1
|
Murugesan P, Kogularasu S, Chen YL, Lee YY, Chang-Chien GP, Govindasamy M. Electrochemical sensor for detecting roxarsone in animal-derived foods using MXene and silver telluride. Food Chem 2025; 482:144168. [PMID: 40187308 DOI: 10.1016/j.foodchem.2025.144168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Detecting harmful feed additives in animal-derived foods is essential due to potential health and environmental risks. Given its toxicity, Roxarsone, a common organoarsenic compound, requires sensitive detection methods. This study introduces an electrochemical sensor using a glassy carbon electrode modified with 2D MXene (Ti3C2Tₓ) layered with silver telluride (Ag2Te). Characterization through XRD, FT-IR, and XPS confirmed the sensor's composition. Electrochemical assessments using cyclic voltammetry and differential pulse voltammetry showed notable electron transfer and catalytic efficiency improvements. The sensor exhibited a broad detection range for roxarsone (0.03-2310 μM) with an ultra-low detection limit (0.32 nM) and demonstrated excellent reproducibility (RSD < 3 %), stability, and selectivity. Real sample analysis in meat products confirmed its practical application, achieving high recovery rates. This work offers a robust approach for roxarsone detection, employing MXene and Ag2Te's synergistic properties to enhance food safety and environmental monitoring.
Collapse
Affiliation(s)
- Perumal Murugesan
- International PhD Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Sakthivel Kogularasu
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan; Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yen-Yi Lee
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan; Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan; Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Guo-Ping Chang-Chien
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan; Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan; Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833301, Taiwan.
| | - Mani Govindasamy
- International PhD Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Department of Research and Innovation, Saveetha School of Engineering, SIMATS, 602105, Chennai, India.
| |
Collapse
|
2
|
Yang L, Wang Y, Chen T, Liu L, Cai Y, Fang J, Yang Y. Impact of varying the core-shell structural sequence on the efficiency of cascade reagent-free Fenton-like oxidation: the case of magnetically recycling resorcinol-formaldehyde resin/magnetite composite microspheres. Dalton Trans 2025; 54:5164-5181. [PMID: 40028891 DOI: 10.1039/d4dt03282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Iron-based inorganic-organic hybrid Fenton catalysts, which recently emerged, are recognized as among the novel materials for the deep mineralization of inert pollutants for environmental remediation in photo-assisted Fenton-like reactions, which are one of the typical advanced oxidation processes (AOPs). In this work, magnetically recycling catalysts of resorcinol-formaldehyde resin/magnetite (RF/Fe3O4) core-shell microspheres were rationally designed by tuning the core-shell sequence for visible-light-driven reagent-free Fenton-like oxidation of organic dyes. It is noted that the impact of the core-shell sequence on the nano-structure and reactivity of such spherical catalysts is rarely reported. Here, although the apparent degradation efficiencies of the organic dye methylene blue (MeB) by these two core-shell catalysts were similar (97.4% by RF@Fe3O4 and 98.9% by Fe3O4@RF within 20 min), the intrinsic activity of Fe3O4@RF was revealed to be superior to the RF@Fe3O4 catalyst, including a better total content of organic carbon (TOC) removal rate (56% vs. 42.6%), a much larger normalized reaction rate constant k (0.46 vs. 0.27 min-1), an improved degradation rate on anti-interference capacity against foreign ions (Cl-, 98.3% vs. 80%) and its enhanced stability under acidic reaction conditions. We confirmed that the core-shell sequence imposed a significant impact on regulating the surface properties and active sites of the composite catalysts. The degradation of organic dyes followed a cascade Fenton-like process. Besides, the participation of Fe3O4 endowed the catalysts with a profitable magnetic recovery property. This work sheds light on the rational construction of organic-inorganic hybrid catalysts with magnetic recycling features for potential large-scale application in photo-involved AOPs.
