1
|
Vandeuren A, Pereira B, Van de Casteele C, Sonnet P, Delmelle P. Processes controlling geogenic arsenic distribution in soils formed from iron-rich sedimentary rocks. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136610. [PMID: 39616839 DOI: 10.1016/j.jhazmat.2024.136610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/28/2025]
Abstract
Soils formed from Fe-rich sedimentary rocks can contain elevated As contents. Although the geogenic origin of As in these soils is recognized, the processes controlling its distribution within soil profiles and its mobility in topsoils are still unclear, limiting effective prediction of soils with potentially hazardous As contents for human health/ecosystems. We investigated 10 soil profiles (0-85 cm) formed from the As- and Fe-rich Aubange Formation in Belgian Lorraine. Sampling sites were chosen to represent the diversity of soil profiles associated with these rocks, with soil material collected every 5-cm for detailed As distribution assessment. Chemical and scanning electron microscopy analyses revealed that As is consistently associated with Fe oxyhydroxides variably enriched in K, Ca, Al and Si. X-ray diffraction identified goethite as a primary phase. The As-containing Fe oxyhydroxides originated from the soil parent material. They likely formed in response to fluctuating redox conditions during paleo-weathering of the Fe-rich sedimentary rocks and remained stable during pedogenesis. The As content varies widely within and across soil the profiles (23-753 mg ⋅ kg-1) and in topsoils (29-165 mg ⋅ kg-1), reflecting the chemical heterogeneity of the parent material. Additionally, exogenous processes, including colluvial transport and deposition of soil particles during and/or before pedogenesis, influenced As distribution within and across the soil profiles. Despite exceeding soil quality standards, As in the Fe-rich Aubange topsoils has low bioaccessibility (3-6 %) due to its strong association with the low-solubility Fe oxyhydroxides. Our findings emphasize the need for tailoring soil quality guidelines to the local pedo-geological context.
Collapse
Affiliation(s)
- Aubry Vandeuren
- Environmental Sciences, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.10, B-1348 Louvain-la-Neuve, Belgium.
| | - Benoît Pereira
- Environmental Sciences, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.10, B-1348 Louvain-la-Neuve, Belgium
| | - Clélia Van de Casteele
- Environmental Sciences, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.10, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Sonnet
- Environmental Sciences, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.10, B-1348 Louvain-la-Neuve, Belgium
| | - Pierre Delmelle
- Environmental Sciences, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.10, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Borah A, Lekshmy J, Sajna P, Devipriya SP. Assessment of microplastic and heavy metal pollution in agricultural soils of Ernakulam District, Kerala, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1090. [PMID: 39436565 DOI: 10.1007/s10661-024-13232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Microplastics (MPs) and heavy metal pollution pose significant environmental threat, potentially leading to agroecosystem toxicity and jeopardizing food security. Therefore, this study aims to evaluate the abundance and risk assessment of these pollutants in five different farmlands of Ernakulam district, India. Results showed that MPs content in agricultural fields near commercialized areas such as Kakkanad Nedungapuzha, Nedumbassery, and Kadamakuddy was dominant compared to Nechoor, a rural area. The average microplastic abundance was found to be 45.6 ± 26.4 items kg⁻1 dw. Polypropylene (PP) and polyethylene (PE) were the dominant polymers found in the soil samples, constituting 45% and 25% of the microplastic content, respectively. The pollution load index of MPs indicates that the sampling sites are considered to be polluted as PLI > 1 with hazard level I. The heavy metal pollution status follows the order: Cu (80.3 to 724 mg/kg) > Zn (77 to 543.5 mg/kg) > Cr (171.65 to 334.65 mg/kg) > As (10.25 to 79.5 mg/kg) > Pb (2.05 to 30.3 mg/kg) > Cd (0.3 to 14.35 mg/kg). Calculated pollution load index (PLI) geo-accumulation index (Igeo), ecological risk assessment values indicate that commercialized regions exhibit high levels of trace metals, namely Cu, Zn, As, Cd, and Cr, posing a significant concern for the agricultural ecosystem. Our results indicate heightened microplastics and heavy metals prevalence in farmlands adjacent to commercial zones, necessitating immediate preventive action to mitigate increasing concentrations.
