1
|
Li D, Li H, Liang X, Chen Q, Bai X, Zhu L, Gao Y, Zhao J. Hydroxyl radicals produced from oxidation of ferrous sulfides promote mobilization of mercuric sulfide in soil-water system. WATER RESEARCH 2025; 281:123625. [PMID: 40239326 DOI: 10.1016/j.watres.2025.123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Mercuric sulfide nanoparticles (HgS-NPs) are recognized as a significant source of bioavailable mercury in paddy fields. The factors influencing the mobilization and bioavailability of HgS-NPs formed in flooded or drained paddy field-like systems are complicated and remain unexplored to date. Here, we show that ferrous sulfide (FeS) as an important mineral substance plays a crucial role in the dissolution and transformation of HgS-NPs in overlying water or during the drainage stage, as well as their bioavailability toward rice. Specifically, we found that oxidation of FeS significantly enhances the dissolution of HgS-NPs, with the degree of activation intensified with increasing FeS concentrations. This activation was further evidenced to be driven by the generation of hydroxyl radicals (•OH) during FeS oxidation, leading to the release of Hg(Ⅱ). The enhanced dissolution of HgS-NPs increases its bioavailability, as verified by the augmented accumulation of Hg in rice upon FeS oxidation. This study underscores the overlooked yet important role of FeS in affecting the fate of HgS-NPs and offers valuable insights for pollution control of Hg-contaminated paddy fields and wetlands.
Collapse
Affiliation(s)
- Dongrui Li
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Qingliang Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Bai
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
| | - Yuxi Gao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiating Zhao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Hu S, Zhang Y, Meng H, Yang Y, Chen G, Wang Q, Cheng K, Guo C, Li X, Liu T. Transformation and migration of Hg in a polluted alkaline paddy soil during flooding and drainage processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123471. [PMID: 38336140 DOI: 10.1016/j.envpol.2024.123471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Mercury (Hg) contamination in paddy soils poses a health risk to rice consumers and the environmental behavior of Hg determines its toxicity. Thus, the variations of Hg speciation are worthy of exploring. In this study, microcosm and pot experiments were conducted to elucidate Hg transformation, methylation, bioaccumulation, and risk coupled with biogeochemical cycling of key elements in a Hg-polluted alkaline paddy soil. In microcosm and pot experiments, organic- and sulfide-bound and residual Hg accounted for more than 98% of total Hg, and total contents of dissolved, exchangeable, specifically adsorbed, and fulvic acid-bound Hg were less than 2% of total Hg, indicating a low mobility and environmental risk of Hg. The decrease of pH aroused from Fe(III), SO42-, and NO3- reduction promoted Hg mobility, whereas the increase of pH caused by Fe(II), S2-, and NH4+ oxidation reduced available Hg contents. Moreover, Fe-bearing minerals reduction and organic matter consumption promoted Hg mobility, whereas the produced HgS and Fe(II) oxidation increased Hg stability. During flooding, a fraction of inorganic Hg (IHg) could be transported into methylmercury (MeHg), and during drainage, MeHg would be converted back into IHg. After planting rice in an alkaline paddy soil, available Hg was below 0.3 mg kg-1. During rice growth, a portion of available Hg transport from paddy soil to rice, promoting Hg accumulation in rice grains. After rice ripening, IHg levels in rice tissues followed the trend: root > leaf > stem > grain, and IHg content in rice grain exceed 0.02 mg kg-1, but MeHg content in rice grain meets daily intake limit (37.45 μg kg-1). These results provide a basis for assessing the environmental risks and developing remediation strategies for Hg-contaminated redox-changing paddy fields as well as guaranteeing the safe production of rice grains.