Collapse
Affiliation(s)
- Liang Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, P. R. China.
| | - Yanlong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, P. R. China.
| | - Tingyu Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, P. R. China.
| | - Lifang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, P. R. China.
| | - Yun Cai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, P. R. China.
| | - Jun Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, P. R. China.
| | - Yang Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, P. R. China.
| |
Collapse
|
3
|
Wang C, Li T, Deng Q, Xie M, Ye Z. Stability challenges of transition metal-modified cathodes for electro-Fenton process: A mini-review. CHEMOSPHERE 2025; 373:144159. [PMID: 39889645 DOI: 10.1016/j.chemosphere.2025.144159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Electro-Fenton (EF) process with transition-metal (TM) modified cathode has been regarded as a green and promising technology for wastewater treatment. Recently, breakthroughs in boosting catalyst activity for both two-electron oxygen reduction reaction (2e- ORR) and Fenton's reaction have gained intensive attention. However, achieving long-term stability of catalysts remains challenging, but is decisive for large-scale applications. This minireview provides fundamental understanding on the activity-stability correlation and the deactivation mechanisms of TM-based catalysts in EF systems, focusing on physical and chemical evolution, metal dissolution, catalyst detachment and structure collapse during long-term electrolysis. Subsequently, ongoing efforts from catalyst design to electrode engineering to stabilize the metal active sites are highlighted. Finally, the challenges and future perspectives in developing active and durable TM-modified cathodes are discussed, serving as a roadmap towards the large-scale application of EF process for wastewater treatment.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Tongxu Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Qianyin Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Mengchu Xie
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Zhihong Ye
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
4
|
Jiang Z, Li C, Qi F, Wang Z, Liu Y, Li F, Wang H, Bian Z, Zhu M, Kumirska J, Siedlecka EM. A Review on Photocatalytic Hydrogen Peroxide Production from Oxygen: Material Design, Mechanisms, and Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:42-66. [PMID: 39714148 DOI: 10.1021/acsami.4c14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Hydrogen peroxide (H2O2) finds extensive applications in various industries, particularly in the environmental field. The photocatalytic production of H2O2 through the oxygen reduction reaction (ORR) or the water oxidation reaction (WOR) offers a promising approach. However, several challenges hinder effective on-site production, such as the rapid electron-hole pair recombination, inefficient visible light utilization, and limited selectivity in H2O2 formation. Thus, developing efficient photocatalysts to overcome these challenges is crucial. This review comprehensively outlines the development of photocatalysts and their modification techniques. It also summarizes and compares the H2O2 yield and apparent quantum yield among various photocatalysts with and without the use of organic sacrificial reagents. Density functional theory (DFT) calculations propose the band structure of photocatalysts and the mechanisms underlying oxygen reduction to H2O2. Finally, this review explores the potential environmental applications of photocatalytically produced H2O2. This review guides the design and optimization of photocatalysts, facilitating the continued advancement and application of photocatalysts in environmental contexts.
Collapse
Affiliation(s)
- Zonglin Jiang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chen Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhenbei Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yatao Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fan Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hui Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - J Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Ewa Maria Siedlecka
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| |
Collapse
|
5
|
Gao M, Wang J, Cui H, Meng M, Feng Y, Gong Y, Sun C. Organic-inorganic complex S-scheme photocatalyst resorcinol-formaldehyde resins/Bi 2O 2CO 3 with enhanced photocatalytic H 2O 2 production. Chem Commun (Camb) 2025; 61:512-515. [PMID: 39641667 DOI: 10.1039/d4cc04879b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Herein, resorcinol formaldehyde resins/Bi2O2CO3 S-scheme heterojunctions are constructed via in situ polymerization. The composites displayed an improved separation efficiency of photo-induced carriers and the H2O2 production rate achieved 1178.08 μmol h-1 g-1, marking 47.18 times over that of Bi2O2CO3 under simulated solar illumination.
