1
|
Wu H, Lv H, Yu Y, Du Y, Du D. Ammonium persulfate-triggered modified chitosan biochar for co-adsorption of Cr(VI) and tetracycline antibiotics: Behavior and mechanisms. Int J Biol Macromol 2025; 311:143432. [PMID: 40280506 DOI: 10.1016/j.ijbiomac.2025.143432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Antibiotic and heavy metal contamination of soil and groundwater together constitute a serious environmental issue. This study developed APS@CHI-1:3, a high-performance biochar derived from chitosan modified with ammonium persulfate (APS) and acetic acid, through a two-step carbonization process: hydrothermal pre‑carbonization at 180 °C for 6 h, followed by K₂CO₃ activation (1,3 mass ratio) at 800 °C for 2 h under N₂. The resulting material exhibited a high specific surface area (1656 m2/g) and abundant surface functional groups. The optimized adsorbent exhibited exceptional adsorption capacities of 851.5 mg/g for tetracycline (TET) and 777.4 mg/g for chlortetracycline (CTC) at 308 K, surpassing most reported biochars. In binary systems containing Cr(VI), APS@CHI-1:3 achieved 60.54 % Cr(VI) removal (48.45 mg/g) alongside simultaneous TET/CTC adsorption, demonstrating robust performance under competitive conditions. Mechanistic studies revealed that the adsorption was governed by electrostatic attraction, Lewis acid-base interactions, hydrogen bonding, and π-π interactions. The material maintained >92 % adsorption efficiency after 5 regeneration cycles, highlighting its reusability. These findings highlight its potential application in remediating complex wastewater systems co-contaminated by heavy metals and antibiotics.
Collapse
Affiliation(s)
- Hui Wu
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Haoge Lv
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Yexing Yu
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Yaguang Du
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Dongyun Du
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China.
| |
Collapse
|
2
|
Zhang Z, Wang J, Guo S, Wang X. C-ZIF-8 modified NiO photocathode and enhanced photosensitizer signal amplification for ultra-sensitive photoelectrochemical detection of lead ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2650-2656. [PMID: 40079518 DOI: 10.1039/d5ay00136f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
NiO photocathodes have been developed for photoelectrochemical (PEC) sensing. However, the development of NiO-based photoactive materials with higher performance is still being pursued to further improve the sensitivity of detection. In this article, we prepared a C-ZIF-8/NiO composite material photocathode composed of porous carbon derived from ZIF-8 (C-ZIF-8) and NiO, and utilized its enhanced PEC activity and amplification effect on chlorohemin (hemin) sensitization to achieve ultra-sensitive detection of lead ions (Pb2+). The introduction of C-ZIF-8 improved the charge transfer and light absorption ability of the composite material, and significantly increased the load of hemin on the photocathode, thereby enhancing the photocurrent response by 8 times. Based on the C-ZIF-8/NiO photocathode and in situ generated photosensitizer signal amplification strategy, ultra-sensitive detection of Pb2+ had been attained with a detection linear range of 10 pM to 5 nM and a detection limit of 2.6 pM. This study provides a new platform for high sensitivity detection of Pb2+, and extensive potential applications could be further expected.
Collapse
Affiliation(s)
- Zhaona Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Juan Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Siru Guo
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinxing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
- Weihai Tianchen Environmental Protection Co., Ltd, Weihai 264400, China
| |
Collapse
|
3
|
Wang G, Peng B, Sun X, Wang Y, Nie C, Fu R, Yan B. Constructing Stable N-Doped Iron-Based Porous Carbon Nanocatalyst for Antibiotic Degradation and Bactericidal Detoxification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7613-7623. [PMID: 40091827 DOI: 10.1021/acs.langmuir.4c05277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
N-doped iron-based carbon is a promising catalyst to achieve peroxydisulfate (PDS) activation, but constructing efficient and stable N-doped iron-based carbon catalysts with uniformly distributed and firmly anchored nitrogen and iron sources remains challenging. Herein, we developed a stable N-doped magnetic porous carbon (NMPC) catalyst through self-polymerization and high-temperature pyrolysis of polydopamine and Fe3+ coordination complexes and explored it for PDS activation in antibiotic (tetracycline (TC) and ciprofloxacin) degradation and bactericidal detoxification. The NMPC/PDS system performed both radical and nonradical catalytic pathways for effective PDS activation, exhibiting 99.8% removal of TC. Thanks to the strong coordination of polydopamine with Fe3+, the resulting NMPC could firmly confine iron species in the porous N-carbonaceous matrices and efficiently prevent severe iron leaching, demonstrating good recyclability. It could maintain a removal rate as high as 92.4% after 5 cycles. After cycling, the iron leaching of the NMPC catalyst is only 0.026 mg/L, which is much lower than the WHO guideline value limits for drinking water of 0.3 mg/L. Moreover, the NMPC catalyst exhibits excellent stability and compatibility with various water conditions, including pH variations (3-9), coexisting substances, and different water sources. In addition, this NMPC/PDS system exhibits an excellent disinfection of both Escherichia coli and Staphylococcus aureus, with a high disinfection ratio of more than 99.9%. Toxic intermediate prediction and cell toxicity experiments further prove that the toxicity of the TC wastewater is significantly reduced after the treatment with the NMPC/PDS system.
Collapse
Affiliation(s)
- Guihua Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Bin Peng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xuehui Sun
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Yipeng Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Cong Nie
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Runfang Fu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Castillo-Blas C, García MJ, Chester AM, Mazaj M, Guan S, Robertson GP, Kono A, Steele JMA, León-Alcaide L, Poletto-Rodrigues B, Chater PA, Cabrera S, Krajnc A, Wondraczek L, Keen DA, Alemán J, Bennett TD. Structural and Interfacial Characterization of a Photocatalytic Titanium MOF-Phosphate Glass Composite. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15793-15803. [PMID: 40033699 PMCID: PMC11912187 DOI: 10.1021/acsami.4c18444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metal-organic framework (MOF) composites are proposed as solutions to the mechanical instability of pure MOF materials. Here, we present a new compositional series of recently discovered MOF-crystalline inorganic glass composites. In this case, formed by the combination of a photocatalytic titanium MOF (MIL-125-NH2) and a phosphate-based glass (20%Na2O-10%Na2SO4-70%P2O5). This new family of composites has been synthesized and characterized using powder X-ray diffraction, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and X-ray total scattering. Through analysis of the pair distribution function extracted from X-ray total scattering data, the atom-atom interactions at the MOF-glass interface are described. Nitrogen and carbon dioxide isotherms demonstrate good surface area values despite the pelletization and mixing of the MOF with a dense inorganic glass. The catalytic activity of these materials was investigated in the photooxidation of amines to imines, showing the retention of the photocatalytic effectiveness of the parent pristine MOF.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Montaña J García
- Organic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Matjaž Mazaj
- Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Shaoliang Guan
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Georgina P Robertson
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Ayano Kono
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - James M A Steele
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department of Chemistry Yusuf Hamied, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luis León-Alcaide
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Bruno Poletto-Rodrigues
- Otto-Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Philip A Chater
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Silvia Cabrera
- Inorganic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Andraž Krajnc
- Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Lothar Wondraczek
- Department of Chemistry Yusuf Hamied, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Jose Alemán
- Organic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
5
|
Thakur S, Bharti S. Recent progress in metal-organic frameworks based nanocomposites for antibiotic removal from water: An in-depth review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36155-3. [PMID: 40029468 DOI: 10.1007/s11356-025-36155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Antibiotic pollution has emerged as a critical concern due to the widespread use of antibiotics, their persistence in the environment, and their detrimental effects on aquatic ecosystems and human health. Therefore, developing and implementing effective strategies to eliminate these contaminants is essential. Metal-organic frameworks (MOFs) have garnered substantial interest in water purification due to their remarkable potential. This paper provides a comprehensive review of MOFs and related nanocomposites, with a particular emphasis on their effectiveness in removing antibiotics from water sources. MOFs stand out due to their unique characteristics, including high porosity, adjustable structures, and crystalline nature, making them exceptional in adsorbing contaminants and functioning as photocatalysts. The paper delves into the mechanisms of adsorption, which include electrostatic interactions, π-π bonding, van der Waals forces, hydrogen bonding, and surface complexation. It also examines the factors influencing adsorption and photodegradation, comparing these techniques to conventional adsorbents, and highlights the superior performance and cost-effectiveness of MOFs. Additionally, the study discusses the challenges, current trends, and future prospects in the field, offering insights that may inspire new researchers to further explore antibiotic removal using MOFs and develop innovative solutions to existing challenges.