Collapse
Affiliation(s)
- Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yufan Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanbing Meng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kuan Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chao Guo
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
3
|
He Z, Shen J, Zhao Y, Ru Y, Zhang D, Pan X. Efficient and synergistic treatment of selenium (IV)-contaminated wastewater and mercury (II)-contaminated soil by anaerobic granular sludge: Performance and mechanisms. CHEMOSPHERE 2024; 350:141038. [PMID: 38147928 DOI: 10.1016/j.chemosphere.2023.141038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
Wastewater containing selenium (Se) and soil contaminated by mercury (Hg) are two environmental problems, but they are rarely considered for synergistic treatment. In this work, anaerobic granular sludge (AnGS) was used to address both of the aforementioned issues simultaneously. The performance and mechanisms of Se(IV) removal from wastewater and Hg(II) immobilization in soil were investigated using various technologies. The results of the reactor operation indicated that the AnGS efficiently removed Se from wastewater, with a removal rate of 99.94 ± 0.05%. The microbial communities in the AnGS could rapidly reduce Se(IV) to Se0 nanoparticles (SeNPs). However, the AnGS lost the ability to reduce Se(IV) once the Se0 content reached the saturation value of 5.68 g Se/L. The excess sludge of Se0-rich AnGS was applied to remediate soil contaminated with Hg(II). The Se0-rich AnGS largely decreased the percentage of soil Hg in the mobile, extractable phase, with up to 99.1 ± 0.3% immobilization. Soil Hg(II) and Hg0 can react with Se (-II) and Se0, respectively, to form HgSe. The formation of inert HgSe was an important pathway for immobilizing Hg. Subsequently, the pot experiments indicated that soil remediation using Se0-rich AnGS significantly decreased the Hg content in pea plants. Especially, the content of Hg decreased from 555 ± 100 to 24 ± 3 μg/kg in roots after remediation. In summary, AnGS is an efficient and cost-effective material for synergistically treating Se-contaminated wastewater and Hg-contaminated soil.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yuanhai Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yulong Ru
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
4
|
Senila M, Levei EA, Frentiu T, Mihali C, Angyus SB. Assessment of mercury bioavailability in garden soils around a former nonferrous metal mining area using DGT, accumulation in vegetables, and implications for health risk. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1554. [PMID: 38036722 DOI: 10.1007/s10661-023-12144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Mercury (Hg) is a toxic, non-essential element for living organisms, frequently present in high concentrations in soils from industrial areas. The total, dissolved, and labile Hg concentrations in garden soils and their accumulation in edible vegetables (onion, garlic, lettuce, and parsley) grown on contaminated soils in localities situated a former mining area were evaluated. The labile Hg fraction was estimated by diffusive gradient in thin films (DGT). The soil-to-vegetable transfer factors, as well as the health risk by exposure to Hg, were calculated based on the labile Hg concentration in soil. The total Hg concentration in soil varied widely (0.11-3.77 mg kg-1), Hg in soil solution ranged between 2.14 and 20.2 μg L-1 and labile Hg between 1.13 and 18.6 μg L-1. About 36-96% (84% on average) of the Hg concentration in soil solution was found in labile form. Multivariate analysis revealed significant correlations between the labile Hg concentration in soil and Hg accumulated in vegetables. The hazard indices showed that, although the study area is affected by legacy pollution, exposure to soil and consumption of locally grown vegetables do not pose health risks.
Collapse
Affiliation(s)
- Marin Senila
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania.
| | - Erika Andrea Levei
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania
| | - Tiberiu Frentiu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028, Cluj-Napoca, Romania
| | - Cristina Mihali
- Faculty of Sciences, Technical University of Cluj Napoca, Baia Mare, Victoriei 76, 430122, Baia-Mare, Romania
| | - Simion Bogdan Angyus
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Zheng J, Yang Z, Zu H, Zheng W, Leng L, Yang J, Feng Y, Qu W, Li H. Self-Constructing 100% Water-Resistant Metal Sulfides through In Situ Acid Etching for Effective Elemental Mercury (Hg 0) Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38017358 DOI: 10.1021/acs.langmuir.3c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Metal sulfides (MSs) can efficiently entrap thiophilic components, such as elemental mercury (Hg0), and realize environmental remediation. However, there is still a critical problem challenging the extensive application of MSs in related areas, i.e., how to self-regulate their water (H2O) resistance without complexing the sorbent preparation procedure. This work for the first time developed an in situ acid-etching method that self-engineered the water affinity of MSs through changing the interfacial interaction between MSs and Hg0/H2O. The introduction of abundant, undercoordinated sulfur onto the sorbent surface was the primary reason accounting for the significantly improved H2O resistance. The high surface coverage of undercoordinated sulfur induced the formation of polysulfur chains (Sx2-) that stabilized Hg0 via a bridging bond and repelled H2O, attributed to the favorable electron configurations. These properties made the surface of MSs highly hydrophobic and increased the adsorption selectivity toward Hg0 over H2O. The MSs exhibited 100% H2O resistance even in the presence of 20% H2O, which is much higher than the H2O concentration under most practical scenarios. From these perspectives, this work for the first time overcame the detrimental effects of H2O on MSs through a self-regulating way that is scalable and negligibly complexes the sorbent preparation pathway. The highly water-resistant and cost-effective MSs as prepared can serve as efficient Hg0 removal from industrial flue gas in the future.