Collapse
Affiliation(s)
- Meichao Gao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Jianting Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Huichao Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Mingyang Meng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Yuanyuan Feng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Yunyun Gong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Changlong Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| |
Collapse
|
6
|
Lin Y, Qiao J, Sun Y, Dong H. The profound review of Fenton process: What's the next step? J Environ Sci (China) 2025; 147:114-130. [PMID: 39003034 DOI: 10.1016/j.jes.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 07/15/2024]
Abstract
Fenton and Fenton-like processes, which could produce highly reactive species to degrade organic contaminants, have been widely used in the field of wastewater treatment. Therein, the chemistry of Fenton process including the nature of active oxidants, the complicated reactions involved, and the behind reason for its strongly pH-dependent performance, is the basis for the application of Fenton and Fenton-like processes in wastewater treatment. Nevertheless, the conflicting views still exist about the mechanism of the Fenton process. For instance, reaching a unanimous consensus on the nature of active oxidants (hydroxyl radical or tetravalent iron) in this process remains challenging. This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants, reactions involved in the Fenton process, and the behind reason for the pH-dependent degradation of contaminants in the Fenton process. Then, we summarized several strategies that promote the Fe(II)/Fe(III) cycle, reduce the competitive consumption of active oxidants by side reactions, and replace the Fenton reagent, thus improving the performance of the Fenton process. Furthermore, advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
Collapse
Affiliation(s)
- Yimin Lin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuankui Sun
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongyu Dong
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
7
|
Wang S, Wu H, Wang J, Guan Y, Li Z, Yan S, He H. Synthesis of H 2O 2 to Self-Catalyzed Generation of •OH over ZnO/CuI/Cu Foam Electrode for the Self-Fenton Cleaning of Wastewater. Inorg Chem 2024; 63:15061-15071. [PMID: 39091042 DOI: 10.1021/acs.inorgchem.4c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
A novel ZnO/CuI/Cu foam electrode was constructed, which demonstrated excellent photoelectrocatalytic activity for the self-Fenton degradation of tetracycline in water. The H2O2 yield was 405.0 μmol L-1 over ZnO/CuI/Cu foam (CIZ-3) under light irradiation (100 mW cm-2) for 5 h at -1.23 V (vs NHE), which was 1.7 times higher than that of ZnO/Cu foam and 1.6 times higher than that of CuI/Cu foam, respectively. The 99.0% of tetracycline was degraded by CIZ-3 due to its efficient yield of H2O2 to self-catalyzed generation of •OH. The results of the open-circuit potential between CuI and ZnO displayed that the electrons from the conduction band of CuI flowed to ZnO and the holes from the valence band of ZnO migrated to CuI. As a result, the photogenerated electron-hole pairs of ZnO/CuI were efficiently separated, which greatly promoted the photoelectrocatalytic activity of ZnO/CuI/foam. The toxicity of the aqueous tetracycline solution was significantly reduced by observing the growth of Escherichia coli in the treated wastewater.
Collapse
Affiliation(s)
- Shaomang Wang
- School of Urban Construction, Changzhou University, Changzhou 213164, P. R. China
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Haokang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jie Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yuan Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Mao W, Li Y, Zhang L, Shen X, Liu Y, Li R, Guan Y. Photoexcitation-induced efficient detoxification and removal of arsenite in contaminated water by a layered double hydroxide-supported polyacrylate stabilized ferrous sulfide composite. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134812. [PMID: 38850950 DOI: 10.1016/j.jhazmat.2024.134812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The effective detoxification and removal of arsenite (As(III)) has been widely concerned because of its strong toxicity and migration ability. In this study, we designed a layered double hydroxide-supported polyacrylate stabilized ferrous sulfide composite (PAA/FeS@LDH) and coupled it with UV excitation to purify As(III)-polluted water. The removal efficiency of As(III) under UV irradiation reached almost 100% in 120 min, and the first-order kinetic constant was 3.12 orders of magnitude higher than under dark. UV irradiation significantly accelerated the oxidation and detoxification of As(III) at the interface of PAA/FeS@LDH and treatment solution. It is attributable to the generation of reactive oxygen species (ROS) intermediates, including .O2-, .OH, and SO4.- under UV irradiation, because of the presence of the photogenerated electron-hole pairs and iron valence states cycles. Importantly, .O2- may be rapidly captured and oxidized to 1O2 on the surface of PAA/FeS@LDH that is also an important contributor to the oxidation removal of As(III). Noticeably, As(III) concentrations in the real water were rapidly reduced to below the guideline limitation of drinking water (10 μg/L) within 20 min under UV irradiation. Our outcomes provide a novel photoexcitation treatment system for the efficient detoxification and removal of As from actual wastewater.
