1
|
Ashraf H, Ghouri F, Sun L, Xia W, Ashraf S, Ashraf MZ, Fu X, Ali S, Shahid MQ. Energy metabolism, antioxidant defense system, metal transport, and ion homeostasis are key contributors to Cd tolerance in SSSL derived from wild rice. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137009. [PMID: 39862775 DOI: 10.1016/j.jhazmat.2024.137009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Cadmium (Cd) toxicity poses major challenges to rice cultivation, affecting plant growth and development. Wild rice and nanoparticles offer promising strategies to enhance Cd tolerance, yet little is known about their combined effects. This study evaluates the single segment substitution line (SG004) from Oryza glumaepatula (wild rice) and its response to Cd stress compared to cultivated rice (HJX74). Both genotypes were also treated with calcium oxide nanoparticles (np-CaO). Results showed that Cd exposure disrupts reactive oxygen species (ROS) metabolism in both lines, such as malondialdehyde (MDA) increases by 57 % in HJX74 compared to SG004. Moreover, SG004 exhibited a 26 % reduction in shoot length compared to 41 % in HJX74 and a 42 % decline in chlorophyll ab content versus 53 % in HJX74. Antioxidant activity such as glutathione (GSH) decreased 25 % more in HJX74 than SG004 under Cd toxicity. Additionally, SG004 had lower Cd accumulation in roots (70 %) and shoots (85 %) than HJX74, indicating its enhanced tolerance to Cd toxicity. The root cell cytology reveals several deformations in different organelles of HJX74 but less in SG004. RNAseq analysis identifies key pathways, including energy metabolism, antioxidant defense, metal transport, and ion homeostasis, which may be critical for SG004 enhanced tolerance. Notably, two distinct metallothionein-like genes (BGIOSGA019338, BGIOSGA035982), a peroxidase (BGIOSGA019133), ammonium (BGIOSGA008640, BGIOSGA008641, and potassium transporters (BGIOSGA030867), NRAMP1 (BGIOSGA025476), and an aluminum-activated malate transporter (BGIOSGA014531), showed differential expressions in SG004 under Cd stress. Genes within the substituted fragment, including those for peroxidase 25 (BGIOSGA002866), metallothionein (BGIOSGA002389), and reductase (BGIOSGA002387), are also upregulated in SG004, reinforcing the role of antioxidant and ion homeostasis pathways. The utilization of np-CaO alleviates Cd-induced stress in both genotypes, hence reinforcing the application of wild rice and nanoparticles to improve Cd tolerance.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Sawaira Ashraf
- Graduate school of Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Muhammad Zahid Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xuelin Fu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Shivappa S, Amritha KP, Nayak S, Chandrashekar HK, Thorat SA, Kaniyassery A, Govender N, Thiruvengadam M, Muthusamy A. Integration of physio-biochemical, biological and molecular approaches to improve heavy metal tolerance in plants. 3 Biotech 2025; 15:76. [PMID: 40060292 PMCID: PMC11885775 DOI: 10.1007/s13205-025-04248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/16/2025] [Indexed: 04/13/2025] Open
Abstract
Heavy metal toxicity hinders plant growth and development by inducing oxidative stress, decreasing biomass, impairing photosynthesis, and potentially leading to plant death. The inherent defense mechanisms employed by plants, including metal sequestration into vacuoles, phytochelation, cell wall metal adsorption and an enhanced antioxidant system can be improved via various approaches to mitigate heavy metal toxicity. This review primarily outlines plants direct and indirect responses to HM stress and the tolerance mechanisms by which plants combat the toxic effects of metals and metalloids to understand the effective management of HMs and metalloids in the soil system. Furthermore, this review highlights measures to mitigate metal and metalloid toxicity and improve metal tolerance through various physio-biochemical, biological, and molecular approaches. This review also provides a comprehensive account of all the mitigative approaches by comparing physio-biochemical, biological and molecular approaches. Finally, we compared all the mitigative approaches used in monocotyledonous and dicotyledonous to increase their metal tolerance. Although many studies have compared monocot and dicot plants based on metal toxicity and tolerance effects, comparisons of these mitigative approaches have not been explored.
Collapse
Affiliation(s)
- Swathi Shivappa
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - K. P. Amritha
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Siddharth Nayak
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Harsha K. Chandrashekar
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Sachin Ashok Thorat
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Arya Kaniyassery
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Nisha Govender
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Selangor Malaysia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029 South Korea
| | - Annamalai Muthusamy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| |
Collapse
|
3
|
Novikova AA, Podlasova EY, Lebedev SV, Latushkin VV, Glushchenko NN, Sudarikov KA, Gulevich AA, Vernik PA, Shelepova OV, Baranova EN. Can Boron and Cobalt Nanoparticles Be Beneficial Effectors to Prevent Flooding-Induced Damage in Durum and Bread Wheat at Germination and Tillering Stage? PLANTS (BASEL, SWITZERLAND) 2025; 14:1044. [PMID: 40219112 PMCID: PMC11990992 DOI: 10.3390/plants14071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
In this study, we investigated the possible effects of cobalt and boron nanoparticles as an inducer of the first stages of development (germination) of hard and soft wheat when simulating flooding as one of the limiting environmental factors. We also investigated the remote effect of treating wheat grains with nanoparticles when flooding was applied already at the tillering stage. To identify the effects of nanoparticles, we used morphometric, biochemical and phenotypic parameters of seedlings and plants of two wheat species differing in origin and the response of these parameters to flooding. Positive effects were found at the germination stage, increasing quantitative indicators under stress. The sensitivity of wheat species to flooding was different, which corresponds to historical and climatic aspects of cultivation. Sensitivity to stress effects associated with loss of germination, decreased growth and photosynthesis was shown for both species. Treatment with cobalt and boron nanoparticles enhanced adaptation to stress and improved photosynthetic parameters, but the encouraging results under stressful conditions were ambiguous and in the case of soft wheat could lead to deterioration of some parameters. Thus, the use of boron and cobalt nanoparticles has potential for reducing productivity under stress, but requires a detailed assessment of the cultivation protocol depending on the genotype.