Collapse
Affiliation(s)
- Suman Thakur
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| | - Sharda Bharti
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
6
|
Ghaderi M, Bi H, Dam-Johansen K. Ultra-stable metal-organic framework-derived carbon nanocontainers with defect-induced pore enlargement for anti-corrosive epoxy coatings. J Colloid Interface Sci 2025; 681:130-147. [PMID: 39602965 DOI: 10.1016/j.jcis.2024.11.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Zeolitic imidazolate frameworks-8 (ZIF-8) have recently gained attention as nanocontainers for encapsulating corrosion inhibitors. However, two main challenges remain unsolved, casting doubt on their suitability as nanocontainers. The first challenge is their instability in acidic and basic environments, leading to structural decomposition and the second challenge is their mass diffusion limitation caused by micropore dominance and a small aperture size of 0.34-0.42 nm, limiting the efficient adsorption of corrosion inhibitors. To address both challenges, in this work, ZIF-8 nanostructures were transformed into nitrogen-doped ZIF-derived carbon-based nanocontainers (CZIF) via carbonization. This transformation not only stabilized the structure but also produced larger pore sizes (micro and mesopores), due to defects formed during carbonization. Benzotriazole (BTA) corrosion inhibitors were then encapsulated in CZIF structures to produce CZIF-BTA. Electrochemical impedance spectroscopy (EIS) demonstrated that the saline solution containing CZIF-BTA extract reduced the corrosion rate of steel by 50 % compared to a blank solution. The scratched epoxy (EP) coating containing 0.2 wt% of CZIF-BTA revealed an active inhibition performance with ∼100 % enhancement in the total resistance value compared to blank EP. Finally, the coating showed superior barrier properties with the impedance at the lowest frequency value of ∼2 × 1010 Ω cm2 after 71 days of immersion.
Collapse
Affiliation(s)
- Mohammad Ghaderi
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark
| | - Huichao Bi
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark.
| | - Kim Dam-Johansen
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Qin M, Dou D, Zhu Y, Zhang M, Deng J, Zhou T. High-effective, convenient and environmental-friendly MOFs-chitosan-glyoxal composite film for ceftizoxime adsorption: Behavior and mechanisms. Int J Biol Macromol 2024; 282:137077. [PMID: 39481716 DOI: 10.1016/j.ijbiomac.2024.137077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
In this work, a novel PCN-222-chitosan-glyoxal (PCN@CSG2) composite film was constructed by loading PCN-222 in chitosan substrate, and used for ceftizoxime adsorption. The results demonstrated that the PCN@CSG not only had excellent adsorption properties for ceftizoxime, but also maintained excellent structural properties in harsh environments (strong acids and alkalis), making it have good recycling performance. Specifically, the adsorption kinetics and isotherms investigation demonstrated that the adsorption process followed the pseudo-second-order kinetic model and Freundlich isotherm model respectively, indicating that it was a multilayer process mainly controlled by chemisorption. The PCN@CSG possesses excellent absorptive capacity of 561.7 mg·g-1 and reaches equilibrium rapidly within 60 min, which is attributed to the structural advantages of PCN-222 and chitosan. The amino, carboxyl and hydroxyl functional groups of PCN-222 provide numbers of active sites and cationic chitin greatly promoted the electrostatic adsorption with negative ceftizoxime. In addition, the PCN@CSG has the advantages of renewable and environment-friendly for the biodegradation of chitosan. After five consecutive adsorption-desorption cycles, the removal rate was still higher than 90 %, confirming the excellent reusability of PCN@CSG. This work provided a great prospect for the design and application of shaped-MOFs composite materials for the removal of cephalosporins in environmental water.
Collapse
Affiliation(s)
- Menghan Qin
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Detian Dou
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yinghua Zhu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Manman Zhang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 20062, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 North Zhongshan Road, Shanghai 20062, China.
| |
Collapse
|
8
|
Zhang B, Li R, Zhang H, Han Y, Jia Y, Chen S, Yu X. Mycelium-Doped Straw Biochars for Antibiotic Control. Int J Mol Sci 2024; 25:11387. [PMID: 39518942 PMCID: PMC11546586 DOI: 10.3390/ijms252111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Straw, a predominant agricultural residue, represents a significant waste product. Harnessing its potential is of paramount importance both in terms of research and economic value. In this study, chemically pretreated corn straw was infused with distinct microbial fungal mycelium variants and subsequently transformed into a series of biochars through a process involving carbonization and activation. The findings revealed enhancements in the specific surface area and total pore volume of mycelium-doped straw biochars compared to the original corn straw biochar (BCS). Additionally, discernible disparities were observed in their physical and chemical attributes, encompassing functional groups, surface chemistry, and micro-morphology. Notably, in water-based antibiotic removal experiments focusing on tetracycline hydrochloride (TH) and chloramphenicol (CP), the mycelium-doped straw biochars outperformed BCS. Their maximum adsorption capacities for TH and CP surpassed those of alternative adsorbents, including other biochars. Impressively, even after five cycles, the biochar exhibited a removal rate exceeding 80%, attesting to its robust stability. This study successfully emphasized the efficacy of incorporating fungal mycelium to enhance the adsorption properties of straw-based biochar, introducing a new theoretical basis for the development of lignocellulosic materials.
Collapse
Affiliation(s)
- Bolun Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ruqi Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Huiji Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ye Han
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yunzhe Jia
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siji Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoxiao Yu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (B.Z.); (R.L.); (H.Z.); (Y.H.); (Y.J.)