Collapse
Affiliation(s)
- Abhinab Borah
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, India
| | - Jyothi Lekshmy
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, India
| | - Peediyakkathodi Sajna
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, India
| | | |
Collapse
|
3
|
Zhang W, Yu H, Huang J, Jiao W. Influence of pH on the leaching behavior of a solidified arsenic contaminated soil. ENVIRONMENTAL TECHNOLOGY 2024; 45:4169-4180. [PMID: 37540778 DOI: 10.1080/09593330.2023.2243392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
Stabilization/solidification is widely used for treatment of arsenic (As)-contaminated soils. The stability of the soil may deteriorate significantly when exposed to acid or alkaline leachate. In this study, semi-dynamic leaching tests under different pH were carried out to investigate the leaching behavior of As from the solidified soils. Spectroscopic and microscopic analyses were performed to reveal the related mechanisms. The results showed that the leaching of As was closely correlated with the pH of the leachate, because the encapsulation effect of the cementitious matrix and the chemical speciation and valence of As were all significantly influenced by pH. In the strongly acidic leachant (pH 3.0), the leached As concentration increased by an order of magnitude, and the effective diffusion coefficient of As reached 3.71 × 10-13 m2/s. This is because that pores and cracks increased owing to the acidic corrosion of CSH, such that the physical encapsulation effect was reduced and the mobility of As increased. The leachability index showed that the solidified soil was unsuitable for 'controlled utilization' under strongly acidic conditions. The leached As concentration was the lowest in the weakly alkaline leachant (pH 9.0) because under weakly alkaline conditions the hydration process of the cement was facilitated, and more CSH gels were attached to the surface of the soil particles, forming a tighter structure for As encapsulation. However, as pH increased from 9.0-11.0 the leached As concentration increased due to an increased content of As(III)-O in the solidified soil.
Collapse
Affiliation(s)
- Wenjie Zhang
- College of Civil and Architectural Engineering, Taizhou University, Taizhou, People's Republic of China
| | - Haisheng Yu
- Shanghai Construction Group Co., Ltd., Shanghai, People's Republic of China
| | - Jinxiang Huang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, People's Republic of China
| | - Weiguo Jiao
- Department of Civil Engineering, Guizhou Institute of Technology, Guiyang, People's Republic of China
| |
Collapse
|
4
|
Dradrach A, Nowosad K, Kozak B, Karczewska A. Arsenic uptake by Agrostis capillaris, as related to its genotypic diversity in the area of historical ore mining and processing. Sci Rep 2024; 14:13488. [PMID: 38866862 PMCID: PMC11169496 DOI: 10.1038/s41598-024-63830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Common bentgrass Agrostis capillaris L. is known as tolerant to toxic elements. A hypothesis was examined that its ecotypes growing in historically polluted sites show a limited arsenic uptake and have genetic features that distinguish them from commercially available cultivars. The study was conducted in Złoty Stok, a historical area of arsenic mining. Additionally, two commercial cultivars were grown in pots with arsenic-rich soils. Based on arsenic concentrations in plant roots and shoots, bioconcentration and translocation factors BCF and TF were calculated. Commercial cultivars indicated many times higher BCF shoots and TF values compared to field plants. DNA analysis of leaf blades showed a clear distinction between the plants growing in some sites and patches in the field, and also a gene overlap between the plants in the field and commercial forms. The research did not allow for identification of ecotypes with exceptionally limited arsenic uptake. Moreover, there were no significant differences between the genotypic characteristics of plants growing in polluted sites and those poorly tolerant grown from commercially available seeds. Apparently, other factors, and not genetically determined features, are responsible for A. capillaris tolerance to arsenic in Złoty Stok.
