1
|
Lavor V, Wei J, Coceal O, Grimmond S, Luo Z. Quanta emission rate during speaking and coughing mediated by indoor temperature and humidity. ENVIRONMENT INTERNATIONAL 2025; 198:109379. [PMID: 40179620 DOI: 10.1016/j.envint.2025.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
In epidemiological prospective modelling, assessing the hypothetical infectious quanta emission rate (Eq) is critical for estimating airborne infection risk. Existing Eq models overlook environmental factors such as indoor relative humidity (RH) and temperature (T), despite their importance to droplet evaporation dynamics. Here we include these environmental factors in a prospective Eq model based on the airborne probability functions with emitted droplet distribution for speaking and coughing activities. Our results show relative humidity and temperature have substantial influence on Eq. Drier environments exhibit a notable increase in suspended droplets (cf. moist environments), with Eq having a 10-fold increase when RH decreases from 90 % to 20 % for coughing and a 2-fold increase for speaking at a representative summer indoor environment (T = 25° C). In warmer environments, Eq values are consistently higher (cf. colder), with increases of up to 22 % for coughing and 9 % for speaking. This indicates temperature has a smaller impact than humidity. We demonstrate that indoor environmental conditions are important when quantifying the quanta emission rate using a prospective method. This is essential for assessing airborne infection risk.
Collapse
Affiliation(s)
- Vitor Lavor
- School of the Built Environment, University of Reading, Reading, UK
| | - Jianjian Wei
- Institute of Refrigeration and Cryogenics, Key Laboratory of Refrigeration and Cryogenics Technology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Omduth Coceal
- Department of Meteorology, University of Reading, Reading, UK
| | - Sue Grimmond
- Department of Meteorology, University of Reading, Reading, UK
| | - Zhiwen Luo
- Welsh School of Architecture, Cardiff University, Cardiff, UK.
| |
Collapse
|
2
|
Li B, Lin B, Wang Y, Shi Y, Zeng W, Zhao Y, Gu Y, Liu C, Gao H, Cheng H, Zheng X, Xiang G, Wang G, Liu P. Multi-scenario surveillance of respiratory viruses in aerosols with sub-single-copy spatial resolution. Nat Commun 2024; 15:8770. [PMID: 39384836 PMCID: PMC11464689 DOI: 10.1038/s41467-024-53059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
Highly sensitive airborne virus monitoring is critical for preventing and containing epidemics. However, the detection of airborne viruses at ultra-low concentrations remains challenging due to the lack of ultra-sensitive methods and easy-to-deployment equipment. Here, we present an integrated microfluidic cartridge that can accurately detect SARS-COV-2, Influenza A, B, and respiratory syncytial virus with a sensitivity of 10 copies/mL. When integrated with a high-flow aerosol sampler, our microdevice can achieve a sub-single-copy spatial resolution of 0.83 copies/m3 for airborne virus surveillance with an air flow rate of 400 L/min and a sampling time of 30 minutes. We then designed a series of virus-in-aerosols monitoring systems (RIAMs), including versions of a multi-site sampling RIAMs (M-RIAMs), a stationary real-time RIAMs (S-RIAMs), and a roaming real-time RIAMs (R-RIAMs) for different application scenarios. Using M-RIAMs, we performed a comprehensive evaluation of 210 environmental samples from COVID-19 patient wards, including 30 aerosol samples. The highest positive detection rate of aerosol samples (60%) proved the aerosol-based SARS-CoV-2 monitoring represents an effective method for spatial risk assessment. The detection of 78 aerosol samples in real-world settings via S-RIAMs confirmed its reliability for ultra-sensitive and continuous airborne virus monitoring. Therefore, RIAMs shows the potential as an effective solution for mitigating the risk of airborne virus transmission.
Collapse
Affiliation(s)
- Bao Li
- School of Biomedical Engineering, Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Baobao Lin
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yan Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Ye Shi
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang, China
| | - Wu Zeng
- School of Biomedical Engineering, Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| | | | - Yin Gu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Chang Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hui Gao
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Hao Cheng
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Xiaoqun Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang, China
| | - Guangxin Xiang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang, China.
| | - Guiqiang Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China.
- Department of Infectious Diseases, Peking University International Hospital, Beijing, China.
