1
|
Yan Z, Wang Z, Si G, Chen G, Feng T, Liu C, Chen J. Bacteria-loaded biochar for the immobilization of cadmium in an alkaline-polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1941-1953. [PMID: 38044401 DOI: 10.1007/s11356-023-31299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The combination of biochar and bacteria is a promising strategy for the remediation of Cd-polluted soils. However, the synergistic mechanisms of biochar and bacteria for Cd immobilization remain unclear. In this study, the experiments were conducted to evaluate the effects of the combination of biochar and Pseudomonas sp. AN-B15, on Cd immobilization, soil enzyme activity, and soil microbiome. The results showed that biochar could directly reduce the motility of Cd through adsorption and formation of CdCO3 precipitates, thereby protecting bacteria from Cd toxicity in the solution. In addition, bacterial growth further induces the formation of CdCO3 and CdS and enhances Cd adsorption by bacterial cells, resulting in a higher Cd removal rate. Thus, bacterial inoculation significantly enhances Cd removal in the presence of biochar in the solution. Moreover, soil incubation experiments showed that bacteria-loaded biochar significantly reduced soil exchangeable Cd in comparison with other treatments by impacting soil microbiome. In particular, bacteria-loaded biochar increased the relative abundance of Bacillus, Lysobacter, and Pontibacter, causing an increase in pH, urease, and arylsulfatase, thereby passivating soil exchangeable Cd and improving soil environmental quality in the natural alkaline Cd-contaminated soil. Overall, this study provides a systematic understanding of the synergistic mechanisms of biochar and bacteria for Cd immobilization in soil and new insights into the selection of functional strain for the efficient remediation of the contaminated environments by bacterial biochar composite.
Collapse
Affiliation(s)
- Zhengjian Yan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Zitong Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guangzheng Si
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guohui Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China.
| |
Collapse
|
2
|
Chen X, Tang L, Wu K, Mo Y, Tang Q, Li G, Zhu Y. Combined contribution of biochar and introduced AM fungi on lead stability and microbial community in polluted agricultural soil. Front Microbiol 2023; 14:1284321. [PMID: 38033595 PMCID: PMC10684681 DOI: 10.3389/fmicb.2023.1284321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Lead (Pb) pollution in agricultural soil has been accelerated by industrial development and human activities, and poses a major threat to agricultural ecosystems. Both biochar and arbuscular mycorrhiza (AM) fungi are considered to play an important role in remediation of Pb contaminated soil. Methods The combined remediation effects of introduced AM fungi and biochar on soil properties, Pb availability, microbial community and functional profiles were systematically investigated in unsterilized Pb-polluted agricultural soil. Results Results indicated that soil nutrients were significantly improved through the combined application of biochar and introduced AM fungi. The introduced AM fungi combined with biochar prepared at 400°C and 500°C promoted the transformation of Pb to a more stable state with low bioavailability. Moreover, the addition of AM fungi and biochar affected the relative abundances of dominant bacteria and fungi at the phylum and genus levels. Biochar mainly affected soil bacterial community and obviously increased the relative abundance of Actinobacteria and Blastococcus. The interactions between biochar and introduced AM fungi mainly affected fungal community, and increased the abundance of Ascomycota and Botryotrichum. Further, PICRUSt analysis indicated biochar amendment supported stronger bacterial metabolic functional potentials. Discussion Therefore, the combined application of biochar and Therefore, the combined application of biochar and introduced AM fungi could improve soil nutrients, reduce Pb introduced AM fungi could improve soil nutrients, reduce Pb availability, availability, and show and show a positive effect on a positive effect on indigenous microbial communities and indigenous microbial communities and metabolic functions in metabolic functions in farmland soil.
Collapse
Affiliation(s)
- Xuedong Chen
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Lin Tang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Kongyang Wu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Yifan Mo
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Qian Tang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Gaojie Li
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ying Zhu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
3
|
Zandi P, Yang J, Darma A, Bloem E, Xia X, Wang Y, Li Q, Schnug E. Iron plaque formation, characteristics, and its role as a barrier and/or facilitator to heavy metal uptake in hydrophyte rice (Oryza sativa L.). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:525-559. [PMID: 35288837 DOI: 10.1007/s10653-022-01246-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The persistent bioavailability of toxic metal(oids) (TM) is undeniably the leading source of serious environmental problems. Through the transfer of these contaminants into food networks, sediments and the aquatic environmental pollution by TM serve as key routes for potential risks to soil and human health. The formation of iron oxyhydroxide plaque (IP) on the root surface of hydrophytes, particularly rice, has been linked to the impact of various abiotic and biotic factors. Radial oxygen loss has been identified as a key driver for the oxidation of rhizosphere ferrous iron (Fe2+) and its subsequent precipitation as low-to-high crystalline and/or amorphous Fe minerals on root surfaces as IP. Considering that each plant species has its unique capability of creating an oxidised rhizosphere under anaerobic conditions, the abundance of rhizosphere Fe2+, functional groups from organic matter decomposition and variations in binding capacities of Fe oxides, thus, impacting the mobility and interaction of several contaminants as well as toxic/non-toxic metals on the specific surface areas of the IP. More insight from wet extraction and advanced synchrotron-based analytical techniques has provided further evidence on how IP formation could significantly affect the fate of plant physiology and biomass production, particularly in contaminated settings. Collectively, this information sets the stage for the possible implementation of IP and related analytical protocols as a strategic framework for the management of rice and other hydrophytes, particularly in contaminated sceneries. Other confounding variables involved in IP formation, as well as operational issues related to some advanced analytical processes, should be considered.