Collapse
Affiliation(s)
- Antonina A. Novikova
- Federal Scientific Center of Biological Systems and Agrotechnology, The Russian Academy of Sciences, 9 Yanvarya 29, 460000 Orenburg, Russia; (E.Y.P.); (S.V.L.)
| | - Ekaterina Y. Podlasova
- Federal Scientific Center of Biological Systems and Agrotechnology, The Russian Academy of Sciences, 9 Yanvarya 29, 460000 Orenburg, Russia; (E.Y.P.); (S.V.L.)
| | - Svyatoslav V. Lebedev
- Federal Scientific Center of Biological Systems and Agrotechnology, The Russian Academy of Sciences, 9 Yanvarya 29, 460000 Orenburg, Russia; (E.Y.P.); (S.V.L.)
| | | | - Natalia N. Glushchenko
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (INEPCP FRCCP RAS), 38/2, Leninsky Ave, 119334 Moscow, Russia;
| | - Kirill A. Sudarikov
- Institute of Development Strategy, 101000 Moscow, Russia; (V.V.L.); (K.A.S.); (P.A.V.)
| | - Alexander A. Gulevich
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia;
| | - Pyotr A. Vernik
- Institute of Development Strategy, 101000 Moscow, Russia; (V.V.L.); (K.A.S.); (P.A.V.)
| | - Olga V. Shelepova
- N. V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia;
| | - Ekaterina N. Baranova
- N. V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia;
| |
Collapse
|
4
|
Mumtaz S, Anas M, Javed S, Tahir MF, Saleem MH, Elansary HO, Mahmoud EA, Fahad S, Ali S. Mitigating cadmium stress in rice (Oryza sativa L.) using succinic and oxalic acids with focus on cellular integrity and antioxidant responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109548. [PMID: 39884150 DOI: 10.1016/j.plaphy.2025.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Soil contamination with toxic heavy metals [such as cadmium (Cd)] is becoming a serious global problem due to the rapid development of the social economy. Organic chelating agents such as succinic acid (SA) and oxalic acid (OA) are more efficient, environmentally friendly, and biodegradable compared to inorganic chelating agents and they enhance the solubility, absorption, and stability of metals. To investigate this, we conducted a pot experiment to assess the impact of SA (0.25 and 0.5 mM) and OA (0.25 and 0.5 mM) on enhancing the phytoremediation of Cd under its toxic concentration of 0.1 mM, using rice (Oryza sativa L.) plants. The research outcomes indicated that elevated levels of Cd stress in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, and gas exchange attributes. However, Cd stress also induced oxidative stress in the plants by increasing malondialdehyde (MDA) and hydrogen peroxide (H2O2), which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression and sugar content. Furthermore, a significant (P < 0.05) increase in proline metabolism, the AsA-GSH cycle, and the pigmentation of cellular components was observed. In addition, scanning electron microscopy (SEM) revealed that Cd toxicity significantly affected double membranous organelles. Although, the application of SA and OA showed a significant (P < 0.05) increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and their gene expression and also decreased oxidative stress. In addition, the application of SA and OA enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in O. sativa plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Sahar Mumtaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan.
| | - Muhammad Anas
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Faran Tahir
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan.
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hosam O Elansary
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia.
| | - Eman A Mahmoud
- Department of Food Science, College of Agriculture, Damietta University, Damietta, Egypt.
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Allama Iqbal Road, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
5
|
Cao F, He T, Yin D, Wu P, Luo G. Organic foliar spraying: A method that synchronously reduces mercury methylation in soil and accumulation in vegetable. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125615. [PMID: 39746637 DOI: 10.1016/j.envpol.2024.125615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Although the use of foliar spraying with organic matter has been extensively studied and applied to reduce heavy metals in plants, research on its application for reducing mercury (Hg) accumulation in plants, particularly the more toxic methylmercury (MeHg), remains scarce. Furthermore, previous researches on the barrier mechanisms of foliar spraying primarily concentrated on the effects of spraying agents on plant physiological and biochemical indicators, with limited focus on their impacts on soil environment. Herein, the dynamic effects and mechanisms of organic foliar spraying materials, including earthworm liquid fertilizer (ELF), Tween 80 (T80), and citric acid (CA), on soil Hg methylation and accumulation in lettuce were investigated using pot experiment. The findings revealed that foliar spraying significantly reduced the total mercury (THg) and MeHg concentrations in mature lettuce stems and leaves, with CA demonstrating the highest efficacy, achieving reduction rates of 24-60% for THg and 64-69% for MeHg. Spraying CA and T80 also simultaneously reduced the dissolved Hg and MeHg in the soil during the lettuce maturity period. The reductions of soil Hg methylation and bioaccumulation in lettuce were related to the increased abundance of Hg-reducing bacteria, decreased tartaric acid content and Hg-methylating bacteria abundance in soils, as well as enhanced nutrient absorption by lettuce. Additionally, foliar spraying lessened Hg toxicity to the plant and facilitated Hg sequestration in cell walls and vacuoles. Thus, foliar organic spraying impacted Hg enrichment in plant through altering plant physiological and biochemical indices, soil environment and Hg methylation processes.