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China.
| | - Peng Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
3
|
Eren ZB, Vatansever C, Kabadayı B, Haykar B, Kuloğlu ZE, Ay S, Nurlybayeva K, Eyikudamacı G, Barlas T, Palaoğlu E, Beşli Y, Kuşkucu MA, Ergönül Ö, Can F. Surveillance of respiratory viruses by aerosol screening in indoor air as an early warning system for epidemics. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13303. [PMID: 38982659 PMCID: PMC11233404 DOI: 10.1111/1758-2229.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
The development of effective methods for the surveillance of seasonal respiratory viruses is required for the timely management of outbreaks. We aimed to survey Influenza-A, Influenza-B, RSV-A, Rhinovirus and SARS-CoV-2 surveillance in a tertiary hospital and a campus over 5 months. The effectiveness of air screening as an early warning system for respiratory viruses was evaluated in correlation with respiratory tract panel test results. The overall viral positivity was higher on the campus than in the hospital (55.0% vs. 38.0%). Influenza A was the most prevalent pathogen in both locations. There were two influenza peaks (42nd and 49th weeks) in the hospital air, and a delayed peak was detected on campus in the 1st-week of January. Panel tests indicated a high rate of Influenza A in late December. RSV-A-positivity was higher on the campus than the hospital (21.6% vs. 7.4%). Moreover, we detected two RSV-A peaks in the campus air (48th and 51st weeks) but only one peak in the hospital and panel tests (week 49). Although rhinovirus was the most common pathogen in panel tests, rhinovirus positivity was low in air samples. The air screening for Influenza-B and SARS-Cov-2 revealed comparable positivity rates with panel tests. Air screening can be integrated into surveillance programs to support infection control programs for potential epidemics of respiratory virus infections except for rhinoviruses.
Collapse
Affiliation(s)
| | - Cansel Vatansever
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
| | | | | | - Zeynep Ece Kuloğlu
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
- Koç UniversityGraduate School of Health SciencesIstanbulTurkey
| | - Sedat Ay
- Koç University School of MedicineIstanbulTurkey
| | | | - Gül Eyikudamacı
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
- Koç UniversityGraduate School of Health SciencesIstanbulTurkey
| | - Tayfun Barlas
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
| | - Erhan Palaoğlu
- Department of Clinical LaboratoryAmerican HospitalIstanbulTurkey
| | - Yeşim Beşli
- Department of Clinical LaboratoryAmerican HospitalIstanbulTurkey
| | - Mert Ahmet Kuşkucu
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
- Department of Medical MicrobiologyKoç University School of MedicineIstanbulTurkey
| | - Önder Ergönül
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
- Department of Infectious Disease and Clinical MicrobiologyKoç University School of MedicineIstanbulTurkey
| | - Fusun Can
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
- Department of Medical MicrobiologyKoç University School of MedicineIstanbulTurkey
| |
Collapse
|
4
|
Kulmala I, Taipale A, Sanmark E, Lastovets N, Sormunen P, Nuorti P, Saari S, Luoto A, Säämänen A. Estimated relative potential for airborne SARS-CoV-2 transmission in a day care centre. Heliyon 2024; 10:e30724. [PMID: 38756615 PMCID: PMC11096945 DOI: 10.1016/j.heliyon.2024.e30724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
We estimated the hourly probability of airborne severe acute respiratory coronavirus 2 (SARS-CoV-2) transmission and further the estimated number of persons at transmission risk in a day care centre by calculating the inhaled dose for airborne pathogens based on their concentration, exposure time and activity. Information about the occupancy and activity of the rooms was collected from day care centre personnel and building characteristics were obtained from the design values. The generation rate of pathogens was calculated as a product of viral load of the respiratory fluids and the emission of the exhaled airborne particles, considering the prevalence of the disease and the activity of the individuals. A well-mixed model was used in the estimation of the concentration of pathogens in the air. The Wells-Riley model was used for infection probability. The approach presented in this study was utilised in the identification of hot spots and critical events in the day care centre. Large variation in the infection probabilities and estimated number of persons at transmission risk was observed when modelling a normal day at the centre. The estimated hourly infection probabilities between the worst hour in the worst room and the best hour in the best room varied in the ratio of 100:1. Similarly, the number of persons at transmission risk between the worst and best cases varied in the ratio 1000:1. Although there are uncertainties in the input values affecting the absolute risk estimates the model proved to be useful in ranking and identifying the hot spots and events in the building and implementing effective control measures.