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Baig MT, Kayan A. Advanced biopolymer-based Ti/Si-terephthalate hybrid materials for sustainable and efficient adsorption of the tetracycline antibiotic. Int J Biol Macromol 2024; 280:135676. [PMID: 39288857 DOI: 10.1016/j.ijbiomac.2024.135676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
This study involves the synthesis of an organic-inorganic hybrid material consisting of Ti/Si-terephthalate (Ti-TPA-Si) in a 1:1:1 ratio using sol-gel method and its reaction with cellulose and chitosan (Ti-TPA-Si-C and Ti-TPA-Si-CS). Characterization techniques such as XRD, FTIR, SEM, EDS, XPS, BET, TGA, and DTA were used. The incorporation of biopolymers (cellulose and chitosan) into the Ti/Si-terephthalate structure improved the morphology and textural properties of the hybrid materials, leading to increased adsorption capacity and sustainability. Adsorption experiments reveal that Ti-TPA-Si, Ti-TPA-Si-C, and Ti-TPA-Si-CS hybrid materials exhibit a high affinity towards tetracycline, achieving remarkable adsorption efficiencies of 88.27, 89.60, and 88.98 %, respectively. Isotherm studies indicate that the adsorption process follows both Langmuir (R2 = 0.971, 0.990, and 0.994) and Dubinin-Radushkevich (R2 = 0.922, 0.965, and 0.949) isotherm models. According to the Langmuir model, the maximum adsorption capacity (qm) of Ti-TPA-Si, Ti-TPA-Si-C, and Ti-TPA-Si-CS adsorbents was found to be 24.10, 33.56, and 26.59 mg/g, respectively. Kinetic studies indicate that the adsorption process follows both pseudo-second-order (R2 = 0.998, 0.984, and 0.989) and intra-particle diffusion (R2 = 0.995, 0.994, and 0.988) models. Thermodynamic studies reveal that adsorption processes are spontaneous and endothermic in nature. Reusability studies demonstrate their potential for repeated use without significant loss in performance.
Collapse
Affiliation(s)
- Mirza Talha Baig
- Department of Chemistry, Kocaeli University, 41380 Kocaeli, Turkey
| | - Asgar Kayan
- Department of Chemistry, Kocaeli University, 41380 Kocaeli, Turkey.
| |
Collapse
|
10
|
Li K, Chen M, Chen L, Zhao S, Pan W, Li P. Efficient removal of chlortetracycline hydrochloride and doxycycline hydrochloride from aqueous solution by ZIF-67. Heliyon 2024; 10:e36848. [PMID: 39281598 PMCID: PMC11399672 DOI: 10.1016/j.heliyon.2024.e36848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
ZIF-67 nanoparticles were synthesized by a simple method at room temperature and used to remove chlortetracycline hydrochloride (CTC) and doxycycline hydrochloride (DOX) from water. ZIF-67 was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) surface area, X-ray photoelectron spectroscopy (XPS), thermogravimetry (TGA) and zeta potential analyzer. The morphology and chemical composition of the synthesized ZIF-67 were characterized. The effects of key parameters such as pH, dosage, temperature, contact time, different initial concentrations and coexisting ions on the adsorption behavior were systematically studied. The results of batch adsorption experiments indicate that the adsorption process conforms to the pseudo-second-order kinetic model and Sips model. At 303K, the removal rates of CTC and DOX at 150 mg/L reached 99.16 % and 97.61 %, and the maximum adsorption capacity of CTC and DOX reached 1411.68 and 1073.28 mg/g, respectively. At the same time, ZIF-67 has excellent stability and reusability. Most importantly, the possible adsorption mechanism is proposed by exploring the changes of SEM, TEM, BET and FT-IR characterization results before and after the reaction, which mainly includes pore filling, electrostatic interaction and π-π interaction. The prepared ZIF-67 has a large specific surface area (1495.967 m2 g-1), achieves a high removal rate within a short time frame, and maintains a high removal rate across a wide pH range. These characteristics make ZIF-67 a potentially promising adsorbent for removing antibiotics from aqueous solutions.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Miaomiao Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Lei Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Songying Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Wenbo Pan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Pan Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
11
|
Wang Z, Fu Q, Xie D, Wang F, Zhang G, Shan H. Facile Fabrication of Zeolitic Imidazolate Framework-8@Regenerated Cellulose Nanofibrous Membranes for Effective Adsorption of Tetracycline Hydrochloride. Molecules 2024; 29:4146. [PMID: 39274994 PMCID: PMC11397351 DOI: 10.3390/molecules29174146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
The excessive utilization of antimicrobials in humans and animals has resulted in considerable environmental contamination, necessitating the development of high-performance antibiotic adsorption media. A significant challenge is the development of composite nanofibrous materials that are both beneficial and easy to fabricate, with the aim of improving adsorption capacity. Herein, a new kind of zeolitic imidazolate framework-8 (ZIF-8)-modified regenerated cellulose nanofibrous membrane (ZIF-8@RC NFM) was designed and fabricated by combining electrospinning and in situ surface modification technologies. Benefiting from its favorable surface wettability, enhanced tensile strength, interconnected porous structure, and relatively large specific surface area, the resulting ZIF-8@RC NFMs exhibit a relatively high adsorption capacity for tetracycline hydrochloride (TCH) of 105 mg g-1 within 3 h. Moreover, a Langmuir isotherm model and a pseudo-second-order model have been demonstrated to be more appropriate for the description of the TCH adsorption process of ZIF-8@RC-3 NFMs. Additionally, this composite fibrous material could keep a relatively stable adsorption capability under various ionic strengths. The successful fabrication of the novel ZIF-8@RC NFMs may shed light on the further development of wastewater adsorption treatment materials.
Collapse
Affiliation(s)
- Zhirong Wang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Qiuxia Fu
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Dandan Xie
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Fujie Wang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Guangyu Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Haoru Shan
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| |
Collapse
|
12
|
Zhang J, Zhang S, Bian X, Yin Y, Huang W, Liu C, Liang X, Li F. High Efficiency Removal Performance of Tetracycline by Magnetic CoFe 2O 4/NaBiO 3 Photocatalytic Synergistic Persulfate Technology. Molecules 2024; 29:4055. [PMID: 39274903 PMCID: PMC11397110 DOI: 10.3390/molecules29174055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The widespread environmental contamination resulting from the misuse of tetracycline antibiotics (TCs) has garnered significant attention and study by scholars. Photocatalytic technology is one of the environmentally friendly advanced oxidation processes (AOPs) that can effectively solve the problem of residue of TCs in the water environment. This study involved the synthesis of the heterogeneous magnetic photocatalytic material of CoFe2O4/NaBiO3 via the solvothermal method, and it was characterized using different characterization techniques. Then, the photocatalytic system under visible light (Vis) was coupled with peroxymonosulfate (PMS) to explore the performance and mechanism of degradation of tetracycline hydrochloride (TCH) in the wastewater. The characterization results revealed that CoFe2O4/NaBiO3 effectively alleviated the agglomeration phenomenon of CoFe2O4 particles, increased the specific surface area, effectively narrowed the band gap, expanded the visible light absorption spectrum, and inhibited recombination of photogenerated electron-hole pairs. In the Vis+CoFe2O4/NaBiO3+PMS system, CoFe2O4/NaBiO3 effectively activated PMS to produce hydroxyl radicals (·OH) and sulfate radicals (SO4-). Under the conditions of a TCH concentration of 10 mg/L-1, a catalyst concentration of 1 g/L-1 and a PMS concentration of 100 mg/L-1, the degradation efficiency of TCH reached 94% after 100 min illumination. The degradation of TCH was enhanced with the increase in the CoFe2O4/NaBiO3 and PMS dosage. The solution pH and organic matter had a significant impact on TCH degradation. Notably, the TCH degradation efficiency decreased inversely with increasing values of these parameters. The quenching experiments indicated that the free radicals contributing to the Vis+CoFe2O4/NaBiO3+PMS system were ·OH followed by SO4-, hole (h+), and the superoxide radical (O2-). The main mechanism of PMS was based on the cycle of Co3+ and Co2+, as well as Fe3+ and Fe2+. The cyclic tests and characterization by XRD and FT-IR revealed that CoFe2O4/NaBiO3 had good degradation stability. The experimental findings can serve as a reference for the complete removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Juanxiang Zhang