Collapse
Affiliation(s)
- Agnieszka Dradrach
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Kamila Nowosad
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Anna Karczewska
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
5
|
Jalil S, Nazir MM, Eweda MA, Zulfiqar F, Ahmed T, Noman M, Asad MAU, Siddique KHM, Jin X. Zinc oxide application alleviates arsenic-mediated oxidative stress via physio-biochemical mechanism in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34200-34213. [PMID: 38702484 DOI: 10.1007/s11356-024-33380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/14/2024] [Indexed: 05/06/2024]
Abstract
Arsenic (As) pollution in cultivated soils poses a significant risk to the sustainable growth of agriculture and jeopardizes food security. However, the mechanisms underlying how zinc (Zn) regulates the toxic effects induced by As in plants remain poorly understood. Hence, this study aimed to explore the potential of ZnO as an effective and environmentally friendly amendment to alleviate As toxicity in rice, thereby addressing the significant risk posed by As pollution in cultivated soils. Through a hydroponic experiment, the study assessed the mitigating effects of different ZnO dosages (Zn5, 5 mg L-1; Zn15, 15 mg L-1; Zn30, 30 mg L-1) on rice seedlings exposed to varying levels of As stress (As0, 0 µM L-1; As25, 25 µM L-1). The findings of the study demonstrate significant improvements in plant height and biomass (shoot and root), with a notable increase of 16-40% observed in the Zn15 treatment, and an even more substantial enhancement of 29-53% observed in the Zn30 treatment under As stress, compared to respective control treatment. Furthermore, in the Zn30 treatment, the shoot and root As contents substantially reduced by 47% and 63%, respectively, relative to the control treatment. The elevated Zn contents in shoots and roots enhanced antioxidant enzyme activities (POD, SOD, and CAT), and decreased MDA contents (13-25%) and H2O2 contents (11-27%), indicating the mitigation of oxidative stress. Moreover, the expression of antioxidant-related genes, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 was reduced when rice seedlings were exposed to As stress and significantly enhanced after Zn addition. Overall, the research suggests that ZnO application could effectively mitigate As uptake and toxicity in rice plants cultivated in As-contaminated soils, offering potential solutions for sustainable agriculture and food security.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | | | - Mohamed A Eweda
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Xianghu Laboratory, Hangzhou, 311231, China
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Muhammad Noman
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad A U Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Xiaoli Jin
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
6
|
Dang QT, Nguyen ATQ, Nguyen AD, Nguyen NT, Dam TTN, Tran TTT, Ngo THA, Nguyen TTH, Tran TV, Dinh VM, Nguyen MN. Desilification of phytolith exacerbates the release of arsenic from rice straw. CHEMOSPHERE 2024; 349:140797. [PMID: 38016526 DOI: 10.1016/j.chemosphere.2023.140797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Arsenic (As) turnover in rice paddy agro-ecosystems has received much attention because As can enter the food chain through its accumulation in rice, thereby affecting human health. Returning straw to soil is a common practice to retain nutrients for soil and crops, but it also cycles As within the rice paddy field ecosystems. However, there is still a lack of detailed understanding of the fate of As in rice straw, and how or to what extent it is recycled back into the soil environment. This study aims to elucidate the relationship between the microstructure of rice straw and the release of As during rice straw decomposition. The microstructure of rice straw was found to comprise both organic and silica (phytolith) components. These two constituents are inter-embedded to form a composite-like structure that contains up to 6.48 mg As Kg-1. The 30-day batch experiments revealed that the biochemical release of As simultaneously depends upon the decomposition of the organic component and the desilicification of the silica component. Accompanying the release of As was the release of other elements such as Fe, Al, P and S. These elements can further interact with As to form less mobile compounds. The introduction of either Trichoderma harzianum or Bacillus velezensis was expected to accelerate the decomposition of rice straw, and enhance the silica dissolution, hence contributing to an increase in the As release. Despite these expectations, our observations showed the opposite effects. Microorganisms presumably have facilitated the change in solution chemistry or the inclusion of As into the newly-formed precipitates. The biochemical decomposition process can reduce straw particle size, while the negatively-charge surface will involve microsized straw particles in the electrostatic interaction, thereby favoring the dispersibility state. Therefore, the co-transport of micro-sized straw particles with As under field conditions should not be neglected.