Collapse
Affiliation(s)
- Ilpo Kulmala
- VTT Smart Energy and Built Environment, Visiokatu 4, PO Box 1300, FI-33101, Tampere, Finland
| | - Aimo Taipale
- VTT Smart Energy and Built Environment, Visiokatu 4, PO Box 1300, FI-33101, Tampere, Finland
| | - Enni Sanmark
- Helsinki University Hospital, Department of Otorhinolaryngology and Phoniatrics – Head and Neck Surgery, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Natalia Lastovets
- Tampere University, Faculty of Built Environment, Civil Engineering Unit, Korkeakoulunkatu 5D, FI-33720, Tampere, Finland
| | - Piia Sormunen
- Tampere University, Faculty of Built Environment, Civil Engineering Unit, Korkeakoulunkatu 5D, FI-33720, Tampere, Finland
| | - Pekka Nuorti
- Tampere University, Faculty of Social Sciences, Health Sciences Unit, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Sampo Saari
- Tampere University of Applied Sciences, Kuntokatu 3, 33520, Tampere, Finland
| | - Anni Luoto
- Granlund Oy, Malminkaari 21, 00700, Helsinki, Finland
| | - Arto Säämänen
- VTT Smart Energy and Built Environment, Visiokatu 4, PO Box 1300, FI-33101, Tampere, Finland
| |
Collapse
|
5
|
Andrup L, Krogfelt KA, Stephansen L, Hansen KS, Graversen BK, Wolkoff P, Madsen AM. Reduction of acute respiratory infections in day-care by non-pharmaceutical interventions: a narrative review. Front Public Health 2024; 12:1332078. [PMID: 38420031 PMCID: PMC10899481 DOI: 10.3389/fpubh.2024.1332078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Children who start in day-care have 2-4 times as many respiratory infections compared to children who are cared for at home, and day-care staff are among the employees with the highest absenteeism. The extensive new knowledge that has been generated in the COVID-19 era should be used in the prevention measures we prioritize. The purpose of this narrative review is to answer the questions: Which respiratory viruses are the most significant in day-care centers and similar indoor environments? What do we know about the transmission route of these viruses? What evidence is there for the effectiveness of different non-pharmaceutical prevention measures? Design Literature searches with different terms related to respiratory infections in humans, mitigation strategies, viral transmission mechanisms, and with special focus on day-care, kindergarten or child nurseries, were conducted in PubMed database and Web of Science. Searches with each of the main viruses in combination with transmission, infectivity, and infectious spread were conducted separately supplemented through the references of articles that were retrieved. Results Five viruses were found to be responsible for ≈95% of respiratory infections: rhinovirus, (RV), influenza virus (IV), respiratory syncytial virus (RSV), coronavirus (CoV), and adenovirus (AdV). Novel research, emerged during the COVID-19 pandemic, suggests that most respiratory viruses are primarily transmitted in an airborne manner carried by aerosols (microdroplets). Conclusion Since airborne transmission is dominant for the most common respiratory viruses, the most important preventive measures consist of better indoor air quality that reduces viral concentrations and viability by appropriate ventilation strategies. Furthermore, control of the relative humidity and temperature, which ensures optimal respiratory functionality and, together with low resident density (or mask use) and increased time outdoors, can reduce the occurrence of respiratory infections.
Collapse
Affiliation(s)
- Lars Andrup
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Karen A Krogfelt
- Department of Science and Environment, Molecular and Medical Biology, PandemiX Center, Roskilde University, Roskilde, Denmark
| | - Lene Stephansen
- Gladsaxe Municipality, Social and Health Department, Gladsaxe, Denmark
| | | | | | - Peder Wolkoff
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
6
|
Caracci E, Stabile L, Ferro AR, Morawska L, Buonanno G. Respiratory particle emission rates from children during speaking. Sci Rep 2023; 13:18294. [PMID: 37880507 PMCID: PMC10600129 DOI: 10.1038/s41598-023-45615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
The number of respiratory particles emitted during different respiratory activities is one of the main parameters affecting the airborne transmission of respiratory pathogens. Information on respiratory particle emission rates is mostly available for adults (few studies have investigated adolescents and children) and generally involves a limited number of subjects. In the present paper we attempted to reduce this knowledge gap by conducting an extensive experimental campaign to measure the emission of respiratory particles of more than 400 children aged 6 to 12 years while they pronounced a phonetically balanced word list at two different voice intensity levels ("speaking" and "loudly speaking"). Respiratory particle concentrations, particle distributions, and exhaled air flow rates were measured to estimate the respiratory particle emission rate. Sound pressure levels were also simultaneously measured. We found out that median respiratory particle emission rates for speaking and loudly speaking were 26 particles s-1 (range 7.1-93 particles s-1) and 41 particles s-1 (range 10-146 particles s-1), respectively. Children sex was significant for emission rates, with higher emission rates for males during both speaking and loudly speaking. No effect of age on the emission rates was identified. Concerning particle size distributions, for both respiratory activities, a main mode at approximately 0.6 µm and a second minor mode at < 2 µm were observed, and no differences were found between males and females. This information provides important input parameters in predictive models adopted to estimate the transmission risk of airborne pathogens in indoor spaces.