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| | - Shengnan Zhang
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| | - Xiuqi Bian
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
- College of Architecture Engineering, Shandong Vocational and Technical University of Engineering, Jinan 250200, China
| | - Yaoshan Yin
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| | - Weixiong Huang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 0926, New Zealand
| | - Xinqiang Liang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| |
Collapse
|
13
|
Yang X, Wang X, Xu S, Lu B, Huang B, Zheng X, Lin G. ZIF-67 and Biomass-Derived N, S-Codoped Activated Carbon Composite Derivative for High-Effective Removal of Hydroquinone from Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34254-34265. [PMID: 38961577 DOI: 10.1021/acsami.4c08530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Hydroquinone (HQ) in wastewater is of great concern, as it is harmful to human health and threatens the ecological environment. However, the existing adsorbents have low adsorption capacity for HQ. To improve the removal of HQ, N,S-codoped activated carbon-ZIF-67 (NSAC-ZIF-67@C) was synthesized in this study by in situ growth of ZIF-67 on N,S-codoped activated carbon (NSAC) and carbonization. The influence of pH, contact time, and initial concentration on the adsorption behaviors of NSAC-ZIF-67@C on HQ were investigated. Owing to the synergistic effect of abundant active sites and well-developed pore structure, the NSAC-ZIF-67@C achieved a prominent adsorption capacity of 962 mg·g-1 and can still retain high adsorption performance after 5 cycles for HQ, which is superior to that of reported other adsorbents. HQ adsorption follows the pseudo-second-order kinetics model (R2 = 0.99999) and the Freundlich isotherm model. X-ray photoelectron spectroscopy (XPS) analysis before and after adsorption as well as density functional theory (DFT) calculation results showed that pyridinic-N-termini were conducive to the π-π interactions and hydrogen-bonding interactions. Therefore, the adsorption mechanisms of NSAC-ZIF-67@C on HQ involve pore filling, electrostatic attraction, π-π interaction, and hydrogen bonding. This study is expected to provide a reference for designing highly effective adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Xuan Yang
- School of New Energy, Ningbo University of Technology, Ningbo 315336, China
| | - Xueqin Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Shenghao Xu
- School of New Energy, Ningbo University of Technology, Ningbo 315336, China
| | - Beili Lu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Biao Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guanfeng Lin
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Castillo-Blas C, Chester AM, Keen DA, Bennett TD. Thermally activated structural phase transitions and processes in metal-organic frameworks. Chem Soc Rev 2024; 53:3606-3629. [PMID: 38426588 DOI: 10.1039/d3cs01105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The structural knowledge of metal-organic frameworks is crucial to the understanding and development of new efficient materials for industrial implementation. This review classifies and discusses recent advanced literature reports on phase transitions that occur during thermal treatments on metal-organic frameworks and their characterisation. Thermally activated phase transitions and procceses are classified according to the temperaturatures at which they occur: high temperature (reversible and non-reversible) and low temperature. In addition, theoretical calculations and modelling approaches employed to better understand these structural phase transitions are also reviewed.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, OX11 0DE, Didcot, Oxfordshire, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| |
Collapse
|
15
|
Tao K, Gao B, Li N, El-Sayed MMH, Shoeib T, Yang H. Efficient adsorption of chloroquine phosphate by a novel sodium alginate/tannic acid double-network hydrogel in a wide pH range. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168740. [PMID: 38013102 DOI: 10.1016/j.scitotenv.2023.168740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/29/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
In this work, a novel double-network composite hydrogel (SA/TA), composed of sodium alginate (SA) and tannic acid (TA), was designed and fabricated by a successive cross-linking method using Ti(IV) and Ca(II) as crosslinkers. SA/TA exhibited reinforced mechanical strength and anti-swelling properties because of the double-network structure. SA/TA was used as an adsorbent for removal of a popular antiviral drug, chloroquine phosphate (CQ), in water. The adsorption performance of SA/TA was systematically investigated, to study various effects including those of TA mass content, solution pH, adsorption time, and initial CQ concentration. Adsorption was also examined in presence of inorganic and organic coexisting substances commonly found in wastewater, and under different actual water samples. Batch experimental results indicated that SA/TA could maintain higher and more stable CQ uptakes within a wide solution pH range from 3.0 to 10.0, compared to its precursor, SA hydrogel, owing to the addition of TA-Ti(IV) coordination network. The maximum experimental CQ uptake exhibited by the 1:1 (by wt) SA/TA (SA/TA2) was as high as 0.699 mmol/g at the initial pH of 9.0. A high concentration of coexisting NaCl evidently reduced the CQ uptakes of SA/TA2 due to the electrostatic shielding effect, moreover, divalent cations including Ca(II) and Mg(II) also inhibited the adsorption of CQ due to competitive adsorption. However, humic acid had little effect on this adsorption. Considering the apparent adsorption performance, the aforementioned effects of various factors and the spectroscopic characterizations, multi-interactions are suggested for adsorption including chelation, electrostatic interactions, π-π electron donor-acceptor interaction and hydrogen bonding. SA/TA showed a slight loss in adsorption capacity toward CQ and sustained physicochemical structural stability, even after six adsorption-desorption cycles. In addition to CQ, SA/TA could be efficiently used for adsorption of two other antivirus drugs, namely, hydroxychloroquine sulfate and oseltamivir phosphate. This work provides an effective strategy for the design and fabrication of novel adsorbents that can effectively adsorb antiviral drugs over a wide pH range.
Collapse
Affiliation(s)
- Koukou Tao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Boqiang Gao
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Na Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mayyada M H El-Sayed
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt.