Collapse
Affiliation(s)
- Fangyu Cao
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| | - Guangjun Luo
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Faculty of Architecture and Engineering, Guizhou Polytechnic of Construction, Guiyang, 551400, China
| |
Collapse
|
6
|
Ashraf H, Ghouri F, Ali S, Bukhari SAH, Haider FU, Zhong M, Xia W, Fu X, Shahid MQ. The protective roles of Oryza glumaepatula and phytohormone in enhancing rice tolerance to cadmium stress by regulating gene expression, morphological, physiological, and antioxidant defense system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125311. [PMID: 39547555 DOI: 10.1016/j.envpol.2024.125311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The heavy metal cadmium (Cd) is highly poisonous and has received significant attention from environmental scientists due to its harmful impacts on plants. Oryza glumaepatula is a wild rice that contains useful genes against biotic and abiotic stresses. Therefore, the current study used SG007, a single-segment substitution line (SSSL), generated by crossing O. glumaepatula with an elite rice cultivar (HJX74), to evaluate the resistance potential against Cd. Moreover, we assessed the efficacy of strigolactone GR24 (1 μM) against Cd toxicity (100 μM) by investigating physiological, biochemical, and molecular mechanisms in both cultivars (i.e., SG007 and HJX74). The findings of this study revealed that Cd toxicity declined the chlorophyll a, chlorophyll b, and carotenoids by 50%, 20%, and 44% in SG007, and 58%, 39%, and 59% in HJX74 by enhancing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) by 113%, 184%, and 119% in SG007 and 248%, 273% and 195% in HJX74, respectively. GR24 improved growth under Cd stress in both cultivars, and SG007 exhibited better plant growth parameters, antioxidant enzymatic activities, nitric oxide synthase (NOS), and nitric oxide (NO) levels than HJX74 under Cd toxicity. GR24 with SG007 regulated expressions of Cd transporters and reduced the cytological disruptions in cell organelles. The combined utilization of SG007 and GR24 reduced Cd accumulation and oxidative stress and improved plant growth parameters and enzymatic activities. In conclusion, our study highlights the potential of utilizing SG007 in conjunction with GR24 as a practical strategy to mitigate Cd pollution in rice. The results not only underscore the beneficial effects of strigolactone GR24 in alleviating Cd-induced stress but also emphasize the valuable genetic traits of O. glumaepatula in developing rice lines with enhanced tolerance to heavy metals, offering broader implications for sustainable agriculture and crop improvement in contaminated environments.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | | | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Liu H, Chen L, Bai X, Wang N, Cui Q, Liu J, Bol R, Qiu T, Mei Y, He H, Bian S, Chang N, Fang L. Exogenous silicon facilitates safe crop production in cadmium-contaminated soils: A comprehensive meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136368. [PMID: 39515145 DOI: 10.1016/j.jhazmat.2024.136368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Soil contamination by cadmium (Cd) is an increasing environmental concern that potentially jeopardizes both crop productivity and human health. Silicon (Si), the Earth's second most abundant element, has shown a significant potential in reducing Cd uptake by crops. However, there is still a lack of quantitative data on the beneficial effects of Si in reducing Cd toxicity, thereby making it more difficult to ensure safe crop production. We conducted a comprehensive meta-analysis of 105 studies to assess the impact of exogenous Si on Cd accumulation in three major cereal crops (wheat, maize, and rice) and elucidate the key factors governing the Si effects. We found that Si supplementation significantly mitigated Cd toxicity in crops, reducing Cd accumulation in maize, rice, and wheat by 37 %, 30 %, and 45 %, respectively. This reduction was most pronounced in all three crop grains (reductions reaching 40-51 %). The four different forms of Si applied all increased crop yield, with nano-silicon resulting in an average yield increase of 19 %, surpassing silicate, Si-based fertilizer, and other silica-based materials. The effects of Si were primarily influenced by application rate and methods, soil pH, Cd concentration, and the effects of foliar and field application. Based on Cd inhibition levels and overall economic benefits, we recommend a Si application rate of ≤ 250 mg/kg, preferably using nano-silicon or silicate. Overall, our study provides valuable globally relevant guidance on Si amendments selection and application thereby ensuring safer and higher crop production in Cd-contaminated soils.
Collapse
Affiliation(s)
- Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohan Bai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Roland Bol
- Institute of Bio & Geoscience, Agrosphere IBG 3, Forschungszentrum Jülich, Wilhelm Johnen Str, Juelich D-52428, Germany
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yuxia Mei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Shiqi Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
8
|
Cao Y, Ma C, White JC, Cao Y, Zhang F, Tong R, Yu H, Hao Y, Yan W, Kah M, Xing B. Engineered nanomaterials reduce metal(loid) accumulation and enhance staple food production for sustainable agriculture. NATURE FOOD 2024; 5:951-962. [PMID: 39394358 DOI: 10.1038/s43016-024-01063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/09/2024] [Indexed: 10/13/2024]
Abstract
Metal(loid) contaminants in food pose a global health concern. This study offers a global analysis of the impact of nanomaterials (NMs) on crop responses to metal(loid) stresses. Our findings reveal that NMs have a positive effect on the biomass production of staple crops (22.8%), while showing inhibitory effects on metal(loid) accumulation in plants (-38.3%) and oxidative damage (-21.6%) under metal(loid) stress conditions. These effects are influenced by various factors such as NM dose, exposure duration, size and composition. Here we introduce a method using interval-valued intuitionistic fuzzy values by integrating the technique for order preference by similarity to an ideal solution and entropy weights to compare the effectiveness of different NM application patterns. These results offer practical insights for the application of NMs in similar multi-criteria decision-making scenarios, contributing to sustainable agriculture and global food safety.
