1
|
Li H, Ding J, Song Z, Ding S, Liu X, Wang F, Shi X, Zhang C. Highly sensitive volatile organic compounds monitoring enabling by silver-nanowire@metal-organic frameworks core-shell heterostructure. Talanta 2024; 280:126713. [PMID: 39167936 DOI: 10.1016/j.talanta.2024.126713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Metal-organic frameworks (MOFs) hold great promise as advanced chemical sensing materials due to their high surface area and tunable surface chemistry. However, due to the inherent conductivity, building a highly sensitive MOFs-based gas sensor for real-time monitoring hazardous gas operated at room temperature (RT) is still a huge challenge. Herein, an in-situ anchoring strategy is proposed to construct a 1D-0D core-shell heterostructure by integrating silver nanowires (AgNWs) with highly conductivity and Zn-MOF with high specific surface area. The incorporation of AgNWs establishes a highly conductive network architecture to facilitate rapid charge transport while preventing the Zn-MOF nanoparticles from agglomeration, ensuring an effective transmission highway for target gas molecules. Meanwhile, the Zn-MOF nanoparticles induce remarkable absorption capacity and contribute high gas response. By strategically amalgamating the inherent distinctive virtues of the individual components and capitalizing on the synergistic benefits arising from the composite, the sensors hinged upon the refined AgNWs@Zn-MOF (A@Z) heterostructure unveiled remarkable response value of 27 to 20 ppm ethanol at RT, accompanied by a low detection limit of 1 ppm. Moreover, the A@Z sensor further showcases superior selectivity and repeatability. This work offers a fresh standpoint for the fabrication of MOF-based heterostructures, fostering advancements in diverse applications.
Collapse
Affiliation(s)
- Hongpeng Li
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Jiabao Ding
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Zihao Song
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Shumei Ding
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xue Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Feihong Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, China.
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
2
|
Zeng S, Zhu H, Sohan ASMMF, Liu J, Wan X, Lin X, Yin B. A remote-controlled portable workstation for highly sensitive and real-time chemiluminescent detection of cadmium. Food Chem 2024; 452:139549. [PMID: 38762939 DOI: 10.1016/j.foodchem.2024.139549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
The prevention of pollution requires real-time monitoring of cadmium (Cd2+) concentration in the food, as it has a dramatic impact on poultry and can pose a threat to human health. Here, we fabricate a portable workstation integrating a microfluidic chip that facilitates real-time monitoring of Cd2+ levels in real samples by utilizing the Luminol-KMnO4 chemiluminescence (CL) system. Interestingly, Cd2+ can significantly enhance the CL signal, resulting in sensitive detection of Cd2+ in the range of 0-0.18 mg/L with the limit of detection (LOD) of 0.207 μg/L. Furthermore, a remote-controlled unit is integrated into the portable workstation to form a remote-controlled portable workstation (RCPW) performing automated point-of-care testing (POCT) of Cd2+. The as-prepared strategy allows remote control of RCPW to avoid long-distance transportation of samples to achieve real-time target monitoring. Consequently, this system furnishes RCPW for monitoring Cd2+ levels in real samples, thereby holding potential for applications in preventing food pollution.
Collapse
Affiliation(s)
- Shiyu Zeng
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haoyu Zhu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - A S M Muhtasim Fuad Sohan
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Liu
- Suqian Product Quality Supervision and Inspection Institute, Suqian 223800, China
| | - Xinhua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaodong Lin
- University of Macau Zhuhai UM Science and Technology Research Institute, Zhuhai 519000, China.
