1
|
Lu L, Lei M, Zhou Y, Cui H, Du H. In vitro tungsten bioaccessibility in Chinese residential soils: Implications for human health risk assessments and soil screening level derivation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135368. [PMID: 39079296 DOI: 10.1016/j.jhazmat.2024.135368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Tungsten (W) contamination presents emerging environmental challenges, necessitating the need to establish soil screening levels (SSLs), especially for residential soils. This study assessed the health exposure risk and derived national and regional residential SSLs for W in Chinese residential soils, incorporating machine-learning prediction of in-vitro soil W bioaccessibility. We analyzed 204 residential soil samples collected across 24 provinces, recording a wide range of W concentrations (0.01-3063.2 mg/kg). Synchrotron-based X-ray fluorescence spectroscopy, chemical extractions, and random forest modeling indicated that the key determinants of soil W bioaccessibility were soil pH, cation exchange capacity, organic matter, and clay contents. Monte Carlo simulations demonstrated that soil W contamination predominantly results in noncarcinogenic health risks to residents via oral exposure, especially in mining-affected regions. A national residential SSL (NRSSL) of 35.5 mg/kg and regional residential SSLs (RRSSLs) of 34.5-49.2 mg/kg were established. Incorporating predicted bioaccessibility increased the NRSSL to 73.8 mg/kg and the RRSSLs to 69.8-112.5 mg/kg. Southern China, which is rich in W ore, exhibited lower RRSSLs, underscoring a need for enhanced safety management. Our framework and findings provide a robust scientific foundation for future soil contamination risk assessment studies, and we present customized SSLs that can guide targeted W risk control strategies.
Collapse
Affiliation(s)
- Lei Lu
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Ming Lei
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Yaoyu Zhou
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Haojie Cui
- College of Resources, Hunan Agricultural University, 410127 Changsha, China
| | - Huihui Du
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
2
|
Bao Y, Zheng X, Guo R, Wang L, Liu C, Zhang W. Biomass chitosan/sodium alginate colorimetric imprinting hydrogels with integrated capture and visualization detection for cadmium(II). Carbohydr Polym 2024; 331:121841. [PMID: 38388049 DOI: 10.1016/j.carbpol.2024.121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Due to Cd(II) with highly toxic, persistent and bioaccumulative, the discharge of it into the environment brings serious pollution. Developing strategies that are efficient, low-cost, pollution-free and specific to removing Cd(II) from wastewater is therefore of great urgency and prime importance. A novel chitosan/sodium alginate ionic imprinting(IICA) hydrogels with specific adsorption capacity for Cd(II) was prepared through freeze-thaw and ion imprinting, and finally the colorimetric sensor (IICAS) was prepared via introducing Rhodamine B(RhB) and Victoria blue(VBB) by immersion to achieve visual detection of Cd(II). The IICA hydrogels with imprinted hole structure had higher adsorption capacity and better specific selectivity for Cd(II). As well as internal diffusion, coordination, ion exchange, and hydrogen bonding influenced the adsorption rate. Moreover, the IICAS exhibited good selective detection ability and linearity for Cd(II) with the fitted correlation coefficient (R2) = 0.98, limit of detection (LOD) = 35 nmol/L. Combined with the smartphone platform, portable and quantitative detection of Cd(II) can be achieved, Within the 0-100 mg/L range, R2 remained 0.94, and LOD was 75 nmol/L. This strategy of preparing a novel whole biomass IICAS integrating capture and visual detection provides a new insight into the construction of a promising candidate sensor for the removal and detection of Cd(II).
Collapse
Affiliation(s)
- Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China.