Collapse
Affiliation(s)
- Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, China
| | - Chuanxin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China.
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Yuchi Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, China
| | - Fan Zhang
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Ran Tong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Hao Yu
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Yi Hao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, China.
| | - Melanie Kah
- School of Environment, University of Auckland, Auckland, New Zealand
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
9
|
Xiong J, Zou D, Kang J, Mo Y, Li L, Zhan L, Wu Q, Xiao Z. Improving peanut growth and cadmium phytoextraction capacity by inoculating Bacillus megaterium and Trichoderma harzianum. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122758. [PMID: 39378803 DOI: 10.1016/j.jenvman.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Arachis hypogaea L. (peanut) is an economic crop with abundant biomass and remarkable capacity for cadmium (Cd) uptake. In a two-year field experiment, the translocation and accumulation mechanisms of Cd in peanuts were investigated following inoculation of Bacillus megaterium (BM) and Trichoderma harzianum (TH). The results demonstrated that inoculating BM and TH enhanced both biomass and Cd concentration in peanut roots and shoots compared with those of the CK treatment. There was no statistically significant difference observed in kernel biomass between peanut plants inoculated with TH and the CK treatment. The inoculation of BM and TH increased the Cd concentration in the soluble fraction of peanut roots by 24.36% and 102.78%, thus promoting Cd translocation from roots to shoots. Additionally, inoculating BM and TH resulted in a 31.75% and 52.88% elevation in Cd concentration within the leaf cell walls, thereby facilitating the accumulation of Cd within the shoots. Simultaneously, inoculating BM and TH enhanced the concentration of highly bioavailable Cd forms in peanuts. The accumulation of Cd in shoots is the primary factor determining the phytoextraction capacity in peanut, and inoculation of TH resulted in a 16.35-54.54% increase in shoot biomass and an enhancement of 99.10-99.95% in shoot Cd concentration. Therefore, inoculating TH can enhance the phytoextraction capacity for Cd in peanuts, particularly the production of economically valuable components (kernels), without compromising production.
Collapse
Affiliation(s)
- Jie Xiong
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Dongsheng Zou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Jianguo Kang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yingying Mo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, PR China
| | - Likun Zhan
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Qingdan Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Zhihua Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
10
|
Chen K, Yu B, Xue W, Sun Y, Zhang C, Gao X, Zhou X, Deng Y, Yang J, Zhang B. Citric Acid Inhibits Cd Absorption and Transportation by Improving the Antagonism of Essential Elements in Rice Organs. TOXICS 2024; 12:431. [PMID: 38922111 PMCID: PMC11209394 DOI: 10.3390/toxics12060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Excessive cadmium (Cd) in rice is a global environmental problem. Therefore, reducing Cd content in rice is of great significance for ensuring food security and human health. A field experiment was conducted to study the effects of foliar application of citric acid (CA) on Cd absorption and transportation in rice under high Cd-contaminated soils (2.04 mg·kg-1). This study revealed that there was a negative correlation between Cd content in vegetative organs and CA content, and that foliar spraying of CA (1 mM and 5 mM) significantly increased CA content and reduced Cd content in vegetative organs. The Cd reduction effect of 5 mM CA was better than that of 1 mM, and 5 mM CA reduced Cd content in grains and spikes by 52% and 37%, respectively. CA significantly increased Mn content in vegetative organs and increased Ca/Mn ratios in spikes, flag leaves, and roots. CA significantly reduced soluble Cd content in vegetative organs and promoted the transformation of Cd into insoluble Cd, thus inhibiting the transport of Cd from vegetative organs to grains. The foliar field application of 1 mM and 5 mM CA could inhibit Cd absorption and transportation by reducing Cd bioactivity and increasing the antagonistic of essential elements in rice vegetative organs. These results provide technical support and a theoretical basis for solving the problem of excessive Cd in rice.
Collapse
Affiliation(s)
- Kexin Chen
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Bozhen Yu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Xusheng Gao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Xiaojia Zhou
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China;
| | - Jiarun Yang
- College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300392, China; (J.Y.); (B.Z.)
| | - Boqian Zhang
- College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300392, China; (J.Y.); (B.Z.)
