1
|
Kang D, Yun D, Cho KH, Baek SS, Jeon J. Assessing Event-Driven Dynamics of Pesticides and Transformation Products in an Agricultural Stream Using Comprehensive Target, Suspect, and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9790-9801. [PMID: 40343730 DOI: 10.1021/acs.est.5c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
A comprehensive assessment of pesticide transport in surface waters is challenging due to discharge characteristics and the occurrence of transformation products (TPs). Detailed long-term sampling of pesticide concentrations, including rainfall and pesticide application events, is still lacking to better predict pesticide transport pathways and toxicity within agricultural catchments. In the present study, pesticide and TP transport dynamics were evaluated over a three-year monitoring period, which included 12 stormwater events and 7 dry events. An extensive target screening for 328 pesticides was conducted, while simultaneously performing suspect and nontarget analysis (SNTA) using liquid chromatography high-resolution mass spectrometry. Twenty-one pesticides and two TPs associated with the main crop, rice, were identified as the major pollutants. The risk assessment results, based on the stepwise toxicity data collection, suggested that insecticides, primarily neonicotinoids, exhibited severe ecological risk. Additionally, SNTA revealed the presence of 8 parent compounds and 46 TPs. TPs occurred following parent peak periods, indicating that integrated pesticide monitoring is a practical approach to risk assessment. A precautionary approach using SNTA of parent pesticides and TP identification suggests that the potential aquatic effects of pesticide TPs may be underestimated by a conventional pesticide monitoring strategy.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Daeun Yun
- Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyung Hwa Cho
- Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sang-Soo Baek
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
- School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| |
Collapse
|
2
|
Zhang X, Zhan F, Hao C, Lei YD, Wania F. Prioritizing Chemical Features in Non-targeted Analysis through Spatial Trend Analysis: Application to the Identification of Organic Chemicals Subject to Mountain Cold-Trapping. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3121-3130. [PMID: 39912640 DOI: 10.1021/acs.est.4c10049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
One of the challenges arising during non-targeted analysis (NTA) is that the number of detected chemical features is generally too large for detailed processing and interpretation. Here, we illustrate how the analysis of spatial trends in peak intensities can be an effective tool to prioritize chemical features in NTA. Specifically, features detected by gas chromatography and high-resolution mass spectrometry in soil and air samples, collected along an altitudinal transect on an urban mountain in Canada, were successfully grouped into different categories based on spatial trends with site altitude. The motivation was to identify features whose abundance increases in soil with increasing elevation, as the ability for amplification at higher elevations could characterize contaminants of concern to mountain ecosystems. Potential matching candidates were first selected by comparing empirically detected accurate masses and isotope distributions of chemical features with those in chemical databases. These potential candidates were then ranked by comparing MSMS spectra with fragments predicted in silico. Several highly ranked matches, as well as structurally related compounds, which were largely halogenated methoxylated benzenes and organochlorine pesticides, were then subjected to targeted analysis with analytical standards. Several of these compounds, including pentachloroanisole, tricamba, and 3,4,5-trichloroveratrole, were identified as having spatial patterns consistent with mountain cold-trapping, as evidenced by organic carbon-normalized soil concentrations that show a significant increase with elevation. Our study clearly demonstrated that spatial trend analysis holds considerable promise as a tool to guide chemical identification and prioritization during NTA.