| | - Xi Zheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Ruyue Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Luxuan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Chao Liu
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Wenbo Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
3
|
Shang Z, Wang T, Ye Q, Wu P, Wu J, Sun L, Zhu N. An environmentally friendly strategy for reducing the environmental risks of heavy metals adsorbed by kaolinite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120506. [PMID: 38447514 DOI: 10.1016/j.jenvman.2024.120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Plenty of heavy metals (HMs) that are adsorbed on clay minerals (such as kaolinite), in addition to low molecular-weight organic acids (such as oxalic acid (OA)) with high activities, are widespread in the natural environment. In the present study, the effects of OA on the environmental behaviors of Pb2+/Cd2+ adsorbed by kaolinite have been investigated. The effectiveness and mechanisms of calcium silicate (CS) and magnesium silicate (MS) in reducing the environmental risks of the HMs have also been studied. The results showed that the releases of Pb2+/Cd2+ increased with an increasing concentration of OA. When different dosages of CS/MS were added to the aging system, a redistribution of HMs took place and the free form of Pb2+/Cd2+ decreased to very low levels. Also, the unextractable Pb2+/Cd2+ increased to high levels. Furthermore, a series of characterizations showed that the released HMs were re-captured by the CS/MS. In addition, the CS immobilized the OA in the solution during the aging process, which also facilitated an immobilization of the carbon element in the environment. In general, the present study has contributed to a further understanding of the transport behaviors of the HMs in natural environments, and of the interactions between CS (or MS), the environmental media, and the heavy metal contaminants. In addition, this study has also provided an eco-friendly strategy for an effective remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Quanyun Ye
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| |
Collapse
|
4
|
Wang Z, Tian H, Liu J, Wang J, Lu Q, Xie L. Facet-dependent adsorption of heavy metal ions on Janus clay nanosheets. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132548. [PMID: 37722327 DOI: 10.1016/j.jhazmat.2023.132548] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Understanding the facet-dependent adsorption behavior and mechanism of heavy metal ions (HMs) on two-dimensional (2D) Janus nanoclays has important implications for the environment and ecosystem but still remains elusive. Herein, ultrathin Janus serpentene (2D serpentine) nanosheets were fabricated via a facile, nontoxic, and residue-free exfoliation strategy. Fabricated serpentene nanosheets exhibited promising Cd(II) and Pb(II) adsorption capacities due to their high surface areas and abundant active sites, approximately four times higher than those of bulk serpentine powders. Interestingly, Cd(II) and Pb(II) adsorption on serpentene nanosheets exhibited a facet-dependent feature, with the adsorption amount on the Mg-OH plane considerably higher than that on the Si-O plane. This facet-dependent adsorption behavior was mainly attributed to the difference in the interaction mechanisms of HMs with the Mg-OH (monodentate inner-sphere complexation) and Si-O (outer-sphere complexation) planes, which was further confirmed via density functional theory calculations. The Cd(II) adsorption on serpentene nanosheets was limited by strong kinetic restrictions (e.g., stronger electrostatic repulsion and higher dehydration energy barrier than that for Pb(II) adsorption). This study provides insights into the facet-dependent adsorption mechanisms of HMs on Janus serpentene nanosheets, which can be extended to other nanoclays used in wastewater treatment and many environmental processes.
Collapse
Affiliation(s)
- Zhoujie Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, PR China
| | - Huadong Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, PR China
| | - Jing Liu
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, PR China
| | - Jingyi Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, Canada
| | - Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, PR China.
| |
Collapse
|
5
|
Wang Z, Tian H, Liu J, Wang J, Lu Q, Xie L. Cd(II) adsorption on earth-abundant serpentine in aqueous environment: Role of interfacial ion specificity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121845. [PMID: 37209895 DOI: 10.1016/j.envpol.2023.121845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Adsorption of heavy metal ions (e.g., Cd(II)) on clay minerals significantly affects their transport and fate in natural and engineered waterbodies. To date, the role of interfacial ion specificity in the adsorption of Cd(II) on earth-abundant serpentine remains elusive. In this work, the adsorption of Cd(II) on serpentine at typical environment conditions (pH 4.5-5.0), particularly under the complex influence of common environmental anions (e.g., NO3-, SO42-) and cations (e.g., K+, Ca2+, Fe3+, Al3+) was systemically investigated. It was found that the adsorption of Cd(II) on serpentine surface due to the inner-sphere complexation could be negligibly affected by the anion type, yet the cations specifically modulated the Cd(II) adsorption. The presence of mono- and divalent cations moderately enhanced the Cd(II) adsorption by weakening the electrostatic double layer (EDL) repulsion between