Collapse
Affiliation(s)
- Elisa Caracci
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy.
| | - Andrea R Ferro
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, USA
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Whitfield CA, van Tongeren M, Han Y, Wei H, Daniels S, Regan M, Denning DW, Verma A, Pellis L, Hall I, with the University of Manchester COVID-19 Modelling Group. Modelling the impact of non-pharmaceutical interventions on workplace transmission of SARS-CoV-2 in the home-delivery sector. PLoS One 2023; 18:e0284805. [PMID: 37146037 PMCID: PMC10162531 DOI: 10.1371/journal.pone.0284805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/06/2023] [Indexed: 05/07/2023] Open
Abstract
OBJECTIVE We aimed to use mathematical models of SARS-COV-2 to assess the potential efficacy of non-pharmaceutical interventions on transmission in the parcel delivery and logistics sector. METHODS We devloped a network-based model of workplace contacts based on data and consultations from companies in the parcel delivery and logistics sectors. We used these in stochastic simulations of disease transmission to predict the probability of workplace outbreaks in this settings. Individuals in the model have different viral load trajectories based on SARS-CoV-2 in-host dynamics, which couple to their infectiousness and test positive probability over time, in order to determine the impact of testing and isolation measures. RESULTS The baseline model (without any interventions) showed different workplace infection rates for staff in different job roles. Based on our assumptions of contact patterns in the parcel delivery work setting we found that when a delivery driver was the index case, on average they infect only 0.14 other employees, while for warehouse and office workers this went up to 0.65 and 2.24 respectively. In the LIDD setting this was predicted to be 1.40, 0.98, and 1.34 respectively. Nonetheless, the vast majority of simulations resulted in 0 secondary cases among customers (even without contact-free delivery). Our results showed that a combination of social distancing, office staff working from home, and fixed driver pairings (all interventions carried out by the companies we consulted) reduce the risk of workplace outbreaks by 3-4 times. CONCLUSION This work suggests that, without interventions, significant transmission could have occured in these workplaces, but that these posed minimal risk to customers. We found that identifying and isolating regular close-contacts of infectious individuals (i.e. house-share, carpools, or delivery pairs) is an efficient measure for stopping workplace outbreaks. Regular testing can make these isolation measures even more effective but also increases the number of staff isolating at one time. It is therefore more efficient to use these isolation measures in addition to social distancing and contact reduction interventions, rather than instead of, as these reduce both transmission and the number of people needing to isolate at one time.
Collapse
Affiliation(s)
- Carl A. Whitfield
- Department of Mathematics, University of Manchester, Manchester, England
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, England
- Manchester Academic Health Science Centre, University of Manchester, Manchester, England
| | - Martie van Tongeren
- Manchester Academic Health Science Centre, University of Manchester, Manchester, England
- Division of Population Health, Health Services Research & Primary Care, School of Health Sciences, University of Manchester, Manchester, England
| | - Yang Han
- Department of Mathematics, University of Manchester, Manchester, England
| | - Hua Wei
- Manchester Academic Health Science Centre, University of Manchester, Manchester, England
- Division of Population Health, Health Services Research & Primary Care, School of Health Sciences, University of Manchester, Manchester, England
| | - Sarah Daniels
- Manchester Academic Health Science Centre, University of Manchester, Manchester, England
- Division of Population Health, Health Services Research & Primary Care, School of Health Sciences, University of Manchester, Manchester, England
| | - Martyn Regan
- Manchester Academic Health Science Centre, University of Manchester, Manchester, England
- Division of Population Health, Health Services Research & Primary Care, School of Health Sciences, University of Manchester, Manchester, England
- National COVID-19 Response Centre, UK Health Security Agency, London, England
| | - David W. Denning
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, England
- Manchester Academic Health Science Centre, University of Manchester, Manchester, England
| | - Arpana Verma
- Manchester Academic Health Science Centre, University of Manchester, Manchester, England
- Division of Population Health, Health Services Research & Primary Care, School of Health Sciences, University of Manchester, Manchester, England
| | - Lorenzo Pellis
- Department of Mathematics, University of Manchester, Manchester, England
| | - Ian Hall
- Department of Mathematics, University of Manchester, Manchester, England
- Manchester Academic Health Science Centre, University of Manchester, Manchester, England
- Public Health Advice, Guidance and Expertise, UK Health Security Agency, London, England
| | | |
Collapse
|
8
|
Michelitsch A, Allendorf V, Conraths FJ, Gethmann J, Schulz J, Wernike K, Denzin N. SARS-CoV-2 Infection and Clinical Signs in Cats and Dogs from Confirmed Positive Households in Germany. Viruses 2023; 15:v15040837. [PMID: 37112817 PMCID: PMC10144952 DOI: 10.3390/v15040837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
On a global scale, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to the health of the human population. Not only humans can be infected, but also their companion animals. The antibody status of 115 cats and 170 dogs, originating from 177 German households known to have been SARS-CoV-2 positive, was determined by enzyme-linked immunosorbent assay (ELISA), and the results were combined with information gathered from a questionnaire that was completed by the owner(s) of the animals. The true seroprevalences of SARS-CoV-2 among cats and dogs were 42.5% (95% CI 33.5–51.9) and 56.8% (95% CI 49.1–64.4), respectively. In a multivariable logistic regression accounting for data clustered in households, for cats, the number of infected humans in the household and an above-average contact intensity turned out to be significant risk factors; contact with humans outside the household was a protective factor. For dogs, on the contrary, contact outside the household was a risk factor, and reduced contact, once the human infection was known, was a significant protective factor. No significant association was found between reported clinical signs in animals and their antibody status, and no spatial clustering of positive test results was identified.