Collapse
Affiliation(s)
- Xianming Zhang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St W, Montreal, Quebec H4B 1R6, Canada
| | - Faqiang Zhan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Chunyan Hao
- Laboratory Services Branch, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, Ontario M9P 3 V6, Canada
| | - Ying-Duan Lei
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
3
|
Singh NJ, Etienne M, Spong G, Ecke F, Hörnfeldt B. Linear infrastructure and associated wildlife accidents create an ecological trap for an apex predator and scavenger. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176934. [PMID: 39454796 DOI: 10.1016/j.scitotenv.2024.176934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/23/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Animals may fall into an 'ecological trap' when they select seemingly attractive habitats at the expense of their fitness. This maladaptive behavior is often the result of rapid, human-induced changes in their natal environment, such as the construction of energy and transportation infrastructure. We tested the ecological trap hypothesis regarding human-created linear infrastructure on a widely distributed apex predator and scavenger-the Golden Eagle (Aquila chrysaetos), whose range spans the entire Northern Hemisphere. Roads and railways offer novel and attractive feeding opportunities through traffic-induced mortality of other species, while powerline areas provide perching or nesting sites and scavenging opportunities from electrocuted or collision-killed birds. These conditions may have negative demographic consequences for eagles if these apparent opportunities turn into traps. Using step selection functions, we analyzed habitat selection of 74 GPS-tracked Golden Eagles (37 adults and 37 immatures) during eleven years in Fennoscandia. To assess habitat attractiveness, we used wildlife traffic accident statistics for dominant wild species, and to evaluate demographic consequences, we used mortality data from the GPS-tagged eagles. Our analysis revealed that eagles selected linear features such as roads, railways and powerlines at both the population and individual levels. Both adult and immature eagles consistently selected these features, and the strength of selection for linear features increased with age in immature eagles. The linear features however had 5.5 times higher mortality risk for eagles than other selected habitats indicating the presence of an ecological trap. We discuss the implications of these findings for the conservation and population ecology of apex predators and scavengers, as well as their potential demographic consequences. To mitigate this issue, we urgently recommend the removal of carcasses from roads and tracks to prevent ecological traps for raptors and scavenger species worldwide. Additionally, we advocate for the development of methods and strategies to reduce wildlife traffic accidents.
Collapse
Affiliation(s)
- Navinder J Singh
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.
| | - Michelle Etienne
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Göran Spong
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Frauke Ecke
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Birger Hörnfeldt
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| |
Collapse
|
4
|
Jia W, Liu H, Ma Y, Huang G, Liu Y, Zhao B, Xie D, Huang K, Wang R. Reproducibility in nontarget screening (NTS) of environmental emerging contaminants: Assessing different HLB SPE cartridges and instruments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168971. [PMID: 38042181 DOI: 10.1016/j.scitotenv.2023.168971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Non-targeted screening (NTS) methods are integral in environmental research for detecting emerging contaminants. However, their efficacy can be influenced by variations in hydrophilic-lipophilic balance (HLB) solid phase extraction (SPE) cartridges and high-resolution mass spectrometry (HRMS) instruments across different laboratories. In this study, we scrutinized the influence of five HLB SPE cartridges (Nano, Weiqi, CNW, Waters, and J&K) and four LC-HRMS platforms (Agilent, Waters, Thermo, and AB SCIEX) on the identification of emerging environmental contaminants. Our results demonstrate that 87.6 % of the target compounds and over 59.6 % of the non-target features were consistently detected across all tested HLB cartridges, with an overall 71.2 % universally identified across the four LC-HRMS systems. Discrepancies in detection rates were primarily attributable to variations in retention time stability, mass stability of precursors and fragments, system cleanliness affecting fold change and p-values, and fragment response. These findings confirm the necessity of refining parameter criteria for NTS. Moreover, our study confirms the efficacy of the PyHRMS tool in analyzing and processing data from multiple instrumental platforms, reinforcing its utility for multi-platform NTS. Overall, our findings underscore the reliability and robustness of NTS methods in identifying potential water contaminants, while also highlighting factors that may influence these outcomes.
Collapse
Affiliation(s)
- Wenhao Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yini Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China
| | - Guolong Huang
- Zhejiang GenPure Eco-Tech Co., Ltd., Hangzhou 310020, Zhejiang, China
| | - Yaxiong Liu
- Guangdong Institute for Drug Control, Guangzhou 510663, Guangdong, China
| | - Bo Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China
| | - Danping Xie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China
| | - Kaibo Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China.