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
3
|
Golfinopoulou R, Hatziagapiou K, Mavrikou S, Kintzios S. Unveiling Colorectal Cancer Biomarkers: Harnessing Biosensor Technology for Volatile Organic Compound Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:4712. [PMID: 39066110 PMCID: PMC11281049 DOI: 10.3390/s24144712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Conventional screening options for colorectal cancer (CRC) detection are mainly direct visualization and invasive methods including colonoscopy and flexible sigmoidoscopy, which must be performed in a clinical setting and may be linked to adverse effects for some patients. Non-invasive CRC diagnostic tests such as computed tomography colonography and stool tests are either too costly or less reliable than invasive ones. On the other hand, volatile organic compounds (VOCs) are potentially ideal non-invasive biomarkers for CRC detection and monitoring. The present review is a comprehensive presentation of the current state-of-the-art VOC-based CRC diagnostics, with a specific focus on recent advancements in biosensor design and application. Among them, breath-based chromatography pattern analysis and sampling techniques are overviewed, along with nanoparticle-based optical and electrochemical biosensor approaches. Limitations of the currently available technologies are also discussed with an outlook for improvement in combination with big data analytics and advanced instrumentation, as well as expanding the scope and specificity of CRC-related volatile biomarkers.
Collapse
Affiliation(s)
- Rebecca Golfinopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon 1, 11527 Athens, Greece;
| | - Sophie Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| |
Collapse
|
4
|
Emadzadeh K, Ghafarinia V. Development of a direct PMMA-PCB bonding method for low cost and rapid prototyping of microfluidic-based gas analysers. RSC Adv 2024; 14:22598-22605. [PMID: 39021459 PMCID: PMC11253792 DOI: 10.1039/d4ra03039g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Rapid prototyping of microfluidic devices requires low cost materials and simple fabrication methods. PMMA and PCB have been used separately for the fabrication of microfluidic devices in a wide range of applications. Although the combined use of PMMA and PCB can have considerable merits, few works have been reported on the direct bonding of these materials. In this work we have investigated the fabrication of microfluidic devices using PMMA and PCB for the analysis of gaseous samples. In order to yield a reliable direct bonding method, four parameters including temperature, pressure, solvent and patterned interface material were experimentally investigated. Results of testing various prototypes showed that a patterned interface of concentric rectangular copper rings exposed to solvent at room temperature and under moderate pressure provided better adhesion strength, sealing and durability. After successful development of the PMMA-PCB direct bonding process, sample prototypes were designed and fabricated to practically assess the combined advantages of two materials. Presented concepts include implementation of heater on a PCB, array of gas sensors coupled with microchannels, serpentine microchannel and fast evaporation of liquid sample using an SMD resistor. It has been shown that advantages of utilizing PMMA such as fabricating the channel easily and with low cost, can be combined with benefits of a PCB including simple sensor installation and the use of copper tracks and electronic components for gas flow modulation. Moreover, it is possible to implement channel, circuit and other electronic components such as microprocessors on a single device.
Collapse
Affiliation(s)
- Katayoun Emadzadeh
- Department of Electrical and Computer Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Vahid Ghafarinia
- Department of Electrical and Computer Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| |
Collapse
|
5
|
Lee J, Kim Y, Rehman A, Kim I, Lee J, Yun H. Development of an AI-based image/ultrasonic convergence camera system for accurate gas leak detection in petrochemical plants. Heliyon 2024; 10:e28905. [PMID: 38596081 PMCID: PMC11002273 DOI: 10.1016/j.heliyon.2024.e28905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Outdoor pipeline leaks are difficult to accurately measure using existing concentration measurement systems installed in petrochemical plants owing to external air currents. Besides, leak detection is only possible for a specific gas. The purpose of this study was to develop an image/ultrasonic convergence camera system that incorporates artificial intelligence (AI) to improve pipe leak detection and establish a real-time monitoring system. Our system includes an advanced ultrasonic camera coupled with a deep learning-based object-detection algorithm trained on pipe image data from petrochemical plants. The collected data improved the accuracy of detected gas leak localization through deep learning. Our detection model achieves an mAP50 (Mean average precision calculated at an intersection over union (IoU) threshold of 0.50)score of 0.45 on our data and is able to detect the majority of leak points within a system. The petrochemical plant environment was simulated by visiting petrochemical plants and reviewing drawings, and an outdoor experimental demonstration site was established. Scenarios such as flange connection failure were set under medium-/low-pressure conditions, and the developed product was experimented under gas leak conditions that simulated leakage accidents. These experiments enabled the removal of potentially confounding surrounding noise sources, which led to the false detection of actual gas leaks using the AI piping detection technique.