Collapse
|
9
|
Liu Z, Ma J, Lv J, Wang Y, He J, Yao G, Cao G. Transmission characteristics of infectious pathogen-laden aerosols in a negative-pressure operating room. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130650. [PMID: 36580790 DOI: 10.1016/j.jhazmat.2022.130650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The infectious pathogen-laden aerosols generated by infected patients have a significant impact on the safety of surgical staff in highly clean negative-pressure operating rooms. Understanding the transmission characteristics of infectious pathogen-laden aerosols is therefore essential. Therefore, in this study, we conducted experiments in a full-size negative-pressure operating room, and the Phi-X174 phage was used as a bioaerosol release source to investigate the migration and deposition of bioaerosols. The high-concentration spatial regions and high-concentration deposition surfaces of the bioaerosols in the operating room were determined. The results showed that there was a high concentration of bioaerosols in the vortex region below the medical lamp for extended periods of time. Three surgical staff members close to the patient's surgical site had high bioaerosol concentrations at their facial sampling points, with the highest concentration reaching 16,553 PFU/m³ . At the end of bioaerosol generation, 99.9% of the bioaerosols were discharged within 10 mins. The bioaerosol deposition rates per unit area were high at 1.48%/m2, 0.46%/m2 and 1.79%/m2 for the central control panel, storage cabinet, and door surface, respectively. This research can be used as a scientific reference for controlling bioaerosols and determining key disinfection parts in a negative-pressure operating room.
Collapse
Affiliation(s)
- Zhijian Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China.
| | - Juntao Ma
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jiabin Lv
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Yongxin Wang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Junzhou He
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Guangpeng Yao
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Guoqing Cao
- Institute of Building Environment and Energy, China Academy of Building Research, Beijing 100013, PR China
| |
Collapse
|
10
|
Schumm B, Heiber M, Grätz F, Stabile L, Buonanno G, Schönfelder M, Hain R, Kähler CJ, Wackerhage H. Respiratory aerosol particle emission and simulated infection risk is greater during indoor endurance than resistance exercise. Proc Natl Acad Sci U S A 2023; 120:e2220882120. [PMID: 36802418 PMCID: PMC9992860 DOI: 10.1073/pnas.2220882120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 02/23/2023] Open
Abstract
Pathogens such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), influenza, and rhinoviruses are transmitted by airborne aerosol respiratory particles that are exhaled by infectious subjects. We have previously reported that the emission of aerosol particles increases on average 132-fold from rest to maximal endurance exercise. The aims of this study are to first measure aerosol particle emission during an isokinetic resistance exercise at 80% of the maximal voluntary contraction until exhaustion, second to compare aerosol particle emission during a typical spinning class session versus a three-set resistance training session. Finally, we then used this data to calculate the risk of infection during endurance and resistance exercise sessions with different mitigation strategies. During a set of isokinetic resistance exercise, aerosol particle emission increased 10-fold from 5,400 ± 1,200 particles/min at rest to 59,000 ± 69,900 particles/min during a set of resistance exercise. We found that aerosol particle emission per minute is on average 4.9-times lower during a resistance training session than during a spinning class. Using this data, we determined that the simulated infection risk increase during an endurance exercise session was sixfold higher than during a resistance exercise session when assuming one infected participant in the class. Collectively, this data helps to select mitigation measures for indoor resistance and endurance exercise classes at times where the risk of aerosol-transmitted infectious disease with severe outcomes is high.