| | - Hu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
16
|
Li X, Lu X, Liang X, Yang Z, Wang S, Guo Y. Preparation and extraction property study of corn cob-like magnetic mosaic carbon materials derived from MOF-on-MOF composites. Anal Chim Acta 2024; 1287:342112. [PMID: 38182348 DOI: 10.1016/j.aca.2023.342112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Large accumulations of pesticide residues in the environment eventually enter the human body with food. Based on magnetic solid-phase extraction (MSPE) technology, it is possible to achieve efficient extraction of trace pesticide residues in foodstuffs, and the construction of MSPE adsorbents with excellent magnetic properties and many active sites is still one of the main research topics. Based on this, we developed a new strategy for the preparation of "MOF-on-MOF" composites, which were carbonized and used as adsorbents for the extraction of pesticide residues in cereals. RESULTS A novel corn cob core-shell composite Fe2O3@C@ZIF-8 was created by embedding ZIF-8 onto the surface of Fe2O3@C derived from MIL-88A(Fe), and used for the extraction of benzoylurea insecticides(BUs) from cereals. The adsorption behaviour between Fe2O3@C@ZIF-8 and BUs was investigated by static and kinetic experiments and the adsorption mechanism was elaborated. For the trace analysis of BUs, a magnetic solid-phase extraction combined with high performance liquid chromatography-ultraviolet detector (HPLC-UV) approach was also developed. Under the optimized experimental conditions, the limits of detection and quantification were 0.015-0.03 μg L-1 and 0.05-0.1 μg L-1, and the relative standard deviations for the intra-day and inter-day ranges were 1.82%-2.13 % and 3.85%-4.59 %, respectively. The spiked recoveries of the four cereals ranged from 82.72% to 104.45 %. After 10 cycles of use of Fe2O3@C@ZIF-8, the recoveries of BUs ranged from 77.90% to 96.74 %. SIGNIFICANCE The analytical method based on Fe2O3@C@ZIF-8 as adsorbent has a low limit of detection, a wide linear range and is highly applicable to the analysis of real samples. In addition, the strategy developed in this study for the preparation of thermoplastic polymer-assisted "MOF-on-MOF" composites has promising applications.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaojing Liang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhimin Yang
- Lanzhou Institute for Food and Drug Control, Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou 730050, China
| | - Shuai Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
17
|
Li K, Chen M, Chen L, Zhao S, Pan W, Li P, Han Y. Adsorption of tetracycline from aqueous solution by ZIF-8: Isotherms, kinetics and thermodynamics. ENVIRONMENTAL RESEARCH 2024; 241:117588. [PMID: 37926231 DOI: 10.1016/j.envres.2023.117588] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
In this study, ZIF-8 nanoparticles were synthesized using a simple method at room temperature. The ZIF-8 nanoparticles were then characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET (Brunauer-Emmett-Teller) specific surface area, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and zeta potential. Subsequent batch adsorption experiments evaluated the adsorption performance of ZIF-8 on tetracycline, examining key pa-rameters like reaction time, pH, temperature, and adsorbent dosage. The results revealed a removal rate for TC of up to 90.59%. The adsorption data aligned with the Sips model, showcasing a maximum adsorption capacity of 359.61 mg/g at 303K. Further, the adsorption kinetics adhered to the pseudo-second-order kinetic model with an equilibrium adsorption capacity of 90 mg/g at 303K. The considerable specific surface area of ZIF-8, standing at 1674.169 m2/g, likely enhances the adsorption efficacy. Analysis using XRD and FTIR confirmed the adsorption of TC on the ma-terial's surface. Overall, the predominant driving forces behind the adsorption process were identified as electrostatic interactions and π-π stacking interactions.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Miaomiao Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Lei Chen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Songying Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Wenbo Pan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Pan Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Yanchao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| |
Collapse
|
18
|
Ghaderi M, Bi H, Dam-Johansen K. Advanced materials for smart protective coatings: Unleashing the potential of metal/covalent organic frameworks, 2D nanomaterials and carbonaceous structures. Adv Colloid Interface Sci 2024; 323:103055. [PMID: 38091691 DOI: 10.1016/j.cis.2023.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
The detrimental impact of corrosion on metallic materials remains a pressing concern across industries. Recently, intelligent anti-corrosive coatings for safeguarding metal infrastructures have garnered significant interest. These coatings are equipped with micro/nano carriers that store corrosion inhibitors and release them when triggered by external stimuli. These advanced coatings have the capability to elevate the electrochemical impedance values of steel by 2-3 orders of magnitude compared to the blank coating. However, achieving intelligent, durable, and reliable anti-corrosive coatings requires careful consideration in the design of these micro/nano carriers. This review paper primarily focuses on investigating the corrosion inhibition mechanism of various nano/micro carriers/barriers and identifying the challenges associated with using them for achieving desired properties in anti-corrosive coatings. Furthermore, the fundamental aspects required for nano/micro carriers, including compatibility with the coating matrix, high specific surface area, stability in different environments, stimuli-responsive behavior, and facile synthesis were investigated. To achieve this aim, we explored the properties of micro/nanocarriers based on oxide nanoparticles, carbonaceous and two-dimensional (2D) nanomaterials. Finally, we reviewed recent literature on the application of state-of the art nanocarriers based on metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). We believe that the outcomes of this review paper offer valuable insights for researchers in selecting appropriate materials that can effectively enhance the corrosion resistance of coatings.
Collapse
Affiliation(s)
- Mohammad Ghaderi
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark
| | - Huichao Bi
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark.
| | - Kim Dam-Johansen
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
19
|
Liaqat M, Iqbal T, Ashfaq Z, Afsheen S, Mahmood Khan RR, Sayed MA, Ali AM. Comparative photocatalytic study of visible light driven BiVO4, Cu2O, and Cu2O/BiVO4 nanocomposite for degradation of antibiotic for wastewater treatment. J Chem Phys 2023; 159:204704. [PMID: 38010333 DOI: 10.1063/5.0176106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Semiconductor-based photocatalysts have become increasingly used in the removal of pollutants from wastewater, especially antibiotics. A series of composite-based cuprous oxide and bismuth vanadate (Cu2O/BiVO4) composite-based photocatalysts were synthesized by using the chemical method. The structure of the Cu2O/BiVO4 composite was verified by using x-ray diffraction, scanning electron microscopy, photoluminescence, Fourier transform infrared spectroscopy, and UV-visible spectra. The degradation of methylene blue (MB) and tetracycline (TC) was investigated to check the photocatalytic activity of the Cu2O/BiVO4 composite series. The quantity of Cu2O was varied from 1% to 7% by weight to prepare the series of Cu2O/BiVO4 composites. The analysis of results verified that 5% Cu2O/BiVO4 exhibits an outstanding photocatalytic activity as compared to 1%, 3%, and 7% Cu2O/BiVO4, pure Cu2O, and pure BiVO4 under visible light irradiation. The optimum value of photocatalytic degradation achieved with 5% Cu2O/BiVO4 was 97% for MB dye and 95% for TC in 120 min, which is greater than the photocatalytic degradation of pure BiVO4 (MB 45% and TC 72%), pure Cu2O (MB 57% and TC 80%), 1% Cu2O/BiVO4 (MB 72% and TC 85%), 3% Cu2O/BiVO4 (MB 83% and TC 88%), and 7% Cu2O/BiVO4 (MB 87% and TC 91%). The stability and reusability of Cu2O/BiVO4 were also investigated. To check the major role of trapping in degradation, a trapping experiment was also performed by using three trapping agents: BQ, EDTA, and tBuOH. The results showed that Cu2O/BiVO4 exhibits an improved photocatalytic activity in the degradation of antibiotics in polluted water because the recombination rate of the electron-hole pair decreased and the surface area increased, which increased the active sites for redox reactions. Such a photocatalytic composite with high efficiency has various applications, such as energy production, environmental remediation, and water remediation.