Collapse
Affiliation(s)
- JoonHyuk Lee
- Korean Fire Protection Association, Seoul, 07328, South Korea
- Interdisciplinary Program in Crisis, Disaster and Risk Management, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea
| | - YoungSik Kim
- Stratio, Inc., Seongnam-si, Gyeonggi-do, 13449, South Korea
| | - Abdur Rehman
- Stratio, Inc., Seongnam-si, Gyeonggi-do, 13449, South Korea
| | - InKwon Kim
- Sound Camera Business/Software Lab., SM Instruments, Inc., Daejeon, 34109, South Korea
| | - JaeJoon Lee
- Department of Fire safety Engineering, Jeonju University, 303, Cheonjam-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 55069, South Korea
| | - HongSik Yun
- Interdisciplinary Program in Crisis, Disaster and Risk Management, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea
| |
Collapse
|
6
|
Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. LAB ON A CHIP 2024; 24:1175-1206. [PMID: 38165815 DOI: 10.1039/d3lc00871a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic devices have emerged as advantageous tools for detecting environmental contaminants due to their portability, ease of use, cost-effectiveness, and rapid response capabilities. These devices have wide-ranging applications in environmental monitoring of air, water, and soil matrices, and have also been applied to agricultural monitoring. Although several previous reviews have explored microfluidic devices' utility, this paper presents an up-to-date account of the latest advancements in this field for environmental monitoring, looking back at the past five years. In this review, we discuss devices for prominent contaminants such as heavy metals, pesticides, nutrients, microorganisms, per- and polyfluoroalkyl substances (PFAS), etc. We cover numerous detection methods (electrochemical, colorimetric, fluorescent, etc.) and critically assess the current state of microfluidic devices for environmental monitoring, highlighting both their successes and limitations. Moreover, we propose potential strategies to mitigate these limitations and offer valuable insights into future research and development directions.
Collapse
Affiliation(s)
- Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Claire Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Azhdary P, Janfaza S, Fardindoost S, Tasnim N, Hoorfar M. Highly selective molecularly imprinted polymer nanoparticles (MIP NPs)-based microfluidic gas sensor for tetrahydrocannabinol (THC) detection. Anal Chim Acta 2023; 1278:341749. [PMID: 37709477 DOI: 10.1016/j.aca.2023.341749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
A highly selective microfluidic integrated metal oxide gas sensor for THC detection is reported based on MIP nanoparticles (MIP NPs). We synthesized MIP NPs with THC recognition sites and coated them on a 3D-printed microfluidic channel surface. The sensitivity and selectivity of coated microfluidic integrated gas sensors were evaluated by exposure to THC, cannabidiol (CBD), methanol, and ethanol analytes in 300-700 ppm at 300 °C. For comparison, reference signals were obtained from a microfluidic channel coated with nonimprinted polymers (NIP NPs). The MIP and NIP NPs were characterized using scanning electron microscopy (SEM) and Raman spectroscopy. MIP and NIP NPs channels response data were combined and classified with 96.3% accuracy using the Fine KNN classification model in MATLAB R2021b Classification Learner App. Compared to the MIP NPs coated channel, the NIP NPs channel had poor selectivity towards THC, demonstrating that the THC recognition sites in the MIP structure enabled selective detection of THC. The findings demonstrated that the recognition sites of MIP NPs properly captured THC molecules, enabling the selective detection of THC compared to CBD, methanol, and ethanol.