| |
Collapse
|
11
|
Ghouri F, Sarwar S, Sun L, Riaz M, Haider FU, Ashraf H, Lai M, Imran M, Liu J, Ali S, Liu X, Shahid MQ. Silicon and iron nanoparticles protect rice against lead (Pb) stress by improving oxidative tolerance and minimizing Pb uptake. Sci Rep 2024; 14:5986. [PMID: 38472251 PMCID: PMC10933412 DOI: 10.1038/s41598-024-55810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Lead (Pb) is toxic to the development and growth of rice plants. Nanoparticles (NPs) have been considered one of the efficient remediation techniques to mitigate Pb stress in plants. Therefore, a study was carried out to examine the underlying mechanism of iron (Fe) and silicon (Si) nanoparticle-induced Pb toxicity alleviation in rice seedlings. Si-NPs (2.5 mM) and Fe-NPs (25 mg L-1) were applied alone and in combination to rice plants grown without (control; no Pb stress) and with (100 µM) Pb concentration. Our results revealed that Pb toxicity severely affected all rice growth-related traits, such as inhibited root fresh weight (42%), shoot length (24%), and chlorophyll b contents (26%). Moreover, a substantial amount of Pb was translocated to the above-ground parts of plants, which caused a disturbance in the antioxidative enzyme activities. However, the synergetic use of Fe- and Si-NPs reduced the Pb contents in the upper part of plants by 27%. It reduced the lethal impact of Pb on roots and shoots growth parameters by increasing shoot length (40%), shoot fresh weight (48%), and roots fresh weight (31%). Both Si and Fe-NPs synergistic application significantly elevated superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione (GSH) concentrations by 114%, 186%, 135%, and 151%, respectively, compared to plants subjected to Pb stress alone. The toxicity of Pb resulted in several cellular abnormalities and altered the expression levels of metal transporters and antioxidant genes. We conclude that the synergistic application of Si and Fe-NPs can be deemed favorable, environmentally promising, and cost-effective for reducing Pb deadliness in rice crops and reclaiming Pb-polluted soils.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Samreen Sarwar
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Lai M, Ghouri F, Sarwar S, Alomrani SO, Riaz M, Haider FU, Liu J, Imran M, Ali S, Liu X, Shahid MQ. Modulation of metal transporters, oxidative stress and cell abnormalities by synergistic application of silicon and titanium oxide nanoparticles: A strategy for cadmium tolerance in rice. CHEMOSPHERE 2023; 345:140439. [PMID: 37838027 DOI: 10.1016/j.chemosphere.2023.140439] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
Heavy metals, especially cadmium (Cd), cause severe toxicity symptoms in crop plants. Applying nanoparticles (NPs) as nano-fertilizers is a novel approach to mitigating plants' Cd stress. However, knowledge about the combinational use of silicon (Si) and titanium dioxide (TiO2) NPs to mitigate Cd stress, especially in rice, must be highlighted. TiO2-NPs (15 mg L-1) and Si-NPs (2.5 mM) were applied alone and in combination to rice plants grown without (control; no Cd stress) and with (100 μM) Cd concentration. Results revealed that compared to the control plants, root length, shoot length, shoot fresh weight, and root dry weight of rice seedlings were significantly decreased by 25.43%, 26.64%, 34.13%, and 29.87% under Cd exposure. However, the synergistic effect of TiO2- and Si-NPs increased rice plants' shoot length, root length, root dry weight, and shoot fresh weight by 24.62%, 29.81%, 36.16%, and 33.07%, respectively, under the Cd-toxicity. The concentration of malondialdehyde (MDA) and H2O2 were amplified due to Cd stress, which leads to damage to the subcellular structures. Si and TiO2-NPs co-application improved the anti-oxidative enzymatic activities (catalase, peroxidase, superoxide dismutase) and an elevated concentration of non-enzymatic glutathione in Cd-exposed rice. The Cd accumulation was condensed by 21.37% and 19.7% in the shoot, while 48.31% and 45.65% in root tissues under Si-NPs + Cd and TiO2-NPs + Cd treatments compared to Cd-alone treated seedlings, respectively. The expression patterns of metal transporters, such as OsNramp1 and OsHMA3, were the highest when rice plants were cultivated under Cd stress and significantly reduced when treated with sole and combined Si- and TiO2-NPs treatments. In conclusion, combining Si- and TiO2-NPs significantly improved the antioxidant enzymatic activities, chlorophyll contents, biomass production, and reduced cellular damage. Despite limitations, our findings guide future research, addressing risks, optimizing concentrations, and assessing long-term effects that can balance agricultural progress with environmental sustainability.
Collapse
Affiliation(s)
- Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China; College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China; College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Samreen Sarwar
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran 66252, Saudi Arabia
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China; College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China; College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China; College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Zhao S, Kamran M, Rizwan M, Ali S, Yan L, Alwahibi MS, Elshikh MS, Riaz M. Regulation of proline metabolism, AsA-GSH cycle, cadmium uptake and subcellular distribution in Brassica napus L. under the effect of nano-silicon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122321. [PMID: 37544403 DOI: 10.1016/j.envpol.2023.122321] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Cadmium (Cd) is known to have detrimental effects on plant growth and human health. Recent studies showed that silicon nanoparticles (SNPs) can decrease Cd toxicity in plants. Therefore, a study was conducted using 50 μM Cd and 1.50 mM SNPs to investigate Cd uptake, subcellular distribution, proline (Pro) metabolism, and the antioxidant defense system in rapeseed seedlings. In this study, results indicated that Cd stress negatively affected rapeseed growth, and high Cd contents accumulated in both shoots and roots. However, SNPs significantly decreased Cd contents in shoots and roots. Moreover, substantial increases were found in root fresh weight by 40.6% and dry weight by 46.6%, as well as shoot fresh weight by 60.1% and dry weight by 113.7% with the addition of SNPs. Furthermore, the addition of SNPs alleviated oxidative injury by maintaining the ascorbate-glutathione (AsA-GSH) cycle and increased Pro biosynthesis which could be due to high activities of Δ1-pyrroline-5-carboxylate synthase (P5CS) and reductase (P5CR) and decreased proline dehydrogenase (ProDH) activity. Furthermore, the addition of SNPs accumulated Cd in the soluble fraction (42%) and cell wall (45%). Results indicate that SNPs effectively reduce Cd toxicity in rapeseed seedlings which may be effective in promoting both rapeseed productivity and human health preservation.