Collapse
Affiliation(s)
- Wei Mao
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yibing Li
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Lixun Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xuewu Shen
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yang Liu
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ruohan Li
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
9
|
Xu X, Kuang G, Jiang X, Wei S, Wang H, Zhang Z. Design of Environmental-Friendly Carbon-Based Catalysts for Efficient Advanced Oxidation Processes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2750. [PMID: 38894013 PMCID: PMC11173702 DOI: 10.3390/ma17112750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Advanced oxidation processes (AOPs) represent one of the most promising strategies to generate highly reactive species to deal with organic dye-contaminated water. However, developing green and cost-effective catalysts is still a long-term goal for the wide practical application of AOPs. Herein, we demonstrated doping cobalt in porous carbon to efficiently catalyze the oxidation of the typically persistent organic pollutant rhodamine B, via multiple reactive species through the activation of peroxymonosulfate (PMS). The catalysts were prepared by facile pyrolysis of nanocomposites with a core of cobalt-loaded silica and a shell of phenolic resin (Co-C/SiO2). It showed that the produced 1O2 could effectively attack the electron-rich functional groups in rhodamine B, promoting its molecular chain breakage and accelerating its oxidative degradation reaction with reactive oxygen-containing radicals. The optimized Co-C/SiO2 catalyst exhibits impressive catalytic performance, with a degradation rate of rhodamine B up to 96.7% in 14 min and a reaction rate constant (k) as high as 0.2271 min-1, which suggested promising potential for its practical application.
Collapse
Affiliation(s)
- Xinru Xu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; (X.X.); (G.K.); (X.J.); (S.W.)
| | - Guochen Kuang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; (X.X.); (G.K.); (X.J.); (S.W.)
| | - Xiao Jiang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; (X.X.); (G.K.); (X.J.); (S.W.)
| | - Shuoming Wei
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; (X.X.); (G.K.); (X.J.); (S.W.)
| | - Haiyuan Wang
- National Demonstration Center for Chemistry and Chemical Engineering Education, Tianjin University, Tianjin 300350, China
| | - Zhen Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China; (X.X.); (G.K.); (X.J.); (S.W.)
| |
Collapse
|
10
|
Ma X, Liu X, Shang X, Zhao Y, Zhang Z, Lin C, He M, Ouyang W. Efficient roxarsone degradation by low-dose peroxymonosulfate with the activation of recycling iron-base composite material: Critical role of electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134087. [PMID: 38518697 DOI: 10.1016/j.jhazmat.2024.134087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Pollutant degradation via electron transfer based on advanced oxidation processes (AOPs) provides an economical and energy-efficient method for pollution control. In this study, an iron-rich waste, heating pad waste (HPW), was recycled as a raw material, and a strong magnetic catalyst (Fe-HPW) was synthesized at high temperature (900 °C). Results showed that in the constructed Fe-HPW/PMS system, effective roxarsone (ROX) degradation and TOC removal (72.54%) were achieved at a low-dose of oxidant (PMS, 0.05 mM) and catalyst (Fe-HPW, 0.05 g L-1), the ratio of PMS to ROX was only 2.5:1. In addition, the released inorganic arsenic was effectively removed from the solution. The analysis of the experimental results showed that ROX was effectively degraded by forming PMS/catalyst surface complexes (Fe-HPW-PMS*) to mediate electron transfer in the Fe-HPW/PMS system. Besides, this system performed effective ROX degradation over a wide pH range (pH=3-9) and showed high resistance to different water parameters. Overall, this study not only provides a new direction for the recycling application of HPW but also re-emphasizes the neglected nonradical pathway in advanced oxidation processes.
Collapse
Affiliation(s)
- Xiaoyu Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875.
| | - Xiao Shang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
11
|
Li R, Ba K, Zhang D, Shi Y, Li C, Yu Y, Yang M. Unraveling the Synergistic Mechanism of Boosted Photocatalytic H 2O 2 Production over Cyano-g-C 3N 4/In 2S 3/Ppy Heterostructure and Enhanced Photocatalysis-Self-Fenton Degradation Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308568. [PMID: 38126907 DOI: 10.1002/smll.202308568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Indexed: 12/23/2023]
Abstract
In this work, cyano contained g-C3N4 comodified by In2S3 and polypyrrole (C≡N─CN/IS/Ppy) materials are synthesized for the photocatalytic production of H2O2 and photocatalysis-self-Fenton reaction for highly efficient degradation of metronidazole. The results from UV-vis spectrophotometry, surface photovoltage, and Kelvin probe measurements reveal the promoted transport and separation efficiency of photoinduced charges after the introduction of In2S3 and Ppy in the heterojunction. The existence of a built-in electric field accelerates the photoinduced charge separation and preserves the stronger oxidation ability of holes at the valence band of C≡N─CN. Linear sweep voltammetry measurements, zeta potential analyzations, nitroblue tetrazolium determination, and other measurements show that Ppy improves the conversion ratio of •O2 - to H2O2 and the utilization ratio of •O2 -, as well as suppresses decomposition of H2O2. Accordingly, the H2O2 evolution rate produced via a two-step single-electron reduction reaction reaches almost 895 µmol L-1 h-1, a value 80% and 7.2-fold higher than those obtained with C≡N─CN/IS and C≡N─CN, respectively. The metronidazole removal rate obtained via photocatalysis-self-Fenton reaction attains 83.7% within 120 minutes, a value much higher than that recorded by the traditional Fenton method. Overall, the proposed synthesis materials and route look promising for the H2O2 production and organic pollutants degradation.
