1
|
Zhou N, Xu X, Jiang H, Liang Z, Wang S. Exposure pattern of triclosan and tetracycline change their impacts on methanogenic digestion microbiomes. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135604. [PMID: 39197282 DOI: 10.1016/j.jhazmat.2024.135604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Triclosan (TCS) and tetracycline (TC) as common antibacterial agents are frequently detected in the influent of wastewater treatment plants. The TCS and TC exposure patterns may determine their impacts on wastewater treatment microbiomes, on which information remains unknown. In this study, the impacts of sequential exposure of TCS and TC on methanogenic digestion microbiomes in upflow anaerobic sludge blanket (UASB) reactors were analyzed and compared with that of the same microbiomes being simultaneously exposed to TCS and TC. Results indicated that the UASB reactor 2 (MD2) with sequential TCS-TC exposure consistently demonstrated higher chemical oxygen demand (COD) removal efficiency (94.7 %). In contrast, in the MD1 reactor, COD removal efficiency decreased from 94.4 % to 82.7 % upon simultaneous exposure to TCS and TC. Accordingly, a 1.8 times higher enrichment of total antibiotic resistance genes (ARGs) was observed in MD1 relative to MD2. Using a dissimilarity-overlap approach, the MD2 microbiome with sequential exposure was predominantly mediated by deterministic factors in their community assembly (largely contributed by abundant and intermediate biospheres), resulting in microbial interaction networks with higher average clustering coefficients and shorter average path lengths, compared to the MD1 microbiomes. Our results could support sustainable management of TCS and TC contamination in wastewater treatment plants.
Collapse
Affiliation(s)
- Na Zhou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiangping Xu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haihong Jiang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhiwei Liang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Wu C, Deng C, Zhang JX, Pan W, Yang L, Pan K, Tan QG, Yue T, Miao AJ. Silica nanoparticles inhibit cadmium uptake by the protozoan Tetrahymena thermophila without the need for adsorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133569. [PMID: 38266583 DOI: 10.1016/j.jhazmat.2024.133569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
The simultaneous presence of nanoparticles (NPs) and heavy metals in the environment may affect their mutual biological uptake. Although previous studies showed that NPs could alter the cellular uptake of heavy metals by their adsorption of heavy metals, whether they could affect metal uptake without the need for adsorption is unknown. This study examined the effects of silica (SiO2) NPs on the uptake of Cd ion by the protozoan Tetrahymena thermophila. We found that, even with negligible levels of adsorption, SiO2 NPs at concentrations of 3 to 100 mg/L inhibited Cd uptake. This inhibitory effect decreased as the ambient Cd concentration increased from 1 to 100 μg/L, suggesting the involvement of at least two transporters with different affinities for Cd. The transporters were subsequently identified by the specific protein inhibitors amiloride and tariquidar as NCX and ABCB1, which are responsible for the uptake of Cd at low and high Cd levels, respectively. RT-qPCR and molecular dynamics simulation further showed that the inhibitory effects of SiO2 NPs were attributable to the down-regulated expression of the genes Ncx and Abcb1, steric hindrance of Cd uptake by NCX and ABCB1, and the shrinkage of the central channel pore of the transporters in the presence of SiO2 NPs. SiO2 NPs more strongly inhibited Cd transport by NCX than by ABCB1, due to the higher binding affinity of SiO2 NPs with NCX. Overall, our study sheds new light on a previously overlooked influence of NPs on metal uptake and the responsible mechanism.
Collapse
Affiliation(s)
- Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Chaofan Deng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Jia-Xin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Wei Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China.
