrown cultures of strain MB, with the average chlorine per PCB decreasing from 6.40 ± 0.02 and 5.40 ± 0.03 to 5.98 ± 0.11 and 5.19 ± 0.07 within 14 days, respectively; para-substituents were preferentially dechlorinated from PCBs. Moreover, strain MB showed distinct enantioselective dechlorination of different chiral PCB congeners. Dehalogenation activity and cell growth were maintained during the successive transfer of cultures when amended with penta-BDEs as the sole electron acceptors but not when amended with only PCBs, suggesting metabolic and co-metabolic dehalogenation of these compounds, respectively. Transcriptional analysis, proteomic profiling, and in vitro activity assays indicated that MbrA was involved in dehalogenating PCE, PCBs, and PBDEs. Interestingly, resequencing of mbrA in strain MB identified three nonsynonymous mutations within the nucleotide sequence, although the consequences of which remain unknown. The substrate versatility of MbrA enabled strain MB to dechlorinate PCBs in the presence of either penta-BDEs or PCE, suggesting that co-metabolic dehalogenation initiated by multifunctional RDases may contribute to PCB attenuation at sites contaminated with multiple organohalide pollutants.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Rajaganesan Ramaswamy
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| |
Collapse
|
23
|
Xu G, Zhang N, Zhao X, Chen C, Zhang C, He J. Offshore Marine Sediment Microbiota Respire Structurally Distinct Organohalide Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3065-3075. [PMID: 35187933 DOI: 10.1021/acs.est.1c06680] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine sediments are a major sink of organohalide pollutants, but the potential for offshore marine microbiota to transform these pollutants remains underexplored. Here, we report dehalogenation of diverse organohalide pollutants by offshore marine microbiota. Dechlorination of polychlorinated biphenyls (PCBs) was observed in four marine sediment microcosms, which was positively correlated with in situ PCB contamination. Three distinct enrichment cultures were enriched from these PCB-dechlorinating microcosms using tetrachloroethene (PCE) as the sole organohalide. All enrichment cultures also dehalogenated polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A (TBBPA), and 2,4,6-trichlorophenol (2,4,6-TCP). Particularly, two enrichments completely debrominated penta-BDEs, the first observation of complete debromination of penta-BDEs in marine cultures. Multiple Dehalococcoides and uncultivated Dehalococcoidia were identified in the initial sediment microcosms, but only Dehalococcoides was dominant in all enrichments. Transcription of a gene encoding a PcbA5-like reductive dehalogenase (RDase) was observed during dehalogenation of different organohalides in each enrichment culture. When induced by a single organohalide substrate, the PcbA5-like RDase dehalogenated all tested organohalides (PCE, PCBs, PBDEs, TBBPA, and 2,4,6-TCP) in in vitro tests, suggesting its involvement in dehalogenation of structurally distinct organohalides. Our results demonstrate the versatile dehalogenation capacity of marine Dehalococcoidia and contribute to a better understanding of the fate of these pollutants in marine systems.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
- NUS Graduate School─Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Ning Zhang
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| |
Collapse
|
24
|
He H, Li Y, Shen R, Shim H, Zeng Y, Zhao S, Lu Q, Mai B, Wang S. Environmental occurrence and remediation of emerging organohalides: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118060. [PMID: 34479159 DOI: 10.1016/j.envpol.2021.118060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
As replacements for "old" organohalides, such as polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), "new" organohalides have been developed, including decabromodiphenyl ethane (DBDPE), short-chain chlorinated paraffins (SCCPs), and perfluorobutyrate (PFBA). In the past decade, these emerging organohalides (EOHs) have been extensively produced as industrial and consumer products, resulting in their widespread environmental distribution. This review comprehensively summarizes the environmental occurrence and remediation methods for typical EOHs. Based on the data collected from 2015 to 2021, these EOHs are widespread in both abiotic (e.g., dust, air, soil, sediment, and water) and biotic (e.g., bird, fish, and human serum) matrices. A significant positive correlation was found between the estimated annual production amounts of EOHs and their environmental contamination levels, suggesting the prohibition of both production and usage of EOHs as a critical pollution-source control strategy. The strengths and weaknesses, as well as the future prospects of up-to-date remediation techniques, such as photodegradation, chemical oxidation, and biodegradation, are critically discussed. Of these remediation techniques, microbial reductive dehalogenation represents a promising in situ remediation method for removal of EOHs, such as perfluoroalkyl and polyfluoroalkyl substances (PFASs) and halogenated flame retardants (HFRs).
Collapse
Affiliation(s)
- Haozheng He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yiyang Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Siyan Zhao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|