Collapse
Affiliation(s)
- Rujin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaikai Ba
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chunxiang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yanling Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, China
| | - Min Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
12
|
Lv X, Yuan H, Sun K, Shi W, Li C, Guo F. Construction of a Visible-Light-Response Photocatalysis-Self-Fenton Degradation System of Coupling Industrial Waste Red Mud to Resorcinol-Formaldehyde Resin. Molecules 2024; 29:1514. [PMID: 38611795 PMCID: PMC11013769 DOI: 10.3390/molecules29071514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Heterogeneous photocatalysis-self-Fenton technology is a sustainable strategy for treating organic pollutants in actual water bodies with high-fluent degradation and high mineralization capacity, overcoming the limitations of the safety risks caused by adding external iron sources and hazardous chemicals in the homogeneous Fenton reaction and injecting high-intensity energy fields in photo-Fenton reaction. Herein, a photo-self-Fenton system based on resorcinol-formaldehyde (RF) resin and red mud (RM) was established to generate hydrogen peroxide (H2O2) in situ and transform into hydroxy radical (•OH) for efficient degradation of tetracycline (TC) under visible light irradiation. The capturing experiments and electron spin resonance (ESR) confirmed that the hinge for the enhanced performance of this system is the superior H2O2 yield (499 μM) through the oxygen reduction process (ORR) of the two-step single-electron over the resin and the high concentration of •OH due to activation effect of RM. In addition, the Fe2+/Fe3+ cycles are accelerated by photoelectrons to effectively initiate the photo-self-Fenton reaction. Finally, the possible degradation pathways were proposed via liquid chromatography-mass spectrometry (LC-MS). This study provides a new idea for environmental recovery in a waste-based heterogeneous photocatalytic self-Fenton system.
Collapse
Affiliation(s)
- Xiangxiu Lv
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Hao Yuan
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Kaiqu Sun
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chunsheng Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
13
|
Jing M, Zhao H, Jian L, Pan C, Dong Y, Zhu Y. Coral-like B-doped g-C 3N 4 with enhanced molecular dipole to boost photocatalysis-self-Fenton removal of persistent organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131017. [PMID: 36812729 DOI: 10.1016/j.jhazmat.2023.131017] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Fenton process is a popular advanced oxidation process for water purification. However, it requires an external addition of H2O2, thus raising safety threats and economic costs and encountering the problems of slow cycling of Fe2+/Fe3+ and low mineralization efficiency. Herein, we developed a novel photocatalysis-self-Fenton system based on coral-like B-doped g-C3N4 (Coral-B-CN) photocatalyst for 4-chlorophenol (4-CP) removal where H2O2 can be in situ generated by photocatalysis over Coral-B-CN, the cycling of Fe2+/Fe3+ was accelerated by photoelectrons, and the photoholes promoted 4-CP mineralization. Coral-B-CN was innovatively synthesized by hydrogen bond self-assembly followed by calcination. B heteroatom doping produced enhanced molecular dipole, while the morphological engineering exposed more active sites and optimized band structure. The effective combination of the two enhances charge separation and mass transfer between the phases, resulting in efficient in-situ H2O2 production, faster Fe2+/Fe3+ valence cycling and enhanced hole oxidation. Accordingly, nearly all 4-CP can be degraded during 50 min under the combined action of more ·OH and holes with stronger oxidation capacity. The mineralization rate of this system reached 70.3%, which is 2.6 and 4.9 times higher than that of Fenton process and photocatalysis, respectively. Besides, this system maintained excellent stability and can be applied in a broad range of pHs. The study would provide important insights into developing improved Fenton process with high performance for the removal of persistent organic pollutants.