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
3
|
Liu YY, Pan W, Wang M, Zhang KD, Zhang HJ, Huang B, Zhang W, Tan QG, Miao AJ. Silica Nanoparticle Size Determines the Mechanisms Underlying the Inhibition of Iron Oxide Nanoparticle Uptake by Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:751-759. [PMID: 38113379 DOI: 10.1021/acs.est.3c06997] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Aquatic environments are complicated systems that contain different types of nanoparticles (NPs). Nevertheless, recent studies of NP toxicity, and especially those that have focused on bioaccumulation have mostly investigated only a single type of NPs. Assessments of the environmental risks of NPs that do not consider co-exposure regimes may lead to inaccurate conclusions and ineffective environmental regulation. Thus, the present study examined the effects of differently sized silica NPs (SiO2 NPs) on the uptake of iron oxide NPs (Fe2O3 NPs) by the zooplankton Daphnia magna. Both SiO2 NPs and Fe2O3 NPs were well dispersed in the experimental medium without significant heteroaggregation. Although all three sizes of SiO2 NPs inhibited the uptake of Fe2O3 NPs, the underlying mechanisms differed. SiO2 NPs smaller than the average mesh size (∼200 nm) of the filtering apparatus of D. magna reduced the accumulation of Fe2O3 NPs through uptake competition, whereas larger SiO2 NPs inhibited the uptake of Fe2O3 NPs mainly by reducing the water filtration rate of the daphnids. Overall, in evaluations of the risks of NPs in the natural environment, the different mechanisms underlying the effects of NPs of different sizes on the uptake of dissimilar NPs should be considered.
Collapse
Affiliation(s)
- Yue-Yue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wei Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ke-Da Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong-Jie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bin Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
4
|
Németh I, László K, Bulátkó A, Vaszita E, Molnár M. Ecotoxicity Assessment of Graphene Oxides Using Test Organisms from Three Hierarchical Trophic Levels to Evaluate Their Potential Environmental Risk. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2858. [PMID: 37947703 PMCID: PMC10649827 DOI: 10.3390/nano13212858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
After more than a decade of studying the ecotoxicity of graphene oxide nanomaterials (nGOs), it has been concluded that there is limited information available regarding the environmental risk of graphene-based materials. Since existing ecotoxicological studies of nanomaterials have produced contradictory results, it is recommended that case-by-case studies should be conducted to evaluate their effects. This can be carried out by employing several methods, testing species from different trophic levels, and conducting community studies. Our goal was to evaluate the toxicity effects of two GOs (AF 96/97 and PM 995) derived from different graphite precursors on various test organisms from diverse trophic levels (bacteria, protozoa, a freshwater microbial community, plants, and invertebrate animals) in aquatic environments. We compared the effects of both nGO types and estimated the predicted no-effect environmental concentration (PNEC) values to determine their potential environmental risk. Our findings demonstrated the need for a complex ecotoxicity toolkit since the ecotoxicity results varied based on the test organism, the selected endpoints, and the test method used. Additionally, we found that toxicity effects were dependent on the concentration and characteristics of the specific nGO type used, as well as the exposure time. We estimated the PNEC values for GO AF 96/97 and GO PM 995 in the aquatic compartment to be 8 ng/L and 4 ng/L, respectively. Even after applying the worst-case scenario approach, the tested nGOs pose no environmental risk.
Collapse
Affiliation(s)
- Imre Németh
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (I.N.); (E.V.)
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (K.L.); (A.B.)
| | - Anna Bulátkó
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (K.L.); (A.B.)
| | - Emese Vaszita
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (I.N.); (E.V.)
| | - Mónika Molnár
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (I.N.); (E.V.)
| |
Collapse
|
5
|
Guo WB, Wu C, Yang L, Miao AJ. Pre-exposure to titanium or iron oxide nanoparticles suppresses the subsequent cellular uptake of gold nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162491. [PMID: 36889398 DOI: 10.1016/j.scitotenv.2023.162491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/04/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Humans are exposed to a wide variety of natural and engineered nanoparticles (NPs) during their lifetime. However, the effects of pre-exposure to NPs on subsequent uptake of other NPs have not been investigated. In the present study, we investigated the effects of pre-exposure to three NPs (TiO2, Fe2O3, and SiO2 NPs) on the subsequent uptake of gold NPs (AuNPs) by hepatocellular carcinoma cells (HepG2). When HepG2 cells were pre-exposed to TiO2 or Fe2O3 NPs, but not SiO2 NPs for 2 days, their subsequent uptake of AuNPs was inhibited. Such inhibition was also observed in human cervical cancer (HeLa) cells, suggesting that this phenomenon is present in different cell types. The mechanisms underlying the inhibitory effect of NP pre-exposure include altered plasma membrane fluidity due to changes in lipid metabolism and reduced intracellular ATP production due to decreased intracellular oxygen. Despite the inhibitory effects of NP pre-exposure, full recovery was observed after transferring the cells to medium without NPs, even when the pre-exposure time was extended from 2 days to 2 weeks. Overall, the pre-exposure effects observed in the present study should be considered in the biological application and risk evaluation of NPs.