Collapse
Affiliation(s)
- Quan T Dang
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam; Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Anh T Q Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Anh D Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Ngan T Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Than T N Dam
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming, United States
| | - Thu T T Tran
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Thu H A Ngo
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam
| | - Trang T H Nguyen
- Department of Integrated Sciences, Fulbright University Vietnam, Tan Phu Ward, District 7, Ho Chi Minh City, Viet Nam
| | - Tuan V Tran
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Van M Dinh
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Minh N Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| |
Collapse
|
7
|
Claes H, Cappuyns V, Swennen R, Meyer R, Seemann T, Stanjek H, Sindern S, Tock P. Importance of arsenic bioaccessibility in health risk assessment based on iron "Minette" rocks and related soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115567. [PMID: 37864967 DOI: 10.1016/j.ecoenv.2023.115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Total element concentrations by themselves are not always good predictors of toxicity and are therefore not suitable for eco- and/or human toxicological risk determination. In addition, despite the growing call for harmonization, countries show significant variation in risk assessment tools, screening/background values, protocols and legal management of soils. By incorporating mobility and bioaccessibility/availability into soil risk assessments, location-specific physico-chemical and geological conditions can be considered in routinely applied general risk assessment methodologies. Minette soils and rocks are a great case in point since they often are associated with high geogenic As concentrations and consequently potential risks. Minette iron ores form the world largest Fe ore deposits since the "great oxidation". For the first time, oral bioaccessibility during direct ingestion was assessed on Minettes from Luxembourg by applying the in vitro Solubility/Bioavailability Research Consortium (SBRC) method. Out of > 180 samples, 25 representative samples were selected providing a unique dataset which showed an average gastric bioaccessibility of ∼10% (7.8 ± 4.0 mg/kg) of the total As-concentration, with a maximum of 45% (17.9 mg/kg). Of importance is that bioaccessibility of As in Minette rocks and soils are controlled by, and can be estimated from, lithology, mineralogy and total Ca content. Soils and ooid grainstones with an iron oxide or clayey matrix, are characterized by average gastric bioaccessible As concentrations < 6 mg/kg. Gastric As bioaccessibility is highest in Fe-bearing calcite-cemented bioclastic grainstones (∼12 mg/kg). Importantly, for all samples the maximal bioaccessible As concentrations remain below the threshold from which significant adverse non-carcinogenic and/or carcinogenic health effects are expected. These new results are in strong contrast with what total As concentrations might suggest. Considering bioaccessibilities, consequently, can help to avoid disproportionate, costly and environmentally impacting risk management strategies. Furthermore, this study illustrates the importance of cross-disciplinary collaboration between geo- and health scientists.
Collapse
Affiliation(s)
- Hannes Claes
- Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001 Heverlee, Belgium; Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstrasse 8, 52072 Aachen, Germany.
| | - Valérie Cappuyns
- Centre for Economics and Corporate Sustainability (CEDON), KU Leuven, Warmoesberg 26, 1000 Brussels, Belgium
| | - Rudy Swennen
- Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001 Heverlee, Belgium
| | - Romain Meyer
- Service géologique du Luxembourg, Rue chemin de Fer 23, 8257 Bertrange, Luxembourg
| | - Timo Seemann
- Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstrasse 8, 52072 Aachen, Germany
| | - Helge Stanjek
- Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstrasse 8, 52072 Aachen, Germany
| | - Sven Sindern
- Institute of Applied Mineralogy and Economic Geology, RWTH Aachen University, Wüllnerstrasse 2, 52056 Aachen, Germany
| | - Pol Tock
- Environment Agency Luxembourg, 1, avenue du Rock'n'Roll, L-4361Esch-sur-Alzette, Luxembourg
| |
Collapse
|
8
|
Rashid A, Ayub M, Bundschuh J, Gao X, Ullah Z, Ali L, Li C, Ahmad A, Khan S, Rinklebe J, Ahmad P. Geochemical control, water quality indexing, source distribution, and potential health risk of fluoride and arsenic in groundwater: Occurrence, sources apportionment, and positive matrix factorization model. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132443. [PMID: 37666175 DOI: 10.1016/j.jhazmat.2023.132443] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/29/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Fluoride (F-), and arsenic (As) in the groundwater cause health problems in developing countries, including Pakistan. We evaluated the occurrence, distribution, sources apportionment, and health hazards of F-, and As in the groundwater of Mardan, Pakistan. Therefore, groundwater samples (n = 130) were collected and then analyzed for F-, and As by ion-chromatography (IC) and Inductively-coupled plasma mass-spectrometry (ICP-MS). The F-, and As concentrations in groundwater were 0.7-14.4 mg/L and 0.5-11.2 µg/L. Relatively elevated F-, and As coexists with higher pH, Na+, HCO3-, SO4-2, and depleted Ca+2 due to fluoride, sulfide-bearing minerals, and anthropogenic inputs. Both F-, and/or As are transported in subsurface water through adsorption and desorption processes. Groundwater samples 45%, and 14.2% exceeded the WHO guidelines of 1.5 mg/L and 10 µg/L. Water quality indexing (WQI-model) declared that 35.7% samples are unfit for household purposes. Saturation and undersaturation of minerals showed precipitation and mineral dissolution. Groundwater contamination by PCA-MLR and PMF-model interpreted five factors. The fitting results and R2 values of PMF (0.52-0.99)>PCA-MLR (0.50-0.95) showed high accuracy of PMF-model. Human health risk assessment (HHRA-model) revealed high non-carcinogenic and carcinogenic risk for children than adults. The percentile recovery of F- and As was recorded 98%, and 95% with reproducibility ± 5% error.