Collapse
Affiliation(s)
- Mengyang Jing
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Zhao
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Liang Jian
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chengsi Pan
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuming Dong
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yongfa Zhu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Highly stable core-shell structured SiO2@C-Ag composites for organic contaminants degradation and antibacterial application. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
15
|
Xie Q, Wang X, Chen W, Lei C, Huang B. Engineering active heterojunction architecture with oxygenated-Co, Mo bimetallic sulfide heteronanosheet and graphene oxide for peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130852. [PMID: 36753909 DOI: 10.1016/j.jhazmat.2023.130852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Bimetallic sulfides have distinctive catalytic property in activating peroxymonosulfate (PMS) for water remediation. Polyoxometalates as potential precursors have rarely been reported for the catalytic degradation of refractory organic pollutants. Herein, a composite catalyst of Co-Mo bimetallic sulfides supported onto graphene oxide (O-CoMoS/GO) with a heterojunction architecture was synthesized through a hydrothermal strategy with polyoxometalates ((NH4)4[CoIIMo6O24H6]·6H2O) as the precursor and applied in the PMS activation. This material showed a superior performance for the catalytic degradation of the model organic pollutant, 4-chlorophenol (rapidly removed within 10 min with an apparent reaction rate constant of 0.5458 min-1). O-CoMoS/GO outperformed most of the reported catalysts in terms of activity and had a strong tolerance towards common organic and inorganic compounds in water, and could perform well in different real water systems. Experimental and theoretical results indicated that the introduction of GO could achieve the enrichment of electrons on the metals and reduce the d band center (εd) of Co close to the Fermi level (εF), thereby facilitating the interfacial electron transfer process. The activation mechanism was due to the as-prepared bimetallic sulfides and the formation of heterojunction structure with GO, where Co(II) as the active center could be regenerated by the adjacent Mo element (as co-catalyst) and by gathering electrons from GO through the Co/Mo-O-C coupling. This work provides insights into the design of bimetallic sulfide catalysts in activating PMS for water remediation.
Collapse
Affiliation(s)
- Qianqian Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xuxu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenqian Chen
- Department of Pharmacy, National University of Singapore, S9, 4 Science Drive 2, 117544, Singapore.
| | - Chao Lei
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
16
|
Lu Q, Zhou Y, Sui Q, Zhou Y. Mechanism and characterization of microplastic aging process: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2023; 17:100. [PMID: 36935734 PMCID: PMC10010843 DOI: 10.1007/s11783-023-1700-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
With the increasing production of petroleum-based plastics, the problem of environmental pollution caused by plastics has aroused widespread concern. Microplastics, which are formed by the fragmentation of macro plastics, are bio-accumulate easily due to their small size and slow degradation under natural conditions. The aging of plastics is an inevitable process for their degradation and enhancement of adsorption performance toward pollutants due to a series of changes in their physiochemical properties, which significantly increase the toxicity and harm of plastics. Therefore, studies should focus on the aging process of microplastics through reasonable characterization methods to promote the aging process and prevent white pollution. This review summarizes the latest progress in natural aging process and characterization methods to determine the natural aging mechanism of microplastics. In addition, recent advances in the artificial aging of microplastic pollutants are reviewed. The degradation status and by-products of biodegradable plastics in the natural environment and whether they can truly solve the plastic pollution problem have been discussed. Findings from the literature pointed out that the aging process of microplastics lacks professional and exclusive characterization methods, which include qualitative and quantitative analyses. To lessen the toxicity of microplastics in the environment, future research directions have been suggested based on existing problems in the current research. This review could provide a systematic reference for in-depth exploration of the aging mechanism and behavior of microplastics in natural and artificial systems.
Collapse
Affiliation(s)
- Qinwei Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| |
Collapse
|
17
|
Liu Y, Sun Y, Zhang M, Guo S, Su Z, Ren T, Li C. Carbon nanotubes encapsulating FeS 2 micropolyhedrons as an anode electrocatalyst for improving the power generation of microbial fuel cells. J Colloid Interface Sci 2023; 629:970-979. [PMID: 36208609 DOI: 10.1016/j.jcis.2022.09.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
Abstract
The low power density originating from poor electroactive bacteria (EAB) adhesion and sluggish extracellular electron transfer (EET) at the anode interface, is a major impediment preventing the practical implementation of microbial fuel cells (MFCs). Tailoring the surface properties of anodes is an effective and powerful strategy for addressing this issue. In this study, we successfully fabricated an efficient anode electrocatalyst, consisting of carbon nanotubes encapsulating iron disulfide (FeS2@CNT) micropolyhedrons, using simple hydrothermal and freeze-drying methods, which not only strengthened the anode interaction with EAB but also promoted the EET process at the anode interface. As expected, the MFCs with a FeS2@CNT anode yielded an outstanding power density of 1914 mWm-2 at a current density of 4350 mA m-2, which significantly exceeded those of pure CNT (1096.2mW m-2, 2703.3 mA m-2) and carbon cloth (426.8mWm-2, 965.6 mA m-2) anodes. The high-power output can be attributed to the synergistic effect between FeS2 and CNTs, endowing the anode with biocompatibility for biofilm adhesion and colonization, nutrient diffusion, and the presence of abundant Fe and S active sites for EET mediation. Owing to the low cost, facile fabrication process, and excellent electrocatalytic performance toward the redox reactions in biofilms, the synthesized FeS2@CNT electrocatalyst is a promising material for high-performance and cost-effective MFCs with commercial applications.