Collapse
Affiliation(s)
- Shaopeng Zhao
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, South Australia, 5005, Australia
| | - Muhamamd Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Lei Yan
- School of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Riaz
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
14
|
Yadav M, George N, Dwibedi V. Emergence of toxic trace elements in plant environment: Insights into potential of silica nanoparticles for mitigation of metal toxicity in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122112. [PMID: 37392865 DOI: 10.1016/j.envpol.2023.122112] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/31/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Emergence of trace elements at potentially toxic concentrations in the environment has become a global issue in recent times. Owing to the rapid population growth, unregulated industrialisation, intensive farming practices and excessive mining activities, these elements are accumulating in environment at high toxic concentrations. The exposure of plants to metal-contaminated environments severely influences their reproductive and vegetative growth, eventually affecting crop performance and production. Hence, it is crucial to find alternatives to mitigate the stress caused by toxic elements, in plants of agricultural importance. In this context, silicon (Si) has been widely recognized to alleviate metal toxicity and promote plant growth during various stress conditions. Amending soil with silicates has shown to ameliorate the lethal effects of metals and stimulates crop development. However, in comparison to silicon in bulk form, nano-sized silica particles (SiNPs) have been demonstrated to be more efficient in their beneficial roles. SiNPs can be used for various technological applications, viz. Improving soil fertility, agricultural yield, and remediating heavy metal-polluted soil. The research outcomes of studies focussing on role of silica nanoparticles to specifically mitigate the metal toxicity in plants have not been reviewed earlier in depth. The aim of this review is to explore the potential of SiNPs in alleviating metal stress and improving plant growth. The benefits of nano-silica over bulk-Si fertilizers in farming, their performance in diverse plant varieties, and the possible mechanisms to mitigate metal toxicity in plants have been discussed in detail. Further, research gaps are identified and future prospects are envisioned for advanced investigations in this field. The growing interest towards nano-silica related research will facilitate exploration of the true prospective of these nanoparticles for mitigation of metal stress in crops and in other fields of agriculture as well.
Collapse
Affiliation(s)
- Mohini Yadav
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Nancy George
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India; Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
15
|
Liu H, Jiao Q, Fan L, Jiang Y, Alyemeni MN, Ahmad P, Chen Y, Zhu M, Liu H, Zhao Y, Liu F, Liu S, Li G. Integrated physio-biochemical and transcriptomic analysis revealed mechanism underlying of Si-mediated alleviation to cadmium toxicity in wheat. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131366. [PMID: 37030231 DOI: 10.1016/j.jhazmat.2023.131366] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) contamination has resulted in serious reduction of crop yields. Silicon (Si), as a beneficial element, regulates plant growth to heavy metal toxicity mainly through reducing metal uptake and protecting plants from oxidative injury. However, the molecular mechanism underlying Si-mediated Cd toxicity in wheat has not been well understood. This study aimed to reveal the beneficial role of Si (1 mM) in alleviating Cd-induced toxicity in wheat (Triticum aestivum) seedlings. The results showed that exogenous supply of Si decreased Cd concentration by 67.45% (root) and 70.34% (shoot), and maintained ionic homeostasis through the function of important transporters, such as Lsi, ZIP, Nramp5 and HIPP. Si ameliorated Cd-induced photosynthetic performance inhibition through up-regulating photosynthesis-related genes and light harvesting-related genes. Si minimized Cd-induced oxidative stress by decreasing MDA contents by 46.62% (leaf) and 75.09% (root), and helped re-establish redox homeostasis by regulating antioxidant enzymes activities, AsA-GSH cycle and expression of relevant genes through signal transduction pathway. The results revealed molecular mechanism of Si-mediated wheat tolerance to Cd toxicity. Si fertilizer is suggested to be applied in Cd contaminated soil for food safety production as a beneficial and eco-friendly element.
Collapse
Affiliation(s)
- Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Lina Fan
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India
| | - Yinglong Chen
- The UWA Institute of Agriculture & School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia
| | - Mo Zhu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, PR China
| | - Haiping Liu
- School of Civil Engineering and Architecture, Zhengzhou University of Aeronautics, Zhengzhou 450046, PR China
| | - Ying Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
16
|
Zheng HX, Yang YL, Liu WS, Zhong Y, Cao Y, Qiu RL, Liu C, van der Ent A, Hodson MJ, Tang YT. Rare earth elements detoxification mechanism in the hyperaccumulator Dicranopteris linearis: [silicon-pectin] matrix fixation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131254. [PMID: 36965356 DOI: 10.1016/j.jhazmat.2023.131254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Dicranopteris linearis is the best-known hyperaccumulator species of rare earth elements (REEs) and silicon (Si), capable of dealing with toxic level of REEs. Hence, this study aimed to clarify how D. linearis leaves cope with excessive REE stress, and whether Si plays a role in REE detoxification. The results show that lanthanum (La - as a representative of the REEs) stress led to decreased biomass and an increase of metabolism related to leaf cell wall synthesis and modification. However, the La stress-induced responses, especially the increase of pectin-related gene expression level, pectin polysaccharides concentration, and methylesterase activity, could be mitigated by Si supply. Approximately 70% of the Si in D. linearis leaves interacted with the cell walls to form organosilicon Si-O-C linkages. The Si-modified cell walls contained more hydroxyl groups, leading to a more efficient REE retention compared to the Si-free ones. Moreover, this [Si-cell wall] matrix increased the pectin-La accumulation capacity by 64%, with no effect on hemicellulose-La and cellulose-La accumulation capacity. These results suggest that [Si-pectin] matrix fixation is key in REE detoxification in D. linearis, laying the foundation for the development of phytotechnological applications (e.g., REE phytomining) using this species in REE-contaminated sites.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Lu Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ying Zhong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Cao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Chong Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Antony van der Ent