Collapse
Affiliation(s)
- Peyman Azhdary
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Somayeh Fardindoost
- School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
8
|
Yeganegi A, Yazdani K, Tasnim N, Fardindoost S, Hoorfar M. Microfluidic integrated gas sensors for smart analyte detection: a comprehensive review. Front Chem 2023; 11:1267187. [PMID: 37767341 PMCID: PMC10520252 DOI: 10.3389/fchem.2023.1267187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The utilization of gas sensors has the potential to enhance worker safety, mitigate environmental issues, and enable early diagnosis of chronic diseases. However, traditional sensors designed for such applications are often bulky, expensive, difficult to operate, and require large sample volumes. By employing microfluidic technology to miniaturize gas sensors, we can address these challenges and usher in a new era of gas sensors suitable for point-of-care and point-of-use applications. In this review paper, we systematically categorize microfluidic gas sensors according to their applications in safety, biomedical, and environmental contexts. Furthermore, we delve into the integration of various types of gas sensors, such as optical, chemical, and physical sensors, within microfluidic platforms, highlighting the resultant enhancements in performance within these domains.
Collapse
Affiliation(s)
| | | | | | | | - Mina Hoorfar
- School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
9
|
Shen L, Teng C, Wang Z, Bai H, Kumar S, Min R. Semiconductor Multimaterial Optical Fibers for Biomedical Applications. BIOSENSORS 2022; 12:882. [PMID: 36291019 PMCID: PMC9599191 DOI: 10.3390/bios12100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Integrated sensors and transmitters of a wide variety of human physiological indicators have recently emerged in the form of multimaterial optical fibers. The methods utilized in the manufacture of optical fibers facilitate the use of a wide range of functional elements in microscale optical fibers with an extensive variety of structures. This article presents an overview and review of semiconductor multimaterial optical fibers, their fabrication and postprocessing techniques, different geometries, and integration in devices that can be further utilized in biomedical applications. Semiconductor optical fiber sensors and fiber lasers for body temperature regulation, in vivo detection, volatile organic compound detection, and medical surgery will be discussed.
Collapse
Affiliation(s)
- Lingyu Shen
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - Chuanxin Teng
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhuo Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - Hongyi Bai
- College of Electronics and Engineering, Heilongjiang University, Harbin 150080, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
10
|
Kaaliveetil S, Yang J, Alssaidy S, Li Z, Cheng YH, Menon NH, Chande C, Basuray S. Microfluidic Gas Sensors: Detection Principle and Applications. MICROMACHINES 2022; 13:1716. [PMID: 36296069 PMCID: PMC9607434 DOI: 10.3390/mi13101716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
With the rapid growth of emerging point-of-use (POU)/point-of-care (POC) detection technologies, miniaturized sensors for the real-time detection of gases and airborne pathogens have become essential to fight pollution, emerging contaminants, and pandemics. However, the low-cost development of miniaturized gas sensors without compromising selectivity, sensitivity, and response time remains challenging. Microfluidics is a promising technology that has been exploited for decades to overcome such limitations, making it an excellent candidate for POU/POC. However, microfluidic-based gas sensors remain a nascent field. In this review, the evolution of microfluidic gas sensors from basic electronic techniques to more advanced optical techniques such as surface-enhanced Raman spectroscopy to detect analytes is documented in detail. This paper focuses on the various detection methodologies used in microfluidic-based devices for detecting gases and airborne pathogens. Non-continuous microfluidic devices such as bubble/droplet-based microfluidics technology that have been employed to detect gases and airborne pathogens are also discussed. The selectivity, sensitivity, advantages/disadvantages vis-a-vis response time, and fabrication costs for all the microfluidic sensors are tabulated. The microfluidic sensors are grouped based on the target moiety, such as air pollutants such as carbon monoxide and nitrogen oxides, and airborne pathogens such as E. coli and SARS-CoV-2. The possible application scenarios for the various microfluidic devices are critically examined.