Collapse
Affiliation(s)
- Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; National Centre of Excellence in Geology, University of Peshawar, 25130, Pakistan.
| | - Muhammad Ayub
- Department of Botany, Hazara University, 21300, Pakistan
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba 4350, Queensland, Australia
| | - Xubo Gao
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Liaqat Ali
- National Centre of Excellence in Geology, University of Peshawar, 25130, Pakistan
| | - Chengcheng Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, 25120, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir, India
| |
Collapse
|
9
|
Sánchez-Castro I, Molina L, Prieto-Fernández MÁ, Segura A. Past, present and future trends in the remediation of heavy-metal contaminated soil - Remediation techniques applied in real soil-contamination events. Heliyon 2023; 9:e16692. [PMID: 37484356 PMCID: PMC10360604 DOI: 10.1016/j.heliyon.2023.e16692] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Most worldwide policy frameworks, including the United Nations Sustainable Development Goals, highlight soil as a key non-renewable natural resource which should be rigorously preserved to achieve long-term global sustainability. Although some soil is naturally enriched with heavy metals (HMs), a series of anthropogenic activities are known to contribute to their redistribution, which may entail potentially harmful environmental and/or human health effects if certain concentrations are exceeded. If this occurs, the implementation of rehabilitation strategies is highly recommended. Although there are many publications dealing with the elimination of HMs using different methodologies, most of those works have been done in laboratories and there are not many comprehensive reviews about the results obtained under field conditions. Throughout this review, we examine the different methodologies that have been used in real scenarios and, based on representative case studies, we present the evolution and outcomes of the remediation strategies applied in real soil-contamination events where legacies of past metal mining activities or mine spills have posed a serious threat for soil conservation. So far, the best efficiencies at field-scale have been reported when using combined strategies such as physical containment and assisted-phytoremediation. We have also introduced the emerging problem of the heavy metal contamination of agricultural soils and the different strategies implemented to tackle this problem. Although remediation techniques used in real scenarios have not changed much in the last decades, there are also encouraging facts for the advances in this field. Thus, a growing number of mining companies publicise in their webpages their soil remediation strategies and efforts; moreover, the number of scientific publications about innovative highly-efficient and environmental-friendly methods is also increasing. In any case, better cooperation between scientists and other soil-related stakeholders is still required to improve remediation performance.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Lázaro Molina
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María-Ángeles Prieto-Fernández
- Misión Biolóxica de Galicia (CSIC), Sede Santiago de Compostela, Avda de Vigo S/n. Campus Vida, 15706, Santiago de Compostela, Spain
| | - Ana Segura
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
10
|
Tang S, Sun P, Qu G, Tian Y, Liu J, Pervez MN, Li X, Cao C, Zhao Y. Photo-aged non-biodegradable and biodegradable mulching film microplastics alter the interfacial behaviors between agricultural soil and inorganic arsenic. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131552. [PMID: 37207479 DOI: 10.1016/j.jhazmat.2023.131552] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 05/21/2023]
Abstract
The impacts of microplastics (MPs) prevalent in soil on the transport of pollutants were urged to be addressed, which has important implications for ecological risk assessment. Therefore, we investigated the influence of virgin/photo-aged biodegradable polylactic acid (PLA) and non-biodegradable black polyethylene (BPE) mulching films MPs on arsenic (As) transport behaviors in agricultural soil. Results showed that both virgin PLA (VPLA) and aged PLA (APLA) enhanced the adsorption of As(Ⅲ) (9.5%, 13.3%) and As(Ⅴ) (22.0%, 6.8%) due to the formation of abundant H-bonds. Conversely, virgin BPE (VBPE) reduced the adsorption of As(Ⅲ) (11.0%) and As(Ⅴ) (7.4%) in soil owing to the "dilution effect", while aged BPE (ABPE) improved arsenic adsorption amount to the level of pure soil due to newly generated O-containing functional groups being feasible to form H-bonds with arsenic. Site energy distribution analysis indicated that the dominant adsorption mechanism of arsenic, chemisorption, was not impacted by MPs. The occurrence of biodegradable VPLA/APLA MPs rather than non-biodegradable VBPE/ABPE MPs resulted in an increased risk of soil accumulating As(Ⅲ) (moderate) and As(Ⅴ) (considerable). This work uncovers the role of biodegradable/non-biodegradable mulching film MPs in arsenic migration and potential risks in the soil ecosystem, depending on the types and aging of MPs.