Collapse
Affiliation(s)
- Jiaoqin Zheng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Zequn Yang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Hongxiao Zu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Wei Zheng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Jianping Yang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Yong Feng
- Environmental Research Institute, South China Normal University, Guangzhou 510631, China
| | - Wenqi Qu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Liu J, Chen J, Poulain AJ, Pu Q, Hao Z, Meng B, Feng X. Mercury and Sulfur Redox Cycling Affect Methylmercury Levels in Rice Paddy Soils across a Contamination Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8149-8160. [PMID: 37194595 PMCID: PMC10234277 DOI: 10.1021/acs.est.3c02676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Methylmercury (MeHg) contamination in rice via paddy soils is an emerging global environmental issue. An understanding of mercury (Hg) transformation processes in paddy soils is urgently needed in order to control Hg contamination of human food and related health impacts. Sulfur (S)-regulated Hg transformation is one important process that controls Hg cycling in agricultural fields. In this study, Hg transformation processes, such as methylation, demethylation, oxidation, and reduction, and their responses to S input (sulfate and thiosulfate) in paddy soils with a Hg contamination gradient were elucidated simultaneously using a multi-compound-specific isotope labeling technique (200HgII, Me198Hg, and 202Hg0). In addition to HgII methylation and MeHg demethylation, this study revealed that microbially mediated reduction of HgII, methylation of Hg0, and oxidative demethylation-reduction of MeHg occurred under dark conditions; these processes served to transform Hg between different species (Hg0, HgII, and MeHg) in flooded paddy soils. Rapid redox recycling of Hg species contributed to Hg speciation resetting, which promoted the transformation between Hg0 and MeHg by generating bioavailable HgII for fuel methylation. Sulfur input also likely affected the microbial community structure and functional profile of HgII methylators and, therefore, influenced HgII methylation. The findings of this study contribute to our understanding of Hg transformation processes in paddy soils and provide much-needed knowledge for assessing Hg risks in hydrological fluctuation-regulated ecosystems.
Collapse
Affiliation(s)
- Jiang Liu
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Ji Chen
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- College
of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Alexandre J. Poulain
- Biology
Department, University of Ottawa, 30 Marie Curie, Ottawa ON K1N 6N5, Canada
| | - Qiang Pu
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Zhengdong Hao
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Meng
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Xinbin Feng
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| |
Collapse
|
7
|
Li Y, Zhu N, Hu W, Liu YR, Jia W, Lin G, Li H, Li Y, Gao Y, Zhao J. New insights into sulfur input induced methylmercury production and accumulation in paddy soil and rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131602. [PMID: 37178535 DOI: 10.1016/j.jhazmat.2023.131602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Sulfur has a high affinity for mercury (Hg) and can serve as effective treating agent for Hg pollution. However, conflict effects between reducing Hg mobility and promoting Hg methylation by sulfur were found in recent studies, and there is a gap in understanding the potential mechanism of MeHg production under different sulfur-treated species and doses. Here, we investigated and compared the MeHg production in Hg-contaminated paddy soil and its accumulation in rice under elemental sulfur or sulfate treatment at a relatively low (500 mg·kg-1) or high (1000 mg·kg-1) level. The associated potential molecular mechanisms are also discussed with the help of density functional theory (DFT) calculation. Pot experiments demonstrate that both elemental sulfur and sulfate at high exposure levels increased MeHg production in soil (244.63-571.72 %) and its accumulation in raw rice (268.73-443.50 %). Coupling the reduction of sulfate or elemental sulfur and decrease of soil redox potential leads to the detachment of Hg-polysulfide complexes from the surface of HgS which can be explained by DFT calculations. Enhancement of free Hg and Fe release through reducing Fe(III) oxyhydroxides further promotes soil MeHg production. The results provide clues for understanding the mechanism by which exogenous sulfur promotes MeHg production in paddies and paddy-like environments and give new insights for decreasing Hg mobility by regulating soil conditions.