Collapse
Affiliation(s)
- Sreerag Kaaliveetil
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Juliana Yang
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Saud Alssaidy
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Zhenglong Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Yu-Hsuan Cheng
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Niranjan Haridas Menon
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Charmi Chande
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Sagnik Basuray
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
11
|
Aghaseyedi M, Salehi A, Valijam S, Shooshtari M. Gas Selectivity Enhancement Using Serpentine Microchannel Shaped with Optimum Dimensions in Microfluidic-Based Gas Sensor. MICROMACHINES 2022; 13:1504. [PMID: 36144127 PMCID: PMC9500908 DOI: 10.3390/mi13091504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
A microfluidic-based gas sensor was chosen as an alternative method to gas chromatography and mass spectroscopy systems because of its small size, high accuracy, low cost, etc. Generally, there are some parameters, such as microchannel geometry, that affect the gas response and selectivity of the microfluidic-based gas sensors. In this study, we simulated and compared 3D numerical models in both simple and serpentine forms using COMSOL Multiphysics 5.6 to investigate the effects of microchannel geometry on the performance of microfluidic-based gas sensors using multiphysics modeling of diffusion, surface adsorption/desorption and surface reactions. These investigations showed the simple channel has about 50% more response but less selectivity than the serpentine channel. In addition, we showed that increasing the length of the channel and decreasing its height improves the selectivity of the microfluidic-based gas sensor. According to the simulated models, a serpentine microchannel with the dimensions W = 3 mm, H = 80 µm and L = 22.5 mm is the optimal geometry with high selectivity and gas response. Further, for fabrication feasibility, a polydimethylsiloxane serpentine microfluidic channel was fabricated by a 3D printing mold and tested according to the simulation results.
Collapse
Affiliation(s)
- Maryam Aghaseyedi
- Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran 1631714191, Iran
| | - Alireza Salehi
- Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran 1631714191, Iran
| | - Shayan Valijam
- Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran 1631714191, Iran
| | - Mostafa Shooshtari
- Laboratory of Electronic Components, Technology and Materials (ECTM), Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| |
Collapse
|
12
|
Dynamic Measurement of VOCs with Multiple Characteristic Peaks Based on Temperature Modulation of ZnO Gas Sensor. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Volatile organic compounds (VOC) harm human health seriously in the air. Therefore, it is essential to recognize VOC gases qualitatively and quantitatively. The dynamic measurement method can improve the selectivity of metal oxide semiconductor (MOS) gas sensors to VOC, but there is a problem of the insufficient number of characteristic peaks. From the experimental point of view, the primary judgment basis for the correct qualitative and quantitative recognition of VOC gases by the dynamic measurement method is the characteristic peak of the dynamic response signal. However, the traditional dynamic measurement method generally only has two characteristic peaks. In this experiment, the voltage was changed at the time of the second characteristic peak by controlling the constant dynamic response period. Taking ethyl alcohol as an example, the experimental results show that the characteristic peak of the dynamic response signal does not increase when the voltage is constant. However, a new characteristic peak will appear based on a continuously rising heating voltage. The characteristic peaks of the dynamic response of n-propyl alcohol, isopropyl alcohol, and n-butyl alcohol were also increased based on the rising heating voltage waveform. Based on the K-Nearest-Neighbors algorithm, the qualitative and quantitative recognition rate of the four alcohol homologue gases reached 100%.
Collapse
|
13
|
Yang F, Ma J, Zhu Q, Ma Z, Wang J. Aggregation-Induced Luminescence Based UiO-66: Highly Selective Fast-Response Styrene Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22510-22520. [PMID: 35507501 DOI: 10.1021/acsami.2c06880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the main pollutants in indoor air is volatile organic compounds (VOCs), which can cause great harm to human health. So the development of a VOC detection technology is of great significance. In this work, a tetraphenylethylene-functionalized UiO-66 based on aggregation-induced emission was successfully prepared. The UiO-66-TBPE structure exhibits the characteristic blue emission of TBPE ligands under UV excitation and can be used as a luminescence sensor for fast and efficient detection of VOCs. More importantly, UiO-66-TBPE has a high fluorescence sensing selectivity in p-xylene and styrene vapor. To further improve the practical performance, we combined UiO-66-TBPE with the polymer polyacrylate (PA) to obtain a flexible hybrid membrane with fast detection performance for styrene vapor within the 30 s. The deeper sensing mechanism of p-xylene and styrene inducing different fluorescence enhancement and fluorescence quenching is explained by a combination of modern characterization techniques and computer simulation. Finally, we applied UiO-66-TBPE/PA to leather and still maintained a good sensing performance. It provides a potential way for the application of fluorescent metal-organic frameworks (MOFs) to detect VOCs in daily life.