Collapse
Affiliation(s)
- Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peipei Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Tian
- School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Junlai Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Md Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Xiuyan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
11
|
Fan K, Kong X, Yi J, Gao Z, Li S, Yang B, Xu B, Jiang W. Synergy of directional oxidation and vacuum gasification for green recovery of As 2O 3 from arsenic-containing hazardous secondary resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160091. [PMID: 36370775 DOI: 10.1016/j.scitotenv.2022.160091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Arsenic, a hazardous material that is toxic for humans, enters the human body through soil, water, and air. Furthermore, metal smelting is known to produce arsenic-containing hazardous secondary resources (AHSRs), which cause irreversible damage to the total environment. Therefore, a novel, clean, and efficient arsenic fixation technology has been developed in this study for arsenic removal, which involves directional oxidation and vacuum gasification of AHSRs. Oxidation results revealed that physical phases containing arsenic (As, As2O3, As2Te3 and Cu3As) are selectively oxidized to As2O3 completely and thus classified as oxidative modulation products (OMPs). Meanwhile, approximately 98.82% As2O3 of OMPs convert into volatiles in the following gasification. Characterization results showed that As2O3 with 96.72% purity and uniform microscopic distribution was obtained in the form of monoclinic crystalline needle-like crystals. The proposed approach organically combines oxidation and volatilization properties of each element to facilitate clean and efficient separation as well as recovery of As2O3. No hazardous gas or wastewater is discharged during the entire process, thereby ensuring that arsenic is recycled in a sustainable and clean manner. Overall, this study provides a clean and low-carbon approach for recycling secondary resources containing arsenic.
Collapse
Affiliation(s)
- Kai Fan
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 68 Wenchang Road, Kunming, Yunnan 650093, PR China
| | - Xiangfeng Kong
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 68 Wenchang Road, Kunming, Yunnan 650093, PR China.
| | - Jiafei Yi
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 68 Wenchang Road, Kunming, Yunnan 650093, PR China
| | - Zhe Gao
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 68 Wenchang Road, Kunming, Yunnan 650093, PR China
| | - Shaoxiong Li
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 68 Wenchang Road, Kunming, Yunnan 650093, PR China
| | - Bin Yang
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 68 Wenchang Road, Kunming, Yunnan 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Baoqiang Xu
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 68 Wenchang Road, Kunming, Yunnan 650093, PR China
| | - Wenlong Jiang
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; Faulty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, 68 Wenchang Road, Kunming, Yunnan 650093, PR China
| |
Collapse
|
12
|
Giménez-Forcada E, Luque-Espinar JA, López-Bahut MT, Grima-Olmedo J, Jiménez-Sánchez J, Ontiveros-Beltranena C, Díaz-Muñoz JÁ, Elster D, Skopljak F, Voutchkova D, Hansen B, Hinsby K, Schullehner J, Malcuit E, Gourcy L, Szőcs T, Gál N, Þorbjörnsson D, Tedd K, Borozdins D, Debattista H, Felter A, Cabalska J, Mikołajczyk A, Pereira A, Sampaio J, Perşa D, Petrović Pantic T, Rman N, Arnó G, Herms I, Rosenqvist L. Analysis of the geological control on the spatial distribution of potentially toxic concentrations of As and F - in groundwater on a Pan-European scale. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114161. [PMID: 36343451 DOI: 10.1016/j.ecoenv.2022.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The distribution of the high concentrations of arsenic (As) and fluoride (F-) in groundwater on a Pan-European scale could be explained by the geological European context (lithology and structural faults). To test this hypothesis, seventeen countries and eighteen geological survey organizations (GSOs) have participated in the dataset. The methodology has used the HydroGeoToxicity (HGT) and the Baseline Concentration (BLC) index. The results prove that most of the waters considered in this study are in good conditions for drinking water consumption, in terms of As and/or F- content. A low proportion of the analysed samples present HGT≥ 1 levels (4% and 7% for As and F-, respectively). The spatial distribution of the highest As and/or F- concentrations (via BLC values) has been analysed using GIS tools. The highest values are identified associated with fissured hard rock outcrops (crystalline rocks) or Cenozoic sedimentary zones, where basement fractures seems to have an obvious control on the distribution of maximum concentrations of these elements in groundwaters.
