1
|
Gao H, Qian H, Meng Z, Chang S, Wang X, Han Z, Liu Y. Biomimetic materials for efficient emulsion separation: Based on the perspective of energy. Adv Colloid Interface Sci 2025; 341:103486. [PMID: 40163905 DOI: 10.1016/j.cis.2025.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Purifying emulsified oily wastewater is particularly crucial for solving environmental pollution and water scarcity. Membrane separation shows great potential for emulsified wastewater treatment. However, realizing continued effective emulsion separation remains a significant challenge. Fortunately, various kinds of creative schemes have been proposed to overcome the current dilemma. In this paper, biomimetic emulsion separation materials with unique wettability are introduced. Besides, This article summarizes the recently advanced emulsion separation strategies. First, we analyze the typical wettability theory and explore the trade-off between separation flux and efficiency. After that, based on emulsion types, the current common emulsion separation materials are summarized and analyzed. Notably, the integration of natural biological inspiration has made separation materials full of potential. Further, from the perspective of external energy input or no-external energy input, this article provides an overview of advanced emulsion separation materials and analyzes the potential separation mechanism. Encouragingly, efficient emulsion separation can be realized by membrane characteristics (microstructure, superwettability, electrostatic interaction) or the appropriate external stimulus (photo, electricity, magnetic). Finally, the challenges and trends are summarized. We hope that this article will provide inspiration for the advancement of novel generations of separation materials.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Haiyu Qian
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siyu Chang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Xi Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, PR China.
| |
Collapse
|
2
|
Gao H, Qian H, Meng Z, Chang S, Wang X, Han Z, Liu Y. Bioinspired interlaced wetting surfaces for continuous on-demand emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136011. [PMID: 39393316 DOI: 10.1016/j.jhazmat.2024.136011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
Maintaining high separation performance during continuous emulsion separation remains a challenge. Herein, based on biomimetic coupling ideas, hole array interlaced wetting surfaces (HAIWSs) and mastoid array interlaced wetting surfaces (MAIWSs) were prepared by laser processing, electroless silver deposition, thiol modification, and spraying for on-demand emulsion separation. When the separation is going on, randomly moving emulsion droplets are prone to being captured by holes or mastoids due to interlaced wettability. Under this unique interface behavior, the occurrence of filter cake and pore clogging is reduced, thus achieving both high efficiency (∼99.5 and ∼99.3 %). Meanwhile, the high flux can also be maintained (∼3212 and ∼3458 L m-2 h-1). Significantly better than surfaces without pores or mastoid structures. Further, the as-prepared surfaces also exhibit excellent recyclability. After 50 separation cycles, optimized HAIWS and MAIWS still maintained high efficiency (∼96.2 and ∼95.8 %) and high flux (∼3042 and ∼3164 L m-2 h-1), exceeding other surfaces without hole or mastoid structure. Notably, complex physical/chemical cleaning processes are avoided. Besides, even in harsh conditions, HAIWS and MAIWS still maintain excellent stability. The above strategy provides a novel mechanism for effective on-demand emulsion separation and is expected to encourage the creation of new-class separation devices for oily wastewater treatment in industry.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Haiyu Qian
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siyu Chang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xi Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, PR China.
| |
Collapse
|
3
|
Yan X, Wang T, Yang H, Chen Y, Wang N, Sui Y, Gao G. Robust nanoparticles growth in the interior of porous sponges for efficient dye adsorption and emulsion separation. CHEMOSPHERE 2024; 357:142100. [PMID: 38657697 DOI: 10.1016/j.chemosphere.2024.142100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Emulsified oils and dye contaminants already pose a huge threat to global ecosystems and human health. It is a significant research topic to develop efficient, rapid, versatile methods for emulsion separation and dye adsorption. The membrane material modified with common methods only modified the outer surface of the membrane, while the interior is hardly fully decorated. In this investigation, a solvent exchange method was used to in situ grow nanoparticles in the interior of a porous sponge. These nanoparticles were obtained with polyethyleneimine, gallic acid, and tannic acid via Michael addition and Schiff base reaction. The prepared nanoparticle-coated sponges provided efficient separation of dyes, emulsions, and complex contaminants. The separation efficiency of the dye reached 99.49%, and the separation efficiency of the emulsion was as high as 99.87% with a flux of 11140.3 L m-2 h-1. Furthermore, the maximum adsorption capacity reached 486.8 mg g-1 for cationic dyes and 182.1 mg g-1 for anionic dyes. More importantly, the nanoparticles were highly robust on the surface of the porous sponge, and the modified sponge could have long-term applications in hazardous environments. Overall, it is envisioned that the nanoparticles-modified porous sponge exhibited considerable potential for emulsion and dye wastewater treatment.