Collapse
Affiliation(s)
- Fan Yang
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, P.R. China
| | - Qian Zhu
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China
| | - ZhongLei Ma
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 117574, Singapore
| |
Collapse
|
14
|
Yuan G, Zhong Y, Chen Y, Zhuo Q, Sun X. Highly sensitive and fast-response ethanol sensing of porous Co 3O 4 hollow polyhedra via palladium reined spillover effect. RSC Adv 2022; 12:6725-6731. [PMID: 35424623 PMCID: PMC8981977 DOI: 10.1039/d1ra09352e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
Highly sensitive and fast detection of volatile organic compounds (VOCs) in industrial and living environments is an urgent need. The combination of distinctive structure and noble metal modification is an important strategy to achieve high-performance gas sensing materials. In addition, it is urgent to clarify the chemical state and function of noble metals on the surface of the sensing material during the actual sensing process. In this work, Pd modified Co3O4 hollow polyhedral (Pd/Co3O4 HP) is developed through one-step pyrolysis of a Pd doped MOF precursor. At an operating temperature of 150 °C, the Pd/Co3O4 HP gas sensor can achieve 1.6 times higher sensitivity than that of Co3O4 HP along with fast response (12 s) and recovery speed (25 s) for 100 ppm ethanol vapor. Near-ambient pressure X-ray photoelectron spectroscopy (NAPXPS) was used to monitor the dynamic changes in the surface state of Pd/Co3O4 HP. The NAPXPS results reveal that the oxidation and reduction of Pd in the ethanol sensing process are attributed to a spillover effect of oxygen and ethanol, respectively. This work opens up an effective approach to investigate spillover effects in a sensing mechanism of noble metal modified oxide semiconductor sensors. Pd/Co3O4 HP was developed by simple pyrolysis of Pd doped MOF, which achieved high sensitivity with fast response (12 s)/recovery speed (25 s) for 100 ppm ethanol. APXPS results provide experimental evidence to enhance performance by Pd spillover effect.![]()
Collapse
Affiliation(s)
- Guotao Yuan
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University Suzhou 215123 China
| | - Yihong Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University Suzhou 215123 China
| | - Yufeng Chen
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University Suzhou 215123 China
| | - Qiqi Zhuo
- College of Material Science & Engineering, Jiangsu University of Science and Technology Zhenjiang China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University Suzhou 215123 China
| |
Collapse
|
15
|
Yang X, Chi H, Tian Y, Li T, Wang Y. Research Progress of Graphene and Its Derivatives towards Exhaled Breath Analysis. BIOSENSORS 2022; 12:bios12020048. [PMID: 35200309 PMCID: PMC8869631 DOI: 10.3390/bios12020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022]
Abstract
The metabolic process of the human body produces a large number of gaseous biomarkers. The tracking and monitoring of certain diseases can be achieved through the detection of these markers. Due to the superior specific surface area, large functional groups, good optical transparency, conductivity and interlayer spacing, graphene, and its derivatives are widely used in gas sensing. Herein, the development of graphene and its derivatives in gas-phase biomarker detection was reviewed in terms of the detection principle and the latest detection methods and applications in several common gases, etc. Finally, we summarized the commonly used materials, preparation methods, response mechanisms for NO, NH3, H2S, and volatile organic gas VOCs, and other gas detection, and proposed the challenges and prospective applications in this field.
Collapse
|