Cd(II) and Mg-O plane of serpentine, while trivalent cations significantly suppressed the adsorption of Cd(II) due to the competitive adsorption. Based on the spectroscopy analysis, Fe3+ and Al3+ were found to robustly bind the surface active sites of serpentine, thereby preventing the inner-sphere adsorption of Cd(II). The density functional theory (DFT) calculation indicated that Fe(III) and Al(III) exhibited the larger adsorption energy (Ead = -146.1 and -516.1 kcal mol-1, respectively) and stronger electron transfer capacity with serpentine compared to Cd(II) (Ead = -118.1 kcal mol-1), thus resulting in the formation of more stable Fe(III)-O and Al(III)-O inner-sphere complexes. This study provides valuable insights into the influence of interfacial ion specificity on the Cd(II) adsorption in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Zhoujie Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, PR China
| | - Huadong Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, PR China
| | - Jing Liu
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing, 100191, PR China
| | - Jingyi Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, Canada
| | - Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
6
|
Cao X, Zhang Q, Yang W, Fang L, Liu S, Ma R, Guo K, Ma N. Lead-chlorine synergistic immobilization mechanism in municipal solid waste incineration fly ash (MSWIFA)-based magnesium potassium phosphate cement. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130038. [PMID: 36166907 DOI: 10.1016/j.jhazmat.2022.130038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The high chlorine (Cl) and lead (Pb) content characteristics of municipal solid waste incineration fly ash (MSWIFA) pose environmental risks and hinder resource utilization. Herein, an MSWIFA-based magnesium potassium phosphate cement (MKPC) preparation strategy was developed, which allowed the MSWIFA recycling and the Pb-Cl synergistic immobilization without the washing pretreatment. The compressive strength of the resulting 10 wt% MSWIFA-based MKPC was 28.44 MPa, with over 99.2% reduction in leaching toxicity of Pb and Cl. The high-angle annular dark field scanning transmission electron microscope (HAADF-STEM) and X-ray absorption spectroscopy (XAS) analyzes showed that Pb, phosphate and Cl- formed Pb5(PO4)3Cl in MKPC. In-situ X-ray diffraction (XRD) tests showed that Pb3(PO4)2 was gradually transformed to Pb5(PO4)3Cl through a dissolution-precipitation process. The formation energy, Bader charge, charge density difference and density of states (DOS) of Pb5(PO4)3Cl were analyzed by first-principles calculations, confirming that Pb5(PO4)3Cl was more thermodynamically stable than Pb3(PO4)2 and PbCl2 and that electronic interactions between Pb-p, O-p, P-p and Cl-p orbits were the origin of Pb-Cl synergistic immobilization. This work provides a new strategy for the resource utilization of MSWIFA without washing pretreatment, and provides an in-depth understanding of the Pb-Cl synergistic immobilization mechanism.
Collapse
Affiliation(s)
- Xing Cao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qiushi Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weichen Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lin Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shiwei Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Kai Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Ma
- China Electronic System Engineering Co.,Ltd, Beijing 100040, China
| |
Collapse
|
7
|
Highly selective recovery of rare earth elements from mine wastewater by modifying kaolin with phosphoric acid. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Selective recovery of lanthanum from magnesium-containing solution via phosphoric acid modified kaolin prepared by a simple mechanochemical process. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Hu YB, Du T, Ma L, Feng X, Xie Y, Fan X, Fu ML, Yuan B, Li XY. Insights into the mechanisms of aqueous Cd(II) reduction and adsorption by nanoscale zerovalent iron under different atmosphere conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129766. [PMID: 35985214 DOI: 10.1016/j.jhazmat.2022.129766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Nanoscale zero-valent iron (NZVI) can effectively remove and recover Cd(II) from aqueous solutions. However, the oxygen effects on Cd(II) removal by NZVI have been overlooked and not well studied. In this research, the Cd MNN auger lines obtained by X-ray photoelectron spectroscopy (XPS) revealed that Cd(II) adsorbed on the NZVI surface could be reduced to Cd(0) by the Fe(0) core under anaerobic conditions. With coexisting oxygen, the Cd(II) removal efficiency declined significantly, and Cd(II) reduction was inhibited by the thickened surface γ-FeOOH layer. Furthermore, the post-oxygen intrusion corroded the generated Cd(0) and led to the dramatic leaching of Cd(II) ions. According to the density functional theory (DFT) simulation, the adsorbed Cd(II) was preferably coordinated via a monodentate model on the surface of Fe3O4 and γ-FeOOH, which are the dominant surface species of NZVI under anaerobic and aerobic conditions, respectively. Thus, γ-FeOOH with doubly coordinated hydroxyl groups provided fewer adsorption sites than Fe3O4 for Cd(II) ions. Overall, the atmospheric conditions of subsurface remediation and wastewater treatment should be considered when applying NZVI for Cd(II) removal. Favorable atmospheric conditions would improve the efficiency and cost-effectiveness of NZVI-based technologies for the practical remediation of Cd(II) pollution.