Collapse
Affiliation(s)
- Maira Liaqat
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Zain Ashfaq
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Sumera Afsheen
- Department of Zoology, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | | | - M A Sayed
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Atif Mossad Ali
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
20
|
Jia H, Xu H, Shi M, Lu K, Tao Y, Xia M, Wang F. Construction of ACNF/Polypyrrole/MIL-100-Fe composites with exceptional removal performance for ceftriaxone and indomethacin inspired by "Ecological Infiltration System". J Colloid Interface Sci 2023; 650:1152-1163. [PMID: 37473475 DOI: 10.1016/j.jcis.2023.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Developing advanced adsorbents for removing the alarming level of pharmaceuticals active compounds (PhACs) pollution is an urgent task for environmental treatment. Herein, a novel acid-treated carbon nanofiber/polypyrrole/MIL-100-Fe (ACNF/PPy/MIL-100-Fe) with stable 3D-supporting skeleton and hierarchical porous structure had been fabricated to erasure ceftriaxone (CEF) and indomethacin (IDM) from aqueous solution. ACNF as scaffold achieved the highly uniform growth of MIL-100-Fe and PPy. Viewing the large BET surface area (SBET, 999.7 m2/g), highly exposed accessible active sites and copious functional groups, ACNF/PPy/MIL-100-Fe separately showed an excellent adsorption capacity for CEF (294.7 mg/g) and IDM (751.8 mg/g), outstripping the most previously reported adsorbents. Moreover, ACNF/PPy/MIL-100-Fe reached rapid adsorption kinetics and standout reusability property. Further, the redesigned easy-to-recyclable ACF/PPy/MIL-100-Fe inspired by the electrode formation craft achieved prominent adsorption capacity and good reusability property. The adsorption mechanism was evaluated via Fourier transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The outcomes revealed that the splendid adsorption capability mainly depended on the electrostatic interactions, hydrogen bonding and π-π interactions. This work sheds light on one facile practical strategy to exploit advanced materials in water environmental remediation.
Collapse
Affiliation(s)
- Huijuan Jia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haihua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingxing Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Keren Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yu Tao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
21
|
Wang X, Wang J, Li J, Du Y, Wu J, He H. Fabrication of Nitrogen-Doped Carbon@Magnesium Silicate Composite by One-Step Hydrothermal Method and Its High-Efficiency Adsorption of As(V) and Tetracycline. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5338. [PMID: 37570044 PMCID: PMC10420030 DOI: 10.3390/ma16155338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Tetracycline (TC) and arsenic contaminants are two main pollutants in aquaculture and livestock husbandry, and they have drawn worldwide attention. To address this issue, a novel N-doped carbon@magnesium silicate (CMS) was fabricated via a facile and low-cost hydrothermal route, adopting glucose and ammonia as C and N sources, respectively. The synergetic combination of carbon and magnesium silicate makes CMS possess a high surface area of 201 m2/g and abundant functional groups. Due to the abundant C- and N-containing functional groups and Mg-containing adsorptive sites, the maximum adsorption capacity values of CMS towards As(V) and TC are 498.75 mg/g and 1228.5 mg/g, respectively. The type of adsorption of As(V) and TC onto CMS is monolayer adsorption. An adsorption kinetic study revealed that the mass transfer and intraparticle process dominates the sorption rate of As(V) and TC adsorption onto CMS, respectively. Various functional groups synthetically participate in the adsorption process through complexion, π-π EDA interactions, and hydrogen bonds. This work provides a one-step, low-cost route to fabricate a N-doped carbonaceous adsorbent with a high surface area and abundant functional groups, which has great potential in the application of practical sewage treatment.
Collapse
Affiliation(s)
- Xuekai Wang
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| | - Jianjun Li
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yucheng Du
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| | - Junshu Wu
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| | - Heng He
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.W.)
| |
Collapse
|
22
|
Shi Q, Wang W, Zhang H, Bai H, Liu K, Zhang J, Li Z, Zhu W. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. BIORESOURCE TECHNOLOGY 2023; 383:129213. [PMID: 37230330 DOI: 10.1016/j.biortech.2023.129213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
In this study, a high-performance porous adsorbent was prepared from biochar through a simple one-step alkali-activated pyrolysis treatment of walnut shells, and it was effective in removing tetracycline (TC). The specific surface area (SSA) of potassium hydroxide-pretreated walnut shell-derived biochar pyrolyzed at 900°C (KWS900) increased remarkably compared to that of the pristine walnut shell and reached 1713.87±37.05 m2·g-1. The maximum adsorption capacity of KWS900 toward TC was 607.00±31.87 mg·g-1. The pseudo-second-order kinetic and Langmuir isotherm models were well suited to describe the TC adsorption process onto KWS900. The KWS900 exhibited high stability and reusability for TC adsorption in the presence of co-existing anions or cations over a wide pH range of 1.0-11.0. Further investigations demonstrated that the proposed adsorption mechanism involved pore filling, hydrogen bonding, π-π stacking, and electrostatic interaction. These findings provide a valuable reference for developing biochar-based adsorbents for pollutant removal.
Collapse
Affiliation(s)
- Qiyu Shi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wangbo Wang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hongmin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiling Bai
- School of literature, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
23
|
Yuan N, Zhang X, Chen T, Xu H, Wang Q. Fabricating Materials of Institute Lavoisier-53(Fe)/zeolite imidazolate framework-8 hybrid materials as high-efficiency and reproducible adsorbents for removing organic pollutants. J Colloid Interface Sci 2023; 646:438-451. [PMID: 37207425 DOI: 10.1016/j.jcis.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Environmental pollution by emerging contaminants has become an urgent problem. Herein, novel binary metal-organic framework hybrids were constructed from Materials of Institute Lavoisier-53(Fe) (MIL-53(Fe)) and zeolite imidazolate framework-8 (ZIF-8) for the first time. A battery of characterizations were employed to determine the MIL/ZIF hybrids' properties and morphology. Furthermore, the MIL/ZIF towards toxic antibiotics (tetracycline, ciprofloxacin and ofloxacin) were studied to explore their adsorption abilities. The present work disclosed that the obtained MIL-53(Fe)/ZIF-8 = 2:3 possessed an eminent specific surface area with an admirable removal efficiency of tetracycline (97.4%), ciprofloxacin (97.1%) and ofloxacin (92.4%), respectively. The tetracycline adsorption process conformed to the pseudo-second-order kinetic model and this process was more compatible with the Langmuir isotherm model with the highest adsorption capacity of 215.0 mg g-1. Moreover, the process of removing tetracycline was proved to be spontaneous and exothermic by the thermodynamic results. Furthermore, the MIL-53(Fe)/ZIF-8 = 2:3 towards tetracycline exhibited significant regeneration ability. The effects of pH, dosage, interfering ions and oscillation frequency on tetracycline adsorption capacity and removal efficiency were also investigated. The primary factors contributing to the decent adsorption ability between MIL-53(Fe)/ZIF-8 = 2:3 and tetracycline included electrostatic, π-π stacking, hydrogen bonding and weak coordination interactions. Additionally, we also investigated the adsorption ability in real wastewater. Thus, the proposed binary metal-organic framework hybrid materials can be deemed a promising adsorbent in wastewater purification.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China.
| | - Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Tianxiang Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Hao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Qibao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
24
|
Lv B, Chao J, Zhao Y, Li Y, Liu J, Zhang Q, Xu L. Zeolitic imidazolate framework-L loaded on melamine foam for removal tetracycline hydrochloride from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66840-66852. [PMID: 37186183 DOI: 10.1007/s11356-023-27013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Zeolitic imidazolate framework-L/melamine foam (ZIF-L/MF) is fabricated by an in situ growth method to treat the tetracycline hydrochloride in wastewater. The results show that a large amount of leaf-like ZIF-L is vertically grown on the MF surface. ZIF-L/MF exhibits well adsorption performance with a maximum adsorption ability of 1346 mg/g. The pseudo-second-order kinetic model and the Langmuir isotherm model are used to describe the adsorption process well. In addition, the influences of pH and coexisting ions are studied. According to the experimental data and analysis, the adsorption mechanisms may involve H-bonding, π-π interaction, and weak electrostatic interaction. A dynamic adsorption experiment is also performed, and the results show that the time required to achieve the same removal efficiency as static adsorption is reduced by half. This work shows that the obtained ZIF-L/MF has practical applications in antibiotic adsorption.