Collapse
Affiliation(s)
- Elena Giménez-Forcada
- CIDE-CSIC, Centro de Investigaciones sobre Desertificación, 46113 Moncada, Valencia, Spain; CN IGME-CSIC, Instituto Geológico y Minero de España, 37001 Salamanca, Spain.
| | | | | | - Juan Grima-Olmedo
- CN IGME-CSIC, Instituto Geológico y Minero de España, 46004 Valencia, Spain.
| | | | | | | | - Daniel Elster
- GBA, Geological Survey of Austria, A-1030 Vienna, Austria.
| | - Ferid Skopljak
- FZZG - Geological Survey of the Federation of Bosnia and Herzegovina, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Denitza Voutchkova
- GEUS, Geological Survey of Denmark and Greenland, 8000 Aarhus C, Denmark.
| | - Birgitte Hansen
- GEUS, Geological Survey of Denmark and Greenland, 8000 Aarhus C, Denmark.
| | - Klaus Hinsby
- GEUS, Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark.
| | - Jörg Schullehner
- AU, Aarhus University Department of Public Health, 8000 Aarhus C, Denmark.
| | - Eline Malcuit
- BRGM, Geological Survey of France, 45100 Orléans, France.
| | | | - Teodóra Szőcs
- MBFSZ, Mining and Geological Survey of Hungary, 1145 Budapest, Hungary.
| | - Nóra Gál
- MBFSZ, Mining and Geological Survey of Hungary, 1145 Budapest, Hungary.
| | | | - Katie Tedd
- GSI, Geological Survey Ireland, A94 N2R6 Dublin, Ireland.
| | - Dāvis Borozdins
- LEGMC, Latvian Environment, Geology and Meteorology Center, LV-1019 Riga, Latvia.
| | | | - Agnieszka Felter
- PGI, Polish Geological Institute - National Research Institute, 00-975 Warszawa, Poland.
| | - Jolanta Cabalska
- PGI, Polish Geological Institute - National Research Institute, 00-975 Warszawa, Poland.
| | - Anna Mikołajczyk
- PGI, Polish Geological Institute - National Research Institute, 00-975 Warszawa, Poland.
| | - Ana Pereira
- LNEG - National Laboratory of Energy and Geology, 2610-999 Amadora, Portugal.
| | - Jose Sampaio
- LNEG - National Laboratory of Energy and Geology, 2610-999 Amadora, Portugal.
| | - Diana Perşa
- IGR, Geological Institute of Romania, Bucharest, Romania.
| | | | - Nina Rman
- GeoZS, Geological Survey of Slovenia, 1000 Ljubljana, Slovenia.
| | - Georgina Arnó
- ICGC, Institut Cartogràfic i Geològic de Catalunya, 08038 Barcelona, Spain.
| | - Ignasi Herms
- ICGC, Institut Cartogràfic i Geològic de Catalunya, 08038 Barcelona, Spain.
| | - Lars Rosenqvist
- SGU, Geological Survey of Sweden, SE-751 28 Uppsala, Sweden.
| |
Collapse
|