Collapse
Affiliation(s)
- Yi-Bo Hu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Ting Du
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Lihang Ma
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xuening Feng
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yujie Xie
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xiaoyao Fan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
10
|
Zhang J, Yin J, Zhang Y, Zhu T, Ran H, Jiang W, Li H, Li H, Zhang M. Insights into the formation mechanism of aliphatic acid-choline chloride deep eutectic solvents by theoretical and experimental research. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Zhao Y, Chen M, Zhang Q, Yuan W, Wu Y. Ion exchange to immobilize Cd(II) at neutral pH into silicate matrix prepared by co-grinding kaolinite with calcium compounds. CHEMOSPHERE 2022; 301:134677. [PMID: 35472614 DOI: 10.1016/j.chemosphere.2022.134677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
A novel silicate-based composite material was simply prepared by co-milling kaolinite and calcium compounds to endow the well studied clay minerals with active calcium for efficient removal of heavy metals. Batch experiments were carried out to investigate the main affecting factors such as raw material ratio, ball milling time, contact time, etc.. Even at a neutral solution pH, the silicate adsorbent exhibited excellent performance for the adsorption of Cd(II), reaching equilibrium in 30 min with a removal efficiency over 95%, and allowed a direct discharge of the treated solution without the need of acidic neutralization as usually used in the alkaline precipitation. A set of analytical methods including SEM/EDS and 29Si MAS NMR etc. were used to analyze the adsorption mechanism of Cd(II), revealing that the adsorption process was mainly dominated by ion exchange to accommodate Cd ions inside silicate matrix, accompanied with partial hydroxide precipitation, rather than normally reported surface adsorption on pristine minerals. Furthermore, the as-prepared adsorption material exhibited similar excellent immobilization capacity for multiple heavy metals including Cu(II), Zn(II), Ni(II), Cd(II) and Mn(II). These findings provide a novel concept for the activation of the widely available cheap silicate minerals by the same widely available cheap calcium compounds and high contribution may be expected on its potentials to the environmental purification of heavy metal pollution in water and soil.
Collapse
Affiliation(s)
- Yue Zhao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China
| | - Min Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan, 430070, China.
| | - Wenyi Yuan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Yan Wu
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China; Research Center on Levee Safety and Disaster Prevention of Ministry of Water Resources, Yellow River Conservancy Commission, Zhengzhou, 450003, China.
| |
Collapse
|
12
|
Chen G, Li X, Zhao H, Qiu M, Xia S, Yu L. Revealing the mechanisms of mercury adsorption on metal-doped kaolinite(001) surfaces by first principles. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128586. [PMID: 35278954 DOI: 10.1016/j.jhazmat.2022.128586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Natural kaolinite exhibit high affinity for heavy metals while the interaction mechanisms in the presence of heteroatoms remain largely elusive, which are tackled by first principles. In this paper, three common dopants (Mg, Ca, Fe) were employed to construct metal-doped kaolinite(001) (K(001)) surfaces. We found that Mg-doped K(001) was the most stable surface in terms of thermal stability and structural analysis, consistent with the pervasive isomorphic substitution in kaolinite minerals. The interaction of mercury with Mg-doped K(001) surface was investigated in the form of predominant top-site and bridge-site models. The effects of chloride on the interaction were also studied. The results demonstrated that the strongest adsorption occured in the present of dopants and the absence of chloride. The electronic properties revealed a significant charge transfer (up to 1.28 electrons) and chemisorption character at the interfaces when dopants were introduced, which could be ascribed to the overlapping of Hg-5d and Os-2p (surface O) orbitals in the range of -7.5 eV to +0.5 eV. Additionally, the chloride had a profoundly adverse influence on mercury adsorption due to the upward shift of Hg-6s and Hg-6p orbitals. The studies are beneficial to understand the interaction mechanisms of natural minerals toward environmental pollutants in actual applications.
Collapse
Affiliation(s)
- Guobo Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Xia Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Haizhou Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Meng Qiu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shuwei Xia
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|