Collapse
Affiliation(s)
- Bizhi Lv
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jiabao Chao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yongqing Zhao
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yongchao Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jinhua Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Qiaohong Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Linqiong Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
25
|
Preparation of Porous Ti/RuO 2-IrO 2@Pt, Ti/RuO 2-TiO 2@Pt and Ti/Y 2O 3-RuO 2-TiO 2@Pt Anodes for Efficient Electrocatalytic Decomposition of Tetracycline. Molecules 2023; 28:molecules28052189. [PMID: 36903435 PMCID: PMC10004508 DOI: 10.3390/molecules28052189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Electrocatalytic oxidation (ECO) has attracted attention because of its high efficiency and environmental friendliness in water treatment. The preparation of anodes with high catalytic activity and long service lifetimes is a core part of electrocatalytic oxidation technology. Here, porous Ti/RuO2-IrO2@Pt, Ti/RuO2-TiO2@Pt, and Ti/Y2O3-RuO2-TiO2@Pt anodes were fabricated by means of modified micro-emulsion and vacuum impregnation methods with high porosity titanium plates as substrates. The scanning electron microscopy (SEM) images showed that RuO2-IrO2@Pt, RuO2-TiO2@Pt, and Y2O3-RuO2-TiO2@Pt nanoparticles were coated on the inner surface of the as-prepared anodes to form the active layer. Electrochemical analysis revealed that the high porosity substrate could result in a large electrochemically active area, and a long service life (60 h at 2 A cm-2 current density, 1 mol L-1 H2SO4 as the electrolyte, and 40 °C). The degradation experiments conducted on tetracycline hydrochloride (TC) showed that the porous Ti/Y2O3-RuO2-TiO2@Pt had the highest degradation efficiency for tetracycline, reaching 100% removal in 10 min with the lowest energy consumption of 167 kWh kg-1 TOC. The reaction was consistent with the pseudo-primary kinetics results with a k value of 0.5480 mol L-1 s-1, which was 16 times higher than that of the commercial Ti/RuO2-IrO2 electrode. The fluorospectrophotometry studies verified that the degradation and mineralization of tetracycline were mainly ascribed to the •OH generated in the electrocatalytic oxidation process. This study thus presents a series of alternative anodes for future industrial wastewater treatment.
Collapse
|
26
|
Luo Y, Huang G, Li Y, Yao Y, Huang J, Zhang P, Ren S, Shen J, Zhang Z. Removal of pharmaceutical and personal care products (PPCPs) by MOF-derived carbons: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159279. [PMID: 36209883 DOI: 10.1016/j.scitotenv.2022.159279] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, the increasing demand for pharmaceuticals and personal care products (PPCPs) has resulted in the uncontrolled release of large amounts of PPCPs into the environment, which poses a great challenge to the existing wastewater treatment technologies. Therefore, novel materials for efficient treatment of PPCPs need to be developed urgently. MOF-derived carbons (MDCs), have many advantages such as high mechanical strength, excellent water stability, large specific surface area, excellent electron transfer capability, and environmental friendliness. These advantages give MDCs an excellent ability to remove PPCPs. In this review, the effects of different substances on the properties and functions of MDCs are discussed. In addition, representative applications of MDCs and composites for the removal of PPCPs in the field of adsorption and catalysis are summarized. Finally, the future challenges of MDCs and composites are foreseen.
Collapse
Affiliation(s)
- Yifei Luo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Guohe Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing 100875, China; Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Yongping Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yao Yao
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jing Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Peng Zhang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Shaojie Ren
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Shen
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zixin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
27
|
ZIF-8-derived N-doped hierarchical porous carbon coated with imprinted polymer as magnetic absorbent for phenol selective removal from wastewater. J Colloid Interface Sci 2023; 630:573-585. [DOI: 10.1016/j.jcis.2022.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
28
|
In-situ uniform growth of ZIF-8 on 3D flower-like NiCoLDH microspheres to enhance tetracycline and doxycycline removal from wastewater: Anti-interference and stability tests. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Ma R, Xue Y, Ma Q, Chen Y, Yuan S, Fan J. Recent Advances in Carbon-Based Materials for Adsorptive and Photocatalytic Antibiotic Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224045. [PMID: 36432330 PMCID: PMC9694191 DOI: 10.3390/nano12224045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Antibiotics have been a primary environmental concern due to their widespread dispersion, harmful bioaccumulation, and resistance to mineralization. Unfortunately, typical processes in wastewater treatment plants are insufficient for complete antibiotic removal, and their derivatives in effluent can pose a threat to human health and aquatic communities. Adsorption and photocatalysis are proven to be the most commonly used and promising tertiary treatment methods. Carbon-based materials, especially those based on graphene, carbon nanotube, biochar, and hierarchical porous carbon, have attracted much attention in antibiotic removal as green adsorbents and photocatalysts because of their availability, unique pore structures, and superior physicochemical properties. This review provides an overview of the characteristics of the four most commonly used carbonaceous materials and their applications in antibiotic removal via adsorption and photodegradation, and the preparation of carbonaceous materials and remediation properties regarding target contaminants are clarified. Meanwhile, the fundamental adsorption and photodegradation mechanisms and influencing factors are summarized. Finally, existing problems and future research needs are put forward. This work is expected to inspire subsequent research in carbon-based adsorbent and photocatalyst design, particularly for antibiotics removal.
Collapse
|
30
|
Yin X, Sun X, Li D, Xie W, Mao Y, Liu Z, Liu Z. 2D/2D Phosphorus-Doped g-C 3N 4/Bi 2WO 6 Direct Z-Scheme Heterojunction Photocatalytic System for Tetracycline Hydrochloride (TC-HCl) Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214935. [PMID: 36429655 PMCID: PMC9691143 DOI: 10.3390/ijerph192214935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2023]
Abstract
Bi2WO6-based heterojunction photocatalyst for antibiotic degradation has been a research hotspot, but its photocatalytic performance needs to be further improved. Therefore, 2D/2D P-doped g-C3N4/Bi2WO6 direct Z-scheme heterojunction photocatalysts with different composition ratios were prepared through three strategies of phosphorus (P) element doping, morphology regulation, and heterojunction, and the efficiency of its degradation of tetracycline hydrochloride (TC-HCl) under visible light was studied. Their structural, optical, and electronic properties were evaluated, and their photocatalytic efficiency for TC-HCl degradation was explored with a detailed assessment of the active species, degradation pathways, and effects of humic acid, different anions and cations, and water sources. The 30% P-doped g-C3N4/Bi2WO6 had the best photocatalytic performance for TC-HCl degradation. Its photocatalytic rate was 4.5-, 2.2-, and 1.9-times greater than that of g-C3N4, P-doped g-C3N4, and Bi2WO6, respectively. The improved photocatalytic efficiency was attributed to the synergistic effect of P doping and 2D/2D direct Z-scheme heterojunction construction. The stability and reusability of the 30% P-doped C3N4/Bi2WO6 were confirmed by cyclic degradation experiments. Radical scavenging experiments and electron spin resonance spectroscopy showed that the main active species were •O2- and h+. This work provides a new strategy for the preparation of direct Z-scheme heterojunction catalysts with high catalytic performance.