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China.
| |
Collapse
|
5
|
Creusot N, Huba K, Borel C, Ferrari BJD, Chèvre N, Hollender J. Identification of polar organic chemicals in the aquatic foodweb: Combining high-resolution mass spectrometry and trend analysis. ENVIRONMENT INTERNATIONAL 2024; 183:108403. [PMID: 38224651 DOI: 10.1016/j.envint.2023.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Environmental risk assessment of chemical contaminants requires prioritizing of substances taken up by biota as it is a starting point for potential adverse effects. Although knowledge about the occurrence of known chemical pollutants in aquatic organisms has significantly improved during the last decade, there is still a poor understanding for a broad range of more polar compounds. To tackle this issue, we proposed an approach that identifies bioaccumulative and biomagnifiable polar chemicals using liquid chromatography coupled with electrospray ionization to high resolution tandem mass spectrometry (LC-HRMS/MS) and combine it with trend analysis using hierarchical clustering. As a proof-of-concept, this approach was implemented on various organisms and compartments (sediment, litter leaves, periphytic biofilm, invertebrates and fish) collected from a small urban river. HRMS/MS data measured via data-independent acquisition mode were retrospectively analysed using two analytical strategies: (1) retrospective target and (2) suspect/non-target screening. In the retrospective target analysis, 56 of 361 substances spanning a broad range of contaminant classes were detected (i.e. 26 in fish, 18 in macroinvertebrates, 28 in leaves, 29 in periphyton and 32 in sediments, with only 7 common to all compartments), among which 49 could be quantified using reference standards. The suspect screening approach based on two suspect lists (in-house, Norman SusDat) led to the confirmation of 5 compounds with standards (three xenobiotics at level 1 and two lipids at level 2) and tentative identification of seven industrial or natural chemicals at level 2 and 3 through a mass spectra library match. Overall, this proof-of-concept study provided a more comprehensive picture of the exposure of biota to emerging contaminants (i.e., the internal chemical exposome) and potential bioaccumulation or biomagnification of polar compounds along the trophic chain.
Collapse
Affiliation(s)
- Nicolas Creusot
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; INRAE, EABX, Bordeaux Metabolome, MetaboHub, 50 avenue de Verdun, 33612 Gazinet-Cestas, France.
| | - Kristina Huba
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Benoit J D Ferrari
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), Lausanne/Dübendorf, Switzerland
| | | | - Juliane Hollender
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Feng YL, Baesu A. Influence of data acquisition modes and data analysis approaches on non-targeted analysis of phthalate metabolites in human urine. Anal Bioanal Chem 2023; 415:303-316. [PMID: 36346455 PMCID: PMC9823047 DOI: 10.1007/s00216-022-04407-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Humans are often exposed to phthalates and their alternatives, on account of their widespread use in PVC as plasticizers, which are associated with harmful human effects. While targeted biomonitoring provides quantitative information for exposure assessment, only a small portion of phthalate metabolites has been targeted. This results in a knowledge gap in human exposure to other unknown phthalate compounds and their metabolites. Although the non-targeted analysis (NTA) approach is capable of screening a broad spectrum of chemicals, there is a lack of harmonized workflow in NTA to generate reproducible data within and between different laboratories. The objective of this study was to compare two different NTA data acquisition modes, the data-dependent (DDA) and independent (DIA) acquisition (DDA), as well as two data analysis approaches, based on diagnostic ions and Compound Discoverer software for the prioritization of candidate precursors and identification of unknown compounds in human urine. Liquid chromatography coupled to high-resolution mass spectrometry was used for sample analysis. The combination of three-diagnostic-ion extraction and DDA data acquisition was able to improve data filtering and data analysis for prioritizing phthalate metabolites. With DIA, 25 molecular features were identified in human urine, while 32 molecular features were identified in the same urine samples using DDA data. The number of molecular features identified with level 1 confidence was 11 and 9 using DIA and DDA data, respectively. The study demonstrated that besides sample preparation, the impact of data acquisition must be taken into account when developing a NTA method and a consistent protocol for evaluating such an impact is necessary.