Collapse
Affiliation(s)
- Yuanfeng Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Yaxin Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Min Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shiquan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Zijing Su
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Tingli Ren
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| |
Collapse
|
18
|
Yang R, Zeng G, Zhou Z, Xu Z, Lyu S. Naphthalene degradation dominated by homogeneous reaction in Fenton-like process catalyzed by pyrite: Mechanism and application. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Huang Y, Yu L, Ma L, Zhang D, Xu J, Zhang S, Li L. FeS combined ozonation to remove p-aminobenzenesulfonamide from water: Density functional theory insights into the mechanism. CHEMOSPHERE 2023; 311:137158. [PMID: 36343730 DOI: 10.1016/j.chemosphere.2022.137158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The applicability and performance of FeS in ozonation process to remove p-aminobenzenesulfonamide (SN) from water was assessed, and the working mechanism of FeS was comprehensively explored by both experimental means and density functional theory (DFT) simulation. FeS combined ozonation achieved 74% of SN removal in 60 min under the optimal condition, which was 37% higher than by ozonation alone, and 12% higher than FeO combined ozonation. Highly active species of •OH, •SO4-, 1O2 and •O2- were detected in the FeS combined ozonation system, the evolution pathway of the involved species was expounded with the aid of DFT calculation. The results revealed that •O2-, H2O2 and SO42- were originally formed via interface reactions on FeS surface, then gradually transformed into •OH, 1O2 and •SO4- through subsequent chain reactions. Moreover, FeS had a lower energy barrier of 0.16 eV than FeO with a value of 0.83 eV for the transformation of ozone to active atomic oxygen. The presented study provided a significant insight into the role of Fe-based materials in ozonation, and was of great importance to guide the route for ozonation process improvement.
Collapse
Affiliation(s)
- Yuanxing Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Liu Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Luming Ma
- Department of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Daofang Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Jingcheng Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Siru Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Liang Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
20
|
Sheng X, Lyu S. Insights into enhanced removal of fluoranthene by sulfidated nanoscale zero-valent iron: In aqueous solution and soil slurry. CHEMOSPHERE 2023; 312:137172. [PMID: 36356808 DOI: 10.1016/j.chemosphere.2022.137172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
In this study, 90.9% fluoranthene (FLT) was degraded in sodium percarbonate (2Na2CO3·3H2O2, SPC) oxidation system by Fe(II) combined with sulfidated nano zero valent iron (S-nZVI) activation within 60 min in aqueous solution. Scavenging experiments and electron paramagnetic resonance detection suggested that HO•, O2-•, and 1O2 contributed to the removal of FLT in SPC/Fe(II)/S-nZVI system. Based on the FLT degradation intermediates that were analyzed by GC-MS in SPC/Fe(II)/S-nZVI process, three potential FLT degradation pathways were speculated. The removal efficiency of FLT was inhibited with the presence of humic acid (HA) unless the concentration of HA was controlled at 1.0 mg L-1, and the presence of 1.0 mg L-1 HA favored the generation of HO•. The excellent removal performance of FLT (88.6%) could be achieved in actual groundwater by increasing the chemical dosages and adjusting the initial solution pH to acid environment. In soil slurry tests, the optimal reaction time and soil/water ratio were obtained as 24 h and 2/10, respectively, and the desired FLT degradation performances were obtained at pH 3 and 5 with the soil/water ratio of 2/10. This work effectively demonstrates the application potential of SPC/Fe(II)/S-nZVI system for the remediation of PAHs contamination in actual industrial sites.