Collapse
Affiliation(s)
- Xiaojuan Yan
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Tianyu Wang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Hongkun Yang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ying Chen
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ning Wang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ying Sui
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Guanghui Gao
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China.
| |
Collapse
|
4
|
Yan Y, Zhou P, Zhou Y, Zhang W, Pi P, Qian Y, Wen X, Jiang L. Boosting Demulsification and Antifouling Capacity of Membranes via an Enhanced Piezoelectric Effect for Sustaining Emulsion Separation. J Am Chem Soc 2024; 146:13306-13316. [PMID: 38690945 DOI: 10.1021/jacs.4c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Traditional superwettable membranes for demulsification of oil/water emulsions could not maintain their separation performance for long because of low demulsification capacity and surface fouling during practical applications. A charging membrane could repel the contaminants for a while, the charge of which would gradually be neutralized during the separation progress. Here, a superhydrophilic piezoelectric membrane (SPM) with sustained demulsification and antifouling capacity is proposed for achieving prolonged emulsion separation, which is capable of converting inherent pulse hydraulic filtration pressure into pulse voltage. A pulse voltage up to -7.6 V is generated to intercept the oil by expediting the deformation and coalescence of emulsified oil droplets, realizing the demulsification. Furthermore, it repels negatively charged oil droplets, avoiding membrane fouling. Additionally, any organic foulants adhering to the membrane undergo degradation facilitated by the generated reactive oxygen species. The separation data demonstrate a 98.85% efficiency with a flux decline ratio below 14% during a 2 h separation duration and a nearly 100% flux recovery of SPM. This research opens new avenues in membrane separation, environmental remediation, etc.
Collapse
Affiliation(s)
- Yuanyang Yan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Peizhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yahong Zhou
- Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, P. R. China
| | - Pihui Pi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yu Qian
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiufang Wen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Park J, Kang S, Park E, Lee D, Park J, Kim D, Choi SQ, Kim K. A facile method for separating fine water droplets dispersed in oil through a pre-wetted mesh membrane. iScience 2024; 27:109556. [PMID: 38617558 PMCID: PMC11015444 DOI: 10.1016/j.isci.2024.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
To achieve the successful separation of emulsions containing fine dispersed droplets and low volume fractions, a membrane with pore sizes comparable to or smaller than the droplet size is typically required. Although this approach is effective, its utilization is limited to the separation of emulsions with relatively large droplets. To overcome this limitation, a secondary membrane can be formed on the primary membrane to reduce pore size, but this can also be time-consuming and costly. Therefore, a facile and effective method is still required to be developed for separating emulsions with fine droplets. We introduce a pre-wetted mesh membrane with a pore size significantly larger than droplets, easily fabricated by wetting a hydrophilic stainless-steel mesh with water. Applying this membrane to emulsion separation via gravity-driven flow confirms a high efficiency greater than 98%, even with droplets approximately 10 times smaller than the pore size.
Collapse
Affiliation(s)
- JiEun Park
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea
| | - Seunghan Kang
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - EunSol Park
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea
| | - Dongho Lee
- Process R&D center, Hanwha solutions R&D institute, Daejeon 34128, Republic of Korea
| | - Jeasung Park
- Green and sustainable materials R&D department, Korea institute of industrial technology (KITECH), Cheonan 31056, Republic of Korea
| | - Donghun Kim
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - KyuHan Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea
| |
Collapse
|
6
|
Fan C, Liu Y, Fan S, Liang Z, Zhang W, Zhang Y, Gan T, Hu H, Huang Z, Qin Y. Fabrication of a poly(N-isopropylacrylamide)-grafted alginate composite aerogel for efficient treatment of emulsified oily wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133381. [PMID: 38171201 DOI: 10.1016/j.jhazmat.2023.133381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/26/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024]
Abstract
The treatment of emulsion wastewater poses significant challenges. In this study, a novel porous material, namely esterified bagasse/poly(N, N-dimethylacrylamide)/sodium alginate (SBS/PDMAA/Alg) aerogel, was developed for efficient demulsification and oil recovery. By grafting a poly(N-isopropylacrylamide) (PNIPAM) brush onto the SBS/PDMAA/Alg skeleton through free radical polymerization, the resulting aerogel exhibits both surface charge and a molecular brush structure. The aerogel demonstrates remarkable demulsification efficiency for cationic surfactant-stabilized emulsions at various concentrations, achieving a demulsification efficiency of 95.6% even at an oil content of 100 g L-1. Furthermore, the molecular brush structure extends the application range of the aerogel, enabling a demulsification efficiency of 98.3% for anionic and non-ionic surfactant-stabilized emulsions. The interpenetrating polymer network (IPN) structure formed by SBS, PDMAA, and alginate enhances the mechanical stability of the aerogel, enabling a demulsification efficiency of 91.3% even after 20 repeated cycles. The demulsification ability of the composite aerogel is attributed to its surface charge, high interfacial activity, and unique brush-like structure. A demulsification mechanism based on the synergistic effect of surface charge and molecular brush is proposed to elucidate the efficient demulsification process.