Collapse
Affiliation(s)
- Benedikt Schumm
- Institute of Fluid Mechanics and Aerodynamics, Universität der Bundeswehr München, 85577Neubiberg, Germany
| | - Marie Heiber
- Institute of Sport Science, Universität der Bundeswehr München, 85577Neubiberg, Germany
- Associate Professorship of Exercise Biology, Technische Universität München, 80809Munich, Germany
| | - Felix Grätz
- Associate Professorship of Exercise Biology, Technische Universität München, 80809Munich, Germany
| | - Luca Stabile
- University of Cassino and Southern Lazio, Department of Civil and Mechanical Engineering, 03043Cassino, Italy
| | - Giorgio Buonanno
- University of Cassino and Southern Lazio, Department of Civil and Mechanical Engineering, 03043Cassino, Italy
- Queensland University of Technology, 4000QLD, Australia
| | - Martin Schönfelder
- Associate Professorship of Exercise Biology, Technische Universität München, 80809Munich, Germany
| | - Rainer Hain
- Institute of Fluid Mechanics and Aerodynamics, Universität der Bundeswehr München, 85577Neubiberg, Germany
| | - Christian J. Kähler
- Institute of Fluid Mechanics and Aerodynamics, Universität der Bundeswehr München, 85577Neubiberg, Germany
| | - Henning Wackerhage
- Associate Professorship of Exercise Biology, Technische Universität München, 80809Munich, Germany
| |
Collapse
|
11
|
Rotulo A, Kondilis E, Thwe T, Gautam S, Torcu Ö, Vera-Montoya M, Marjan S, Gazi MI, Putri AS, Hasan RB, Mone FH, Rodríguez-Castillo K, Tabassum A, Parcharidi Z, Sharma B, Islam F, Amoo B, Lemke L, Gallo V. Mind the gap: Data availability, accessibility, transparency, and credibility during the COVID-19 pandemic, an international comparative appraisal. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001148. [PMID: 37083552 PMCID: PMC10120928 DOI: 10.1371/journal.pgph.0001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Data transparency has played a key role in this pandemic. The aim of this paper is to map COVID-19 data availability and accessibility, and to rate their transparency and credibility in selected countries, by the source of information. This is used to identify knowledge gaps, and to analyse policy implications. The availability of a number of COVID-19 metrics (incidence, mortality, number of people tested, test positive rate, number of patients hospitalised, number of patients discharged, the proportion of population who received at least one vaccine, the proportion of population fully vaccinated) was ascertained from selected countries for the full population, and for few of stratification variables (age, sex, ethnicity, socio-economic status) and subgroups (residents in nursing homes, inmates, students, healthcare and social workers, and residents in refugee camps). Nine countries were included: Bangladesh, Indonesia, Iran, Nigeria, Turkey, Panama, Greece, the UK, and the Netherlands. All countries reported periodically most of COVID-19 metrics on the total population. Data were more frequently broken down by age, sex, and region than by ethnic group or socio-economic status. Data on COVID-19 is partially available for special groups. This exercise highlighted the importance of a transparent and detailed reporting of COVID-19 related variables. The more data is publicly available the more transparency, accountability, and democratisation of the research process is enabled, allowing a sound evidence-based analysis of the consequences of health policies.