Collapse
Affiliation(s)
- Xianxian Sheng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China.
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
21
|
Wang M, Guo B, Zhan J, Zhuang Y, Komarneni S, Ma J. Mo doping of BiOBr nanoflowers for the degradation of tetracycline by heterogeneous activation of persulfate under visible light. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
The destruction of trichloroethylene by zinc dioxide using a modified Fenton reaction: Performance and a preliminary mechanism. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Wang Y, Zhang Z, Jian X, Zhao J, Yang L, Gao ZD, Song YY. Engineering hierarchical FeS 2/TiO 2 nanotubes on Ti mesh as a tailorable flow-through catalyst belt for all-day-active degradation of organic pollutants and pathogens. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129501. [PMID: 35803193 DOI: 10.1016/j.jhazmat.2022.129501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The increasing organic and microbiological pollutions in fresh water caused by human activities and industrial development have become a global concern nowadays. In this study, three-dimensional (3D) hierarchical FeS2/TiO2 structures with nanotube geometries were grown on a Ti mesh (M-TNTAs-FeS2). Benefitting from the abundant available reactive sites on the open 3D micro/nanoporous structures, excellent photocatalytic activity of FeS2/TiO2 heterostructure in solar light, and satisfactory Fenton activity of FeS2, the obtained M-TNTAs-FeS2 exhibits outstanding performance as an all-day-active catalyst. Importantly, flexible meshes can be easily tailored and enveloped into fluorinated ethylene propylene (FEP) pockets in a series as a flow-through belt for large-capacitance applications (998 L m-2 at a flow rate of 417 L m-2 h-1 for a four-pockets belt), as indicated by the degradation of azo dyes, antibiotics, pesticides, and pathogens. This study may inspire a new tailorable catalyst design for a promising point-of-use purification device.
Collapse
Affiliation(s)
- Yiming Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhechen Zhang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xiaoxia Jian
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junjian Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lingling Yang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhi-Da Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China.
| |
Collapse
|
24
|
Xiang Y, Liu H, Zhu E, Yang K, Yuan D, Jiao T, Zhang Q, Tang S. Application of inorganic materials as heterogeneous cocatalyst in Fenton/Fenton-like processes for wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Environmental Behavior and Remediation Methods of Roxarsone. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Roxarsone (ROX) is used extensively in the broiler chicken industry, and most is excreted in poultry litter. ROX degradation produces inorganic arsenic, which causes arsenic contamination of soil and aquatic environment. Furthermore, elevated arsenic concentrations are found in livers of chickens fed ROX. Microorganisms, light, and ions are the main factors that promote ROX degradation in the environment. The adsorption of ROX on different substances and its influencing factors have also been studied extensively. Additionally, the remediation method, combining adsorption and degradation, can effectively restore ROX contamination. Based on this, the review reports the ecological hazards, discussed the transformation and adsorption of ROX in environmental systems, documents the biological response to ROX, and summarizes the remediation methods of ROX contamination. Most previous studies of ROX have been focused on identifying the mechanisms involved under theoretical conditions, but more attention should be paid to the behavior of ROX under real environmental conditions, including the fate and transport of ROX in the real environment. ROX remediation methods at real contaminated sites should also be assessed and verified. The summary of previous studies on the environmental behavior and remediation methods of ROX is helpful for further research in the future.
Collapse
|
26
|
Huang Y, Xing W, Zhou L, Tian B, Zhang J, Zhou Y. Molybdenum oxide nanorods decorated with molybdenum phosphide quantum dots for efficient photocatalytic degradation of rhodamine B and norfloxacin. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Ye J, Zhang Y, Wang J, Liu S, Chang Y, Xu X, Feng C, Xu J, Guo L, Xu J, Fu Y. Photo-Fenton and oxygen vacancies' synergy for enhancing catalytic activity with S-scheme FeS 2/Bi 2WO 6 heterostructure. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00610c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of FeS2/Bi2WO6 S-scheme photo-Fenton catalysts with efficient catalytic performances were successfully prepared by coupling FeS2 into the surface oxygen vacancy enriched Bi2WO6 using calcination and solvothermal methods.
Collapse
Affiliation(s)
- Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yuanyuan Zhang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Juan Wang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yuanhang Chang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiuping Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunte Feng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Qiqihaer Branch of Heilongjiang Academy of Agricultural Sciences, 10060, China
| | - Li Guo
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|