Collapse
Affiliation(s)
- Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
6
|
Guo WB, Wu C, Pan K, Yang L, Miao AJ. Pre-exposure to Fe 2O 3 or TiO 2 Nanoparticles Inhibits Subsequent Biological Uptake of 55Fe-Labeled Fe 2O 3 Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4831-4840. [PMID: 36938933 DOI: 10.1021/acs.est.2c08747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aquatic organisms are frequently exposed to various nanoparticles (NPs) in the natural environment. Thus, studies of NP bioaccumulation should include organisms that have been previously exposed to NPs. Our study investigated the effects of pre-exposure of Tetrahymena thermophila (T. thermophila) to Fe2O3 or TiO2 NPs on the protozoan's subsequent uptake of 55Fe-labeled Fe2O3 (55Fe2O3) NPs. Molecular mechanisms underlying the pre-exposure effects were explored in transcriptomic and metabolomic experiments. Pre-exposure to either NPs inhibited the subsequent uptake of 55Fe2O3 NPs. The results of the transcriptomic experiment indicated that NP pre-exposure influenced the expression of genes related to phagosomes and lysosomes and physiological processes such as glutathione and lipid metabolism, which are closely associated with the endocytosis of 55Fe2O3 NPs. The differentially expressed metabolites obtained from the metabolomic experiments showed an enrichment of energy metabolism and antioxidation pathways in T. thermophila pre-exposed to NPs. Together, these results demonstrate that the pre-exposure of T. thermophila to Fe2O3 or TiO2 NPs inhibited the protozoan's subsequent uptake of 55Fe2O3 NPs, possibly by mechanisms involving the alteration of endocytosis-related organelles, the induction of oxidative stress, and a lowering of the intracellular energy supply. Thus, NP pre-exposure represents a scenario which can inform increasingly realistic estimates of NP bioaccumulation.
Collapse
Affiliation(s)
- Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China PRC
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, China PRC
| |
Collapse
|
7
|
Zhang L, Yin W, Shen S, Feng Y, Xu W, Sun Y, Yang Z. ZnO nanoparticles interfere with top-down effect of the protozoan paramecium on removing microcystis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119900. [PMID: 35940484 DOI: 10.1016/j.envpol.2022.119900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/09/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Under intensive human activity, sewage discharge causes eutrophication-driven cyanobacteria blooms as well as nanomaterial pollution. In biological control of harmful cyanobacteria, top-down effect of protozoan has great potentials for removing cyanobacterial populations, degrading cyanotoxins, and improving phytoplankton community. ZnO nanoparticles as a kind of emerging contaminants have attracted increasing attention because of wide application and their high bio-toxicity effects on reducing the ingestion of aquatic animals including Paramecium, thereby possibly disturbing top-down control of cyanobacteria. Therefore, this study investigated the effects of ZnO nanoparticles at environmental-relevant concentrations on the protozoan Paramecium removing toxic Microcystis. Results showed Paramecium effectively eliminated all the Microcystis, despite exposure to ZnO nanoparticles. However, their ingestion rate was significantly reduced at more than 0.1 mg L-1 ZnO nanoparticles, thereby delaying Microcystis removal. Nevertheless, at 0.1 mg L-1 ZnO nanoparticles, the time to Microcystis extinction decreased compared to the group without ZnO nanoparticles, because Microcystis populations were reduced under this circumstance, while ingestion rate of Paramecium was unaffected. Furthermore, ZnO nanoparticles obviously accumulated in food vacuoles of Paramecium, and the size of nanoparticles aggregates and zinc concentrations in Paramecium were increased with ZnO nanoparticles concentrations. At the end of experiment, these food vacuoles were not dissipated. Overall, these findings suggest that ZnO nanoparticles impair protozoan top-down effects through reducing Microcystis and ingestion rate as well as disturbing functions of their digestive organelles, and highlight the need to consider the interfering effects of environmental pollutants on cyanobacterial removal efficiency by protozoans in natural waters.
Collapse
Affiliation(s)
- Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Wei Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Siyi Shen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuyun Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Wenjie Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|