Collapse
Affiliation(s)
- Arianna Rotulo
- Department of Sustainable Health, Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
| | - Elias Kondilis
- School of Medicine, Aristoteles University, Thessaloniki, Greece
| | - Thaint Thwe
- Department of Health Sciences, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- Graduate School of Medical Sciences, University of Groningen, Groningen, the Netherlands
| | - Sanju Gautam
- Department of Public Health, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Özgün Torcu
- Faculty of Medicine, Ege University, Izmir, Türkiye
| | | | - Sharika Marjan
- Department of Global Health, University of Bergen, Bergen, Norway
| | - Md Ismail Gazi
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| | - Alifa Syamantha Putri
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Cibinong, Indonesia
| | - Rubyath Binte Hasan
- Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Fabia Hannan Mone
- Department of Paediatrics, Anwer Khan Modern Medical College Hospital, Dhaka, Bangladesh
- Department of Public Health, Independent University, Dhaka, Bangladesh
- Institute of Social Welfare & Research, University of Dhaka, Dhaka, Bangladesh
| | | | - Arifa Tabassum
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Zoi Parcharidi
- School of Medicine, Aristoteles University, Thessaloniki, Greece
| | | | - Fahmida Islam
- Department of Public Health, North South University, Dhaka, Bangladesh
| | | | - Lea Lemke
- Bachelor degree in Global Responsibility and Leadership, Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
| | - Valentina Gallo
- Department of Sustainable Health, Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
| |
Collapse
|
12
|
Buonanno G, Ricolfi L, Morawska L, Stabile L. Increasing ventilation reduces SARS-CoV-2 airborne transmission in schools: A retrospective cohort study in Italy's Marche region. Front Public Health 2022; 10:1087087. [PMID: 36568748 PMCID: PMC9787545 DOI: 10.3389/fpubh.2022.1087087] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction While increasing the ventilation rate is an important measure to remove inhalable virus-laden respiratory particles and lower the risk of infection, direct validation in schools with population-based studies is far from definitive. Methods We investigated the strength of association between ventilation and SARS-CoV-2 transmission reported among the students of Italy's Marche region in more than 10,000 classrooms, of which 316 were equipped with mechanical ventilation. We used ordinary and logistic regression models to explore the relative risk associated with the exposure of students in classrooms. Results and discussion For classrooms equipped with mechanical ventilation systems, the relative risk of infection of students decreased at least by 74% compared with a classroom with only natural ventilation, reaching values of at least 80% for ventilation rates >10 L s-1 student-1. From the regression analysis we obtained a relative risk reduction in the range 12%15% for each additional unit of ventilation rate per person. The results also allowed to validate a recently developed predictive theoretical approach able to estimate the SARS-CoV-2 risk of infection of susceptible individuals via the airborne transmission route. We need mechanical ventilation systems to protect students in classrooms from airborne transmission; the protection is greater if ventilation rates higher than the rate needed to ensure indoor air quality (>10 L s-1 student-1) are adopted. The excellent agreement between the results from the retrospective cohort study and the outcome of the predictive theoretical approach makes it possible to assess the risk of airborne transmission for any indoor environment.
Collapse
Affiliation(s)
- Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luca Ricolfi
- Department of Psychology, University of Turin, Turin, Italy
- David Hume Foundation, Turin, Italy
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| |
Collapse
|
13
|
Oksanen LAH, Virtanen J, Sanmark E, Rantanen N, Venkat V, Sofieva S, Aaltonen K, Kivistö I, Svirskaite J, Pérez AD, Kuula J, Levanov L, Hyvärinen A, Maunula L, Atanasova NS, Laitinen S, Anttila V, Lehtonen L, Lappalainen M, Geneid A, Sironen T. SARS-CoV-2 indoor environment contamination with epidemiological and experimental investigations. INDOOR AIR 2022; 32:e13118. [PMID: 36305066 PMCID: PMC9828560 DOI: 10.1111/ina.13118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 05/02/2023]
Abstract
SARS-CoV-2 has been detected both in air and on surfaces, but questions remain about the patient-specific and environmental factors affecting virus transmission. Additionally, more detailed information on viral sampling of the air is needed. This prospective cohort study (N = 56) presents results from 258 air and 252 surface samples from the surroundings of 23 hospitalized and eight home-treated COVID-19 index patients between July 2020 and March 2021 and compares the results between the measured environments and patient factors. Additionally, epidemiological and experimental investigations were performed. The proportions of qRT-PCR-positive air (10.7% hospital/17.6% homes) and surface samples (8.8%/12.9%) showed statistical similarity in hospital and homes. Significant SARS-CoV-2 air contamination was observed in a large (655.25 m3 ) mechanically ventilated (1.67 air changes per hour, 32.4-421 L/s/patient) patient hall even with only two patients present. All positive air samples were obtained in the absence of aerosol-generating procedures. In four cases, positive environmental samples were detected after the patients had developed a neutralizing IgG response. SARS-CoV-2 RNA was detected in the following particle sizes: 0.65-4.7 μm, 7.0-12.0 μm, >10 μm, and <100 μm. Appropriate infection control against airborne and surface transmission routes is needed in both environments, even after antibody production has begun.