Collapse
Affiliation(s)
- Yunyun Li
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wenjun Hu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Jia
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Guoming Lin
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore.
| | - Hong Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Li Y, Dai SS, Zhao J, Hu ZC, Liu Q, Feng J, Huang Q, Gao Y, Liu YR. Amendments of nitrogen and sulfur mitigate carbon-promoting effect on microbial mercury methylation in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130983. [PMID: 36860084 DOI: 10.1016/j.jhazmat.2023.130983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The imbalance of nutrient elements in paddy soil could affect biogeochemical processes; however, how the key elements input influence microbially-driven conversion of mercury (Hg) to neurotoxic methylmercury (MeHg) remains virtually unknown. Herein, we conducted a series of microcosm experiments to explore the effects of certain species of carbon (C), nitrogen (N) and sulfur (S) on microbial MeHg production in two typical paddy soils (yellow and black soil). Results showed that the addition of C alone into the soils increased MeHg production approximately 2-13 times in the yellow and black soils; while the combined addition of N and C mitigated the C- promoting effect significantly. Added S also had a buffering effect on C-facilitated MeHg production in the yellow soil despite the extent being lower than that of N addition, whereas this effect was not obvious for the black soil. MeHg production was positively correlated with the abundance of Deltaproteobactera-hgcA in both soils, and the changes in MeHg production were related to the shifts of Hg methylating community resulting from C, N, and S imbalance. We further found that the changes in the proportions of dominant Hg methylators such as Geobacter and some unclassified groups could contribute to the variations in MeHg production under different treatments. Moreover, the enhanced microbial syntrophy with adding N and S might contribute to the reduced C-promoting effect on MeHg production. This study has important implications for better understanding of microbes-driven Hg conversion in paddies and wetlands with nutrient elements input.
Collapse
Affiliation(s)
- Yunyun Li
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China
| | - Shu-Shen Dai
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| | - Zhi-Cheng Hu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Covalently Functionalized Cellulose Nanoparticles for Simultaneous Enrichment of Pb(II), Cd(II) and Cu(II) Ions. Polymers (Basel) 2023; 15:polym15030532. [PMID: 36771833 PMCID: PMC9921717 DOI: 10.3390/polym15030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Cellulose nanoparticles are sustainable natural polymers with excellent application in environmental remediation technology. In this work, we synthesized cellulose nanoparticles and covalently functionalized them with a multi-functional group possessing ligands. The hybrid material shows excellent adsorption properties for the simultaneous extraction of multiple metal ions in the sample preparation technique. The sorbent shows excellent sorption capacity in the range of 1.8-2.2 mmol/g of material. The developed method was successfully employed for the simultaneous extraction of Pb(II), Cd(II) and Cu(II) from real-world samples (industrial effluent, river water, tap and groundwater) and subsequently determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). The method shows a preconcentration limit of 0.7 ppb attributes to analyze the trace concentration of studied metal ions. The detection limit obtained for Pb(II), Cd(II) and Cu(II) is found to be 0.4 ppb.
Collapse
|
10
|
Guo Z, Zhang Y, Xu R, Xie H, Xiao X, Peng C. Contamination vertical distribution and key factors identification of metal(loid)s in site soil from an abandoned Pb/Zn smelter using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159264. [PMID: 36208763 DOI: 10.1016/j.scitotenv.2022.159264] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Soil heterogeneity makes the vertical distribution of metal(loid)s in site soil vary considerably and poses a challenge for identifying the key factors of metal(loid)s migration in site soil profiles. In this study, a machine learning (ML) model was developed to study a typical abandoned Pb/Zn smelter using 267 site soils from 46 drilling points. Results showed that a well-trained ML model could be used to identify the key factors in determining the contamination vertical distribution and predict the metal(loid)s contents in subsurface soil. As, Cd, Pb, and Zn were the primary pollutants and their vertical migration depth arrived to 4-6 m. Based on the predictive performance of different ML algorithms, the extreme gradient boosting (XGB) was selected as the best model to produce accurate predictions for the most metal(loid)s content. Contents of As, Cd, Pb, and Zn in the heavily contaminated zones declined with an increase of soil depth. The metal(loid) contents in surface soil of 0-2 m could be readily used to predict the content of Cd, Cr, Hg, and Zn in subsurface soil from 2 m to 10 m. Based on the metal-specific XGB models, sulfur content, functional area, and soil texture were identified as key factors affecting the vertical distribution of As, Cd, Pb, and Zn in site soil. Results suggested the ML method is helpful to manage the potential environmental risks of metal(loid)s in Pb/Zn smelting site.