Collapse
Affiliation(s)
- Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, AL: 2203 B, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9 Canada
| | - Anca Baesu
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, AL: 2203 B, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9 Canada
| |
Collapse
|
7
|
Menger F, Celma A, Schymanski EL, Lai FY, Bijlsma L, Wiberg K, Hernández F, Sancho JV, Ahrens L. Enhancing spectral quality in complex environmental matrices: Supporting suspect and non-target screening in zebra mussels with ion mobility. ENVIRONMENT INTERNATIONAL 2022; 170:107585. [PMID: 36265356 DOI: 10.1016/j.envint.2022.107585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Identification of bioaccumulating contaminants of emerging concern (CECs) via suspect and non-target screening remains a challenging task. In this study, ion mobility separation with high-resolution mass spectrometry (IM-HRMS) was used to investigate the effects of drift time (DT) alignment on spectrum quality and peak annotation for screening of CECs in complex sample matrices using data independent acquisition (DIA). Data treatment approaches (Binary Sample Comparison) and prioritisation strategies (Halogen Match, co-occurrence of features in biota and the water phase) were explored in a case study on zebra mussel (Dreissena polymorpha) in Lake Mälaren, Sweden's largest drinking water reservoir. DT alignment evidently improved the fragment spectrum quality by increasing the similarity score to reference spectra from on average (±standard deviation) 0.33 ± 0.31 to 0.64 ± 0.30 points, thus positively influencing structure elucidation efforts. Thirty-two features were tentatively identified at confidence level 3 or higher using MetFrag coupled with the new PubChemLite database, which included predicted collision cross-section values from CCSbase. The implementation of predicted mobility data was found to support compound annotation. This study illustrates a quantitative assessment of the benefits of IM-HRMS on spectral quality, which will enhance the performance of future screening studies of CECs in complex environmental matrices.
Collapse
Affiliation(s)
- Frank Menger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden.
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellón, Spain
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellón, Spain
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellón, Spain
| | - Juan V Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellón, Spain
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden.
| |
Collapse
|
8
|
Dürig W, Alygizakis NA, Wiberg K, Ahrens L. Application of a novel prioritisation strategy using non-target screening for evaluation of temporal trends (1969-2017) of contaminants of emerging concern (CECs) in archived lynx muscle tissue samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153035. [PMID: 35026275 DOI: 10.1016/j.scitotenv.2022.153035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Most environmental monitoring studies of contaminants of emerging concern (CECs) focus on aquatic species and target specific classes of CECs. Even with wide-scope target screening methods, relevant CECs may be missed. In this study, non-target screening (NTS) was used for tentative identification of potential CECs in muscle tissue of the terrestrial top predator Eurasian lynx (Lynx lynx). Temporal trend analysis was applied as a prioritisation tool for archived samples, using univariate statistical tests (Mann-Kendall and Spearman rank). Pooled lynx muscle tissue collected from 1969 to 2017 was analysed with an eight-point time series using a previously validated screening workflow. Following peak detection, peak alignment, and blank subtraction, 12,941 features were considered for statistical analysis. Prioritisation by time-trend analysis detected 104 and 61 features with statistically significant increasing and decreasing trends, respectively. Following probable molecular formula assignment and elucidation with MetFrag, two compounds with increasing trends, and one with a decreasing trend, were tentatively identified. These results show that, despite low expected concentration levels and high matrix effects in terrestrial species, it is possible to prioritise CECs in archived lynx samples using NTS and univariate statistical approaches.
Collapse
Affiliation(s)
- Wiebke Dürig
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Nikiforos A Alygizakis
- Environmental Institute, Okruzná 784/42, 97241 Koš, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece.
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| |
Collapse
|