Collapse
Affiliation(s)
- Chao Fan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yiping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Songlin Fan
- Shenzhen Changlong Technology Company limited, Shenzhen 518116, China; School of Environmental Science and Engineering, Nankai University, Tianjing 300350, China.
| | - Zirong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wuxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Yuben Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Zhou W, Min S, Zhan T, Zhang Y, Pan D, Yuan Y, Xu B. Highly Durable Janus Fabrics Based on Transfer Prints for Personal Moisture Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302512. [PMID: 37116110 DOI: 10.1002/smll.202302512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Janus fabrics with moisture management ability have great potential for improving both physiological and psychological comfort of human body. However, current methods for creating Janus fabrics are typically complex, environmentally unfriendly, and costly. More importantly, the prepared Janus fabrics have demonstrated insufficient mechanical properties and poor fastness, rendering them unsuitable for practical applications. Here, this work proposes a method for constructing Janus fabrics through thermal transfer printing of hydrophobic transfer prints onto a superhydrophilic cotton fabric, followed by creation of a conical micropore array on the fabric surface. The as-prepared Janus fabrics exhibit excellent unidirectional liquid transport capacity, capable of transporting 50 µL water completely in 11.6 s in the positive direction. Attributed to the durable property of the transfer prints, the Janus fabrics are capable of withstanding over 900 friction cycles and 250 home laundry cycles, which is a great advance in this research field. Additionally, the fabrication process has no detrimental effect on the fabric's breathability, elasticity, and flexibility. Furthermore, the Janus fabric can maintain human body temperature 3.6 °C cooler than that worn with cotton fabric. The fabrication method can provide useful insights for the design and creation of durable Janus fabrics to maximize personal comfort.
Collapse
Affiliation(s)
- Wei Zhou
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shuqiang Min
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Tonghuan Zhan
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yue Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Deng Pan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, 111 Jiu Long Road, Hefei, 230601, P. R. China
| | - Yan Yuan
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Bing Xu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
8
|
Zhang J, Peng K, Xu ZK, Xiong Y, Liu J, Cai C, Huang X. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes. Adv Colloid Interface Sci 2023; 319:102971. [PMID: 37562248 DOI: 10.1016/j.cis.2023.102971] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Membrane separation technology has significant advantages for treating oil-in-water emulsions. Understanding the evolution of oil droplets could reveal the interfacial and colloidal interactions, facilitate the design of advanced membranes, and improve the separation performances. This review on the characteristic behavior and evolution of oil droplets focuses on the advanced analytical techniques, and the subsequent fouling as well as demulsification effects during membrane separation. A detailed introduction is provided on microscopic observations and numerical simulations of the dynamic evolution of oil droplets, featuring real-time in-situ visualization and accurate reconstruction, respectively. Characteristic behaviors of these oil droplets include attachment, pinning, wetting, spreading, blockage, intrusion, coalescence, and detachment, which have been quantified by specific proposed parameters and criteria. The fouling process can be evaluated using Hermia and resistance models. The related adhesion force and intrusion pressure as well as droplet-droplet/membrane interfacial interactions can be accurately quantified using various force analysis methods and advanced force measurement techniques. It is encouraging to note that oil coalescence has been achieved through various effects such as electrostatic interactions, mechanical actions, Laplace pressure/surface free energy gradients, and synergistic effects on functional membranes. When oil droplets become destabilized and coalesce into larger ones, the functional membranes can overcome the limitations of size-sieving effect to attain higher separation efficiency. This not only bypasses the trade-off between permeability and rejection, but also significantly reduces membrane fouling. Finally, the challenges and potential research directions in membrane separation are proposed. We hope this review will support the engineering of advanced materials for oil/water separation and research on interface science in general.