Collapse
Affiliation(s)
- Lotta‐Maria A. H. Oksanen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Jenni Virtanen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Enni Sanmark
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Noora Rantanen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Vinaya Venkat
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Svetlana Sofieva
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Finnish Meteorological InstituteHelsinkiFinland
| | - Kirsi Aaltonen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Ilkka Kivistö
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Julija Svirskaite
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | | | - Joel Kuula
- Finnish Meteorological InstituteHelsinkiFinland
| | - Lev Levanov
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - Leena Maunula
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Nina S. Atanasova
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Finnish Meteorological InstituteHelsinkiFinland
| | | | - Veli‐Jukka Anttila
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUS Inflammation CenterHelsinki University HospitalHelsinkiFinland
| | - Lasse Lehtonen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic Center, HUSLABHelsinki University HospitalHelsinkiFinland
| | - Maija Lappalainen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic Center, HUSLABHelsinki University HospitalHelsinkiFinland
| | - Ahmed Geneid
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Tarja Sironen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
14
|
Snow S, Danam R, Leardini P, Glencross M, Beeson B, Ottenhaus LM, Boden M. Human factors affecting ventilation in Australian classrooms during the COVID-19 pandemic: Toward insourcing occupants' proficiency in ventilation management. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2022.888688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Underventilation in classrooms is associated with poorer academic performance and greater transmission risk of COVID-19. In a study involving data from CO2 logging in 67 classrooms in Brisbane, Australia, it was found that more than half of the classrooms monitored experienced between 5 and 50 separate instances of CO2 concentrations exceeding 1,800 ppm, a level at which cognitive performance reductions have been recorded and which is considered high risk for COVID-19 transmission. The research identifies a number of human-related factors affecting ventilation in certain classrooms, including the disabling of window operation to minimize the potential for student interference, keeping windows closed in naturally ventilated buildings to improve energy efficiency, difficult to reach switches for exhaust fans and perceptions of the likelihood of remedial action being taken. Identifying Inbodied Interaction as a useful lens to enable users themselves to better identify and remedy instances of poor IAQ, the paper contributes: (1) Insight into the CO2 concentrations experienced in Australian classrooms during the COVID pandemic; (2) Identification of human-factors contributing to the ventilation—and underventilation—of the rooms monitored; and (3) Suggestions for how to foster greater awareness of ventilation among classroom occupants and translate awareness into more active, informed, and healthier ventilation behaviors from occupants, using principles of Inbodied Interaction.
Collapse
|
15
|
Kvasnicka J, Cohen Hubal EA, Siegel JA, Scott JA, Diamond ML. Modeling Clothing as a Vector for Transporting Airborne Particles and Pathogens across Indoor Microenvironments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5641-5652. [PMID: 35404579 PMCID: PMC9069698 DOI: 10.1021/acs.est.1c08342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Evidence suggests that human exposure to airborne particles and associated contaminants, including respiratory pathogens, can persist beyond a single microenvironment. By accumulating such contaminants from air, clothing may function as a transport vector and source of "secondary exposure". To investigate this function, a novel microenvironmental exposure modeling framework (ABICAM) was developed. This framework was applied to a para-occupational exposure scenario involving the deposition of viable SARS-CoV-2 in respiratory particles (0.5-20 μm) from a primary source onto clothing in a nonhealthcare setting and subsequent resuspension and secondary exposure in a car and home. Variability was assessed through Monte Carlo simulations. The total volume of infectious particles on the occupant's clothing immediately after work was 4800 μm3 (5th-95th percentiles: 870-32 000 μm3). This value was 61% (5-95%: 17-300%) of the occupant's primary inhalation exposure in the workplace while unmasked. By arrival at the occupant's home after a car commute, relatively rapid viral inactivation on cotton clothing had reduced the infectious volume on clothing by 80% (5-95%: 26-99%). Secondary inhalation exposure (after work) was low in the absence of close proximity and physical contact with contaminated clothing. In comparison, the average primary inhalation exposure in the workplace was higher by about 2-3 orders of magnitude. It remains theoretically possible that resuspension and physical contact with contaminated clothing can occasionally transmit SARS-CoV-2 between humans.
Collapse
Affiliation(s)
- Jacob Kvasnicka
- Department
of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Elaine A. Cohen Hubal
- Center
for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Durham, North Carolina 27711, United States
| | - Jeffrey A. Siegel
- Department
of Civil and Mineral Engineering, University
of Toronto, Toronto, Ontario M5S 1A4, Canada
- Dalla
Lana School of Public Health, University
of Toronto, Toronto, Ontario M5T 3M7, Canada
| | - James A. Scott
- Dalla
Lana School of Public Health, University
of Toronto, Toronto, Ontario M5T 3M7, Canada
- Department
of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Miriam L. Diamond
- Department
of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
- Dalla
Lana School of Public Health, University
of Toronto, Toronto, Ontario M5T 3M7, Canada
- School of
the Environment, University of Toronto, Toronto, Ontario M5S 3E8, Canada
| |
Collapse
|