Collapse
Affiliation(s)
- Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, People's Republic of China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Department of Biological Sciences, Bayero University, Kano, Nigeria
| | - Elke Bloem
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Bundesallee 69, 38116, Braunschweig, Germany
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yaosheng Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Qian Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ewald Schnug
- Department of Life Sciences, Institute for Plant Biology, Technical University of Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Sangaré M, Bony J, Chèné C, Lonseny T, Karoui R. Use of mid-infrared spectroscopy for quality monitoring and the prediction of physicochemical parameters of dry fermented chicken sausages enriched with sesame flour. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6950-6960. [PMID: 35674420 DOI: 10.1002/jsfa.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This study aimed to investigate the effects of the supplementation of sesame flour in fermented chicken sausages ('S1' containing 800 g kg-1 chicken fillet, 180 g kg-1 veal fat and 20 g kg-1 sesame flour and 'S2' containing 800 g kg-1 chicken fillet, 160 g kg-1 veal fat and 40 g kg-1 sesame flour) compared with control sausages (containing 800 g kg-1 chicken fillet and 200 g kg-1 veal fat) on the physico-chemical characteristics, texture, and structure during the fermentation stage. RESULTS The physicochemical parameters of samples belonging to the control, S1, and S2 batches were significantly affected by the addition of sesame flour and the fermentation stage. For instance: (i) the lowest protein content was observed for control samples on day 1 (61.4 ± 6.52 g kg-1 ) whereas the highest level was noted for S2 samples on day 15 (327.5 ± 22.2 g kg-1 ), and (ii) an inverse trend was observed for the fat content because the lowest content was observed for samples in the S2 batch on day 1 (129.0 ± 5.30 g kg-1 ) whereas the highest fat content was noted for samples belonging to control batch on day 15 (332.0 ± 1.29 g kg-1 ). The application of statistical methods to mid-infrared spectroscopy allowed clear discrimination between control, S1, and S2 batches. The addition of sesame flour in the recipes induced some modification in the secondary structure because β-turn levels ranged from 39.30 to 34.50, 36.76 to 34.70, and 38.93 to 34.70 for control, S1, and S2 batches, respectively, throughout the fermentation stage. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed a similar protein profile pattern in the three batches on days 1 and 5, but on day 10 control and S2 batches showed the most intense degradation of myofibrillar proteins. CONCLUSION The results demonstrated that mid-infrared spectroscopy coupled with chemometric tools could be used as a rapid screening tool to assess and monitor the quality of dry chicken sausages enriched with sesame flour throughout the fermentation stage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Moriken Sangaré
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgr, Lens, France
- Département de Technologie et Contrôle des Produits Alimentaires, DTCPA, Institut Supérieur des Sciences et Médecine Vétérinaire de Dalaba, Guinée
| | - Jérôme Bony
- Adrianor, Rue Jacquart, Tilloy-lès-Mofflaines, France
| | | | | | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgr, Lens, France
| |
Collapse
|
5
|
Sharma M, Satyam N, Reddy KR, Chrysochoou M. Multiple heavy metal immobilization and strength improvement of contaminated soil using bio-mediated calcite precipitation technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51827-51846. [PMID: 35253104 DOI: 10.1007/s11356-022-19551-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Bio-mediated calcite precipitation potential for multiple heavy metal immobilization in contaminated soils at industrial, waste dump, abandoned mine, and landfill sites is not explored yet. This study includes investigation of bio-mediated calcite precipitation for strength improvement and immobilization of heavy metals, specifically lead (Pb), zinc (Zn), and hexavalent chromium (Cr(VI)), in contaminated soils. Firstly, the toxicity resistance of bacteria against different concentrations (1000, 2000, 3000, 4000, and 5000 mg/l) of each heavy metals was investigated and observed that Pb and Cr were less toxic to Sporosarcina pasteurii than Zn. The poorly graded sand was spiked with 333-2000 mg/kg concentrations of a selected individual or mixed metal solutions, i.e., 1000 mg/kg and 2000 mg/kg individual concentrations of Pb, Zn, and Cr(VI); 500 mg/kg and 1000 mg/kg concentration of each metal in "Pb and Zn," "Pb and Cr(VI)," and "Zn and Cr(VI)" mixture of heavy metals; and 333 mg/kg and 666 mg/kg concentration of each metal in "Pb, Zn, and Cr(VI)" mixed metal concentration. Contaminated soil was biotreated with Sporosarcina pasteurii and cementation (a solution of urea and calcium chloride dihydrate) solutions for 18 days. Biocemented sand specimens were subjected to testing of hydraulic conductivity, ultrasonic pulse velocity (UPV), unconfined compressive strength (UCS), calcite content, pH, toxicity characteristic leaching procedure (TCLP), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The heavy metal contaminated samples showed decrease in hydraulic conductivity and increase in UPV and UCS after biotreatment; however, the changes in engineering properties were found more moderate than clean biocemented sand. The conversion of Cr(VI) to Cr(III) followed by Cr2O3 precipitation in calcite lattice was observed. Zn was precipitated as smithsonite (ZnCO3), while no Pb precipitate was identified in XRD results. TCLP leaching showed Pb and Cr immobilized proportional to calcite precipitated amount, and higher calcite amounts yielded levels within regulatory limits. Pb and Cr(VI) immobilization up to 92 % and 94 % was achieved, respectively, in contaminated biocemented sand. Zn was found completely leachable as smithsonite is only stable down to pH~5, and strongly acidic TCLP solution reversed all immobilization at natural soil pH~8-9.
Collapse
Affiliation(s)
- Meghna Sharma
- Department of Civil Engineering, Indian Institute of Technology Indore, 453552, Madhya Pradesh, India
| | - Neelima Satyam
- Department of Civil Engineering, Indian Institute of Technology Indore, 453552, Madhya Pradesh, India.
| | - Krishna R Reddy
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Maria Chrysochoou
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|