Collapse
Affiliation(s)
- Jialu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, PR China
| | - Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Jia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
9
|
Gao D, Cheng F, Wang Y, Li C, Yang EM, Li C, Zhang L, Cheng G. Versatile Superhydrophobic Sponge for Separating both Emulsions and Immiscible Oil/water Mixtures. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
10
|
Kalantari M, Moghaddam SS, Vafaei F. Global research trends in petrochemical wastewater treatment from 2000 to 2021. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9369-9388. [PMID: 36502475 DOI: 10.1007/s11356-022-24553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Petrochemical wastewater (PWW) is a huge industrial contaminant that generates a wide range of resistive and poisonous organic pollutants that harm animals and plants in natural water bodies when discharged untreated or partially treated. Therefore, it is vital to develop technologies that are simple, efficient, and profitable for the treatment of oily wastewater. Although much study has been undertaken on the treatment of PWW, there has not been any recent work on bibliometric analysis of global research trends on this issue. A bibliometric analysis will help current and future researchers figure out where the gaps are and how to fill them. The present study's focus is to examine the characteristics and trends of research on oily wastewater treatment with an emphasis on the treatment of PWW. This research was performed on five important aspects, including characterization of research publications, countries' performances and collaborations, an analysis of the best papers with the most citations, keyword analysis (including frequency distribution of the keyword analysis, the transformation of the keyword combination across time, and exploration of changes in rank over time), and journal analysis, according to the 2457 papers in the Science Citation Index Expanded using the Web of Science (WoS) database from 2000 to 2021. For further analysis, the contingency matrix, bump diagram, and inter-temporal network stream were employed.
Collapse
Affiliation(s)
- Mahdi Kalantari
- Faculty of Civil Engineering, K. N. Toosi University of Technology, Mirdamad Intersection, Valiasr St, No. 1346, Tehran, Iran
| | - Shabnam Sadri Moghaddam
- Faculty of Civil Engineering, K. N. Toosi University of Technology, Mirdamad Intersection, Valiasr St, No. 1346, Tehran, Iran.
| | - Fereidon Vafaei
- Faculty of Civil Engineering, K. N. Toosi University of Technology, Mirdamad Intersection, Valiasr St, No. 1346, Tehran, Iran
| |
Collapse
|
11
|
Chen C, Li Z, Hu Y, Huang Q, Li X, Qing Y, Wu Y. Rosin acid and SiO 2 modified cotton fabric to prepare fluorine-free durable superhydrophobic coating for oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129797. [PMID: 36027752 DOI: 10.1016/j.jhazmat.2022.129797] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Currently, fluorides and long-chain aliphatic compounds are the most frequent low surface energy chemicals utilized in the preparation of superhydrophobic coatings, but associated environmental risks and instability restrict their potential application in oil-water separation. This research described a superhydrophobic coating based on rosin acid and SiO2 modified cotton fabric to overcome this challenge. By means of spray impregnation and UV-assisted click reaction, sulfhydryl modified rosin acid (RA), Octavinyl-POSS, and SiO2 were grafted onto the surface of cotton fabric to obtain RA-SiO2 superhydrophobic coating with rough surfaces such as lotus leaf and low surface energy. The RA-SiO2 superhydrophobic coating had favorable self-cleaning ability, and also adsorbed various light and heavy oils to achieve efficient separation of oil-water mixtures. The separation efficiency was 96.3% and the permeate flux was 6110.84 (L⋅m-2⋅h-1) after 10 repetitions. The RA-SiO2 superhydrophobic coating was found to be effective in separating oil-in-water and oil-in-water emulsions, and the separation mechanism was elaborated. In addition, it could effectively separate emulsions even after mechanical abrasion and chemical immersion, and had excellent stability. The fluorine-free and environmentally friendly low-cost superhydrophobic coating based on rosin acid is expected to play a significant potential in oil-water separation applications due to its excellent separation performance.
Collapse
Affiliation(s)
- Chaoqi Chen
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Zhaoshuang Li
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China.
| | - Yinchun Hu
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Qin Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| |
Collapse
|