Collapse
Affiliation(s)
- Xudong Yin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Dehao Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yufeng Mao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenghui Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhisen Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
31
|
Da Y, Liu Y, Chen Y, Han R, Wang J. Promotion of O2 activation by ZIF-8 derived N-rich aluminum-graphite (Al-Gr-NPC) composite for non-radical degradation of antibiotic at neutral pH. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
32
|
Yuan N, Tan K, Zhang X, Zhao A, Guo R. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag. CHEMOSPHERE 2022; 303:134839. [PMID: 35537628 DOI: 10.1016/j.chemosphere.2022.134839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Since the human consumption of coal is increasingly growing and coal-based solid wastes are discharged in large quantities, the resource utilization of coal-based solid wastes has been paid more attention. In the present work, for the first time, the coal gasification fine slag is subjected to prepare ZSM-5 zeolites with ultra-low n(SiO2)/n(Al2O3) ratios (less than 20) and hierarchical pore structures. The increase in the concentration of the alkaline extract leads to the decrease of the crystallinity, the irregularity of the microscopic morphology, and the decrease of the specific surface area, resulting in the in-situ generation of mesopores within ZSM-5. Moreover, adsorption experiments demonstrate that ZSM-5-2M exhibits the best methylene blue adsorption performance at the pH of 9 with a removal rate of up to 82.07%, and it also has good adsorption performance in simulated real water samples. Furthermore, the adsorption performance of ZSM-5-2M on the malachite green, Rhodamine B, Congo red, and methyl orange has been investigated and it is found to be very effective for the adsorption of cationic dyes, and its adsorption performance for methylene blue and malachite green is reduced in the presence of anions.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Kaiqi Tan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Aijing Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Rui Guo
- School of Economics and Management, Qilu Normal University, Jinan, 250013, China
| |
Collapse
|
33
|
Li X, Zhang H, Du X, Wang S, Zhang Q, Li H, Ye F. Efficient visible-light-driven degradation of tetracycline by a 2D/2D rGO-Bi 2WO 6 heterostructure. ENVIRONMENTAL RESEARCH 2022; 212:113326. [PMID: 35439458 DOI: 10.1016/j.envres.2022.113326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Constructing heterostructures has been a simple yet effective strategy for improving the photocatalytic performance of individual semiconductor photocatalysts. However, the poor quality of the contacted interface coupled with the narrow and overlapping light absorption scope between heterocomponents limits potential improvement. Herein, a 2D/2D rGO-Bi2WO6 heterostructure with face-to-face compact contact interface and UV to NIR light absorption ability was synthesized to overcome the aforementioned limitations. The as-prepared 2 wt%-rGO-Bi2WO6 with a high contact interface quality exhibits the highest kinetic rate of (5.53 ± 0.75) × 10-2 L mg-1 min-1 toward tetracycline (TC) degradation, which is 2.4 times higher than that of pristine Bi2WO6 and 2.1 times higher than that of the 2 wt%-rGO-Bi2WO6 composite with a poor interface quality. Moreover, approximately 30% of TC can be mineralized with a 2 wt%-rGO-Bi2WO6 presented system after 120 min. The subsequent Escherichia coli culture and liquid chromatography-mass spectrometry were employed to detect the biotoxicity variation of degradation intermediates and the possible transformation pathways of TC, respectively. Finally, the reactive species trapping results indicate that photogenerated holes and superoxide radical anions play dominant roles during the TC degradation process. This work provides a facile and effective method to fabricate an efficient heterojunction photocatalyst for pollutant degradation.
Collapse
Affiliation(s)
- Xinyu Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuaijie Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Fei Ye
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
34
|
Xia S, Sun J, Sun W. Bimetallic metal-organic gel for effective removal of chlortetracycline hydrochloride from aqueous solution:Adsorption isotherm, kinetic and mechanism studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Yin L, Li D, Guo H, Wang S, Zhang T, Liu Y, Gai F, Zhao X. High-performance carbonized ZIF-8-doped hybrid carbon molecular sieve membrane for CO2/N2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Wang X, Cheng B, Zhang L, Yu J, Normatov I. Adsorption performance of tetracycline on NiFe layered double hydroxide hollow microspheres synthesized with silica as the template. J Colloid Interface Sci 2022; 627:793-803. [PMID: 35901559 DOI: 10.1016/j.jcis.2022.07.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/15/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022]
Abstract
Tetracycline (TC) has poor degradability and hepatotoxicity which will increase the burden on the aquatic environment when discharged into lakes in large quantities. LDH materials are often used as adsorbents because of their superior surface area and controllability of morphology. Herein, NiFe LDH hollow microspheres (NFHMS) were synthesized by a facile hydrothermal method. The removal of tetracycline by the as-prepared material in an aquatic environment was systematically investigated through comprehensive characterizations. The NFHMS sample presents a larger specific surface area than the two control samples, which contributes to its higher adsorption performance. The adsorption mechanisms of TC on NFHMS is mainly electrostatic adsorption. The fitting results of experimental data coincide well with pseudo-second-order and Weber-Morris models through kinetic simulation. Moreover, the Langmuir model is verified to be more suitable than the Freundlich model in elucidating molecular surface adsorption, and the maximum adsorption capacity of NFHMS obtained from the Langmuir model is 90.9 mg g-1. Higher temperature is beneficial to improve the adsorption performance, and the adsorption process is spontaneous and endothermic. The initial pH of the solution will affect the adsorption capacity, and the partial neutral condition is more favorable. In addition, NFHMS sample exhibits good stability in cyclic tests. Therefore, NFHMS material is expected to be a very promising adsorbent for treating tetracycline in wastewater.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China.
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Inom Normatov
- Meteorology and Climatology Department, Tajik National University, 17 Rudaki Ave, Dushanbe 734025, Tajikistan
| |
Collapse
|
37
|
Liu W, Wang Y, Qi K, Wen F, Wang J. Broad Spectral Response Z-Scheme Three-Dimensional Ordered Macroporous Carbon Quantum Dots/TiO 2/g-C 3N 4 Composite for Boosting Photocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4839-4847. [PMID: 35420818 DOI: 10.1021/acs.langmuir.1c03483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic degradation technology is one of the effective protocols to solve environmental problems. TiO2 has always been favored for its photostability and low cost. However, the insufficient photocatalytic activity of TiO2 limits its application due to the severe recombination of photogenerated electrons and holes and a narrow light response range. Therefore, 3DTCN, a TiO2/g-C3N4 composite with a three-dimensional ordered macroporous structure was prepared by a colloidal crystal template technique to form a heterojunction for inhibiting the photogenerated electron-hole recombination. On 3DTCN, carbon quantum dots (CQDs) were loaded by impregnation to obtain x % CQDs/3DTCN with a broad spectral response to light. The physical and chemical properties of samples were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution-TEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, photoluminescence spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy. The photocatalytic activity was evaluated via degrading the rhodamine B (RhB) dye, and the degradation efficiency of 1% CQDs/3DTCN (98%) was found to be much higher than that of 3DTCN (42%) in 80 min under simulated sunlight irradiation. Furthermore, it also possessed excellent durability. Meanwhile, the sample also showed an outstanding photoelectric property. Finally, the proposed mechanism of the composites had been mainly analyzed by density functional theory calculations. This work thus provides an idea to form a 3D structure heterojunction and further improve the photocatalytic activity.
Collapse
Affiliation(s)
- Wenliang Liu
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yan Wang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kai Qi
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fushan Wen
- College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiqian Wang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|