- Laboratory of Genetics, Wageningen University and Research, The Netherlands; Laboratoire Sols et Environnement, INRAE, Université de Lorraine, France; Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Martin J Hodson
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
17
|
Kasem MM, Abd El-Baset MM, Helaly AA, EL-Boraie ESA, Alqahtani MD, Alhashimi A, Abu-Elsaoud AM, Elkelish A, Mancy AG, Alhumaid A, El-Banna MF. Pre and postharvest characteristics of Dahlia pinnata var. pinnata, cav. As affected by SiO 2 and CaCO 3 nanoparticles under two different planting dates. Heliyon 2023; 9:e17292. [PMID: 37441372 PMCID: PMC10333474 DOI: 10.1016/j.heliyon.2023.e17292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Agriculture faces many challenges because of climate changes. The nutrients present in nano-sized form improve plant productivity, especially when used at the appropriate planting time. Field experiments were conducted as a factorial experiment for evaluating two planting dates (20th September and 20th October), foliar application with nanoparticles (NPs) including silica nanoparticles (SiO2-NPs) at 1.5 and 3 mM, calcium carbonate nanoparticles (CaCO3-NPs) at 5 and 10 mM and distilled water (control) on pre- and post-harvest characteristics of Dahlia pinnata var. pinnata Cav. The results indicate that the interactions during the late planting time (20th October) and exogenous applications of SiO2-NPs at 1.5 mM or CaCO3-NPs at 10 mM have improved plant growth including plant height, stem diameter, fresh and dry weights of plant, leaf area, inflorescence diameter, inflorescence stalk length, branches number, tuber numbers, inflorescences number on the plant, and the vase life. At the same time, insignificant differences appeared in the interaction during the planting dates and SiO2 or CaCO3 -NPs concentrations on inflorescence stalk diameter, total soluble solids, membrane stability index, maximum increase in fresh weight (FW), and Si and Ca contents. In addition, all exogenous applications of NPs at the late planting time promoted the plant growth characteristics like lignin %, cellulose %, inflorescence water content, change in FW, and total water uptake. Moreover, the controls through the two planting dates recorded the maximum change in water uptake and water loss values. In short, it can be recommended to use SiO2-NPs at 1.5 mM or CaCO3-NPs at 10 mM as a foliar application at the late planting time (20th October) for obtaining the optimum quantitative and qualitative parameters of D. pinnata.
Collapse
Affiliation(s)
- Mahmoud M. Kasem
- Vegetable and Floriculture Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Mohaned M. Abd El-Baset
- Vegetable and Floriculture Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A. Helaly
- Vegetable and Floriculture Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - El-Sayed A. EL-Boraie
- Vegetable and Floriculture Department, Faculty of Agriculture, Damietta University, New Damietta 34517, Egypt
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O.BOX 84428, Riyadh 11671, Saudi Arabia
| | - Abdulrahman Alhashimi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdelghafar M. Abu-Elsaoud
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed G. Mancy
- Soils and Water Department, Faculty of Agriculture, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Abdulrahman Alhumaid
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Burydah 51452, Saudi Arabia
| | - Mostafa F. El-Banna
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
18
|
Li X, Kamran M, Saleem MH, Al-Ghamdi AA, Al-Hemaid FM, Elshikh MS, Zhao S, Riaz M. Potential application of melatonin in reducing boron toxicity in rice seedlings through improved growth, cell wall composition, proline, and defense mechanisms. CHEMOSPHERE 2023:139068. [PMID: 37257660 DOI: 10.1016/j.chemosphere.2023.139068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Melatonin (MT) has been demonstrated to provide defense against both biotic and abiotic stressors. Boron toxicity (BT) can significantly limit the growth and production of plants. However, few studies have been conducted on whether MT is effective in attenuating B toxicity in different plants. In order to evaluate the efficacy of exogenous MT treatment in reducing the negative impact of BT on rice seedlings, this study examined the influence of MT on growth, antioxidant capacity, cell wall composition, and proline metabolism in rice seedlings under hydroponics. Four treatments were established: MT (50 μM), MT + BT (50 μM MT + 800 μM B), BT (800 μM), and CK (control) in a completely randomized design. The results indicate that BT had a significant detrimental effect on the shoot length, root length, and root and shoot fresh weights of rice seedlings by 11.96%, 27.77%, 25.69%, and 18.67%, respectively as compared to the control treatment. However, exogenous MT application increased these parameters and reduced B accumulation in aboveground parts (14.05%) of the plant. Exogenous MT also increased the endogenous melatonin content and antioxidant enzyme activities (64.45%, 71.61%, 237.64%, and 55.42% increase in superoxide dismutase, ascorbate peroxidase, and peroxidase activities, respectively), while decreasing reactive oxygen species levels and oxidized forms of glutathione and ascorbic acid. Additionally, MT enhanced the biosynthesis of proline by decreasing proline dehydrogenase (ProDH) and increasing the GSH (glutathione) and ASA (ascorbic acid) contents. Exogenous MT also increased cell wall components that can increase B adsorption to the cell wall. Overall, these findings suggest that MT application can be a potential solution for strengthening the stress tolerance of rice seedlings, particularly under conditions of B toxicity. In regions where soil contains high levels of boron, the use of MT could enhance rice crop yields and quality.
Collapse
Affiliation(s)
- Xinyu Li
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Muhammad Kamran
- School of Agriculture, Food, and Wine, The University of Adelaide, South Australia 5005, Australia
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Fahad M Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Shaopeng Zhao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| |
Collapse
|
19
|
Ghouri F, Shahid MJ, Liu J, Lai M, Sun L, Wu J, Liu X, Ali S, Shahid MQ. Polyploidy and zinc oxide nanoparticles alleviated Cd toxicity in rice by modulating oxidative stress and expression levels of sucrose and metal-transporter genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130991. [PMID: 36860085 DOI: 10.1016/j.jhazmat.2023.130991] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The Cd toxicity causes severe perturbations to the plant's growth and development. Here, polyploid and diploid rice lines were treated with zinc-oxide nanoparticles (ZnO-NPs) and Cd, and physiological, cytological and molecular changes were observed. The Cd toxicity significantly reduced plant's growth attributes (such as shoot length, biological yield, dry matter, and chlorophyll contents, which decreased by 19%, 18%, 16%, 19% in polyploid and 35%, 43%, 45% and 43% in diploid rice, respectively), and disturbed the sugar level through the production of electrolytes, hydrogen peroxide, and malondialdehyde. The application of ZnO-NPs significantly alleviated the Cd toxicity in both lines by improving the antioxidant enzymes activities and physiochemical attributes. Semi-thin sections and transmission electron microscope revealed more and different types of abnormalities in diploid rice compared to polyploid rice under Cd stress. Moreover, RNA-seq analysis identified several differentially expressed genes between polyploid and diploid rice, especially metal and sucrose transporter genes. The GO, COG, and KEGG analyses revealed ploidy-specific pathways associated with plant growth and development. In conclusion, ZnO-NPs application to both rice lines significantly improved plant growth and decreased Cd accumulation in plants. We inferred that polyploid rice is more resistant to Cd stress than diploid rice.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Munazzam Jawad Shahid
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Jia-Yi Y, Meng-Qiang S, Zhi-Liang C, Yu-Tang X, Hang W, Jian-Qiang Z, Ling H, Qi Z. Effect of foliage applied chitosan-based silicon nanoparticles on arsenic uptake and translocation in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128781. [PMID: 35405587 DOI: 10.1016/j.jhazmat.2022.128781] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In this study, chitosan-based silicon nanoparticles (Chsi-NPs) are prepared that primarily consists of C (57.9%), O (31.3%), N (5.6%), and Si (3.5%) and are 10-180 nm in size. We then explore the effect on the foliage applied on rice planted on soil contaminated with 104 mg·kg-1 arsenic (As); low (3 mg·L-1)and high (15 mg·L-1) doses of the foliar Chsi-NPs are administered during the rice grain filling stage. The results showed that the higher dose foliar Chsi-NPs treatment reduced the As concentration in the grain by 61.2% but increased As concentration in the leaves by 47.1% compared to the control treatment. The foliar spraying of the Chsi-NPs inhibited As transport to the grain by facilitating the attachment of As to the cell wall, with higher doses of the foliar Chsi-NPs treatment increased by 8.7%. The foliar spraying of Chsi-NPs increased the malondialdehyde levels by 18.4%, the catalase activity by 49.0%, and the glutathione activity by 99.0%. These results indicated that the foliar Chsi-NPs application was effective for alleviating As toxicity and accumulation in rice. This study provides a novel method for effectively alleviating As accumulation in rice.
Collapse
Affiliation(s)
- Yang Jia-Yi
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Sun Meng-Qiang
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China
| | - Chen Zhi-Liang
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China.
| | - Xiao Yu-Tang
- School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Wei Hang
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China
| | - Zhang Jian-Qiang
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China
| | - Huang Ling
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China
| | - Zou Qi
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China
| |
Collapse
|
21
|
Chen D, Mubeen B, Hasnain A, Rizwan M, Adrees M, Naqvi SAH, Iqbal S, Kamran M, El-Sabrout AM, Elansary HO, Mahmoud EA, Alaklabi A, Sathish M, Din GMU. Role of Promising Secondary Metabolites to Confer Resistance Against Environmental Stresses in Crop Plants: Current Scenario and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:881032. [PMID: 35615133 PMCID: PMC9126561 DOI: 10.3389/fpls.2022.881032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 05/22/2023]
Abstract
Plants often face incompatible growing environments like drought, salinity, cold, frost, and elevated temperatures that affect plant growth and development leading to low yield and, in worse circumstances, plant death. The arsenal of versatile compounds for plant consumption and structure is called metabolites, which allows them to develop strategies to stop enemies, fight pathogens, replace their competitors and go beyond environmental restraints. These elements are formed under particular abiotic stresses like flooding, heat, drought, cold, etc., and biotic stress such as a pathogenic attack, thus associated with survival strategy of plants. Stress responses of plants are vigorous and include multifaceted crosstalk between different levels of regulation, including regulation of metabolism and expression of genes for morphological and physiological adaptation. To date, many of these compounds and their biosynthetic pathways have been found in the plant kingdom. Metabolites like amino acids, phenolics, hormones, polyamines, compatible solutes, antioxidants, pathogen related proteins (PR proteins), etc. are crucial for growth, stress tolerance, and plant defense. This review focuses on promising metabolites involved in stress tolerance under severe conditions and events signaling the mediation of stress-induced metabolic changes are presented.
Collapse
Affiliation(s)
- Delai Chen
- College of Life Science and Technology, Longdong University, Qingyang, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, China
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ammarah Hasnain
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Shehzad Iqbal
- Faculty of Agriculture Sciences, Universidad de Talca, Talca, Chile
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Abdullah Alaklabi
- Department of Biology, Faculty of Science, University of Bisha, Bisha, Saudi Arabia
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Ghulam Muhae Ud Din
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|