Collapse
Affiliation(s)
- Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yunxia Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Huimin Xie
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| |
Collapse
|
11
|
Application of O3/PMS Advanced Oxidation Technology in the Treatment of Organic Pollutants in Highly Concentrated Organic Wastewater: A Review. SEPARATIONS 2022. [DOI: 10.3390/separations9120444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ozone/peroxymonosulfate (O3/PMS) system has attracted widespread attention from researchers owing to its ability to produce hydroxyl radicals (•OH) and sulfate radicals (SO4•−) simultaneously. The existing research has shown that the O3/PMS system significantly degrades refinery trace organic compounds (TrOCs) in highly concentrated organic wastewater. However, there is still a lack of systematic understanding of the O3/PMS system, which has created a significant loophole in its application in the treatment of highly concentrated organic wastewater. Hence, this paper reviewed the specific degradation effect, toxicity change, reaction mechanism, various influencing factors and the cause of oxidation byproducts (OBPs) of various TrOCs when the O3/PMS system is applied to the degradation of highly concentrated organic wastewater. In addition, the effects of different reaction conditions on the O3/PMS system were comprehensively evaluated. Furthermore, given the limited understanding of the O3/PMS system in the degradation of TrOCs and the formation of OBPs, an outlook on potential future research was presented. Finally, this paper comprehensively evaluated the degradation of TrOCs in highly concentrated organic wastewater by the O3/PMS system, filling the gaps in scale research, operation cost, sustainability and overall feasibility.
Collapse
|
12
|
Ahmad H, Khan RA, Alsalme A. Covalently linked mercaptoacetic acid on ZrO 2 coupled cellulose nanofibers for solid phase extraction of Hg(ii): experimental and DFT studies. RSC Adv 2022; 12:35712-35721. [PMID: 36545069 PMCID: PMC9748646 DOI: 10.1039/d2ra05436a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Zirconium oxide (ZrO2) nanoparticles were introduced onto cellulose nanofibers after being covalently functionalized with mercaptoacetic acid. We experimentally demonstrate that the nanocomposite is capable of selectively capturing Hg(ii) from aqueous samples down to trace level concentrations. Density functional theory (DFT) calculations indicate that energetically favorable R-S → Hg ← O-R bidentate complex formation enhances the rapid adsorption, leading to selective extraction of Hg(ii). Furthermore, the loss of ZrO2 particles during flow-through studies is controlled and restricted after binding to CNF rather than being used directly in the column. The Hg(ii) selectivity is primarily due to the Lewis soft-soft acid-base chelation of Hg(ii) with the mercapto functionalities of the adsorbent. The experimental observations depict a high sorption capacity of 280.5 mg g-1 for Hg(ii). The limit of detection and quantification of the proposed approach were found to be 0.04 μg L-1 and 0.15 μg L-1, respectively. Analytical method accuracy and validity were determined by analyzing Standard Reference Materials and by the standard addition method (recovery > 95% with a 5% RSD). The findings of a Student's t-test were found to be lower than the critical Student's t value. Real water samples were successfully analyzed using the developed procedure.
Collapse
Affiliation(s)
- Hilal Ahmad
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang UniversityHo Chi Minh City 700000Vietnam,Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh City 700000Vietnam
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud UniversityRiyadh-11451Kingdom of Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud UniversityRiyadh-11451Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Tang W, Tang C, Lei P. Sulfur-driven methylmercury production in paddies continues following soil oxidation. J Environ Sci (China) 2022; 119:166-174. [PMID: 35934461 DOI: 10.1016/j.jes.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg) production in paddy soils and its accumulation in rice raise global concerns since rice consumption has been identified as an important pathway of human exposure to MeHg. Sulfur (S) amendment via fertilization has been reported to facilitate Hg methylation in paddy soils under anaerobic conditions, while the dynamic of S-amendment induced MeHg production in soils with increasing redox potential remains unclear. This critical gap hinders a comprehensive understanding of Hg biogeochemistry in rice paddy system which is characterized by the fluctuation of redox potential. Here, we conducted soil incubation experiments to explore MeHg production in slow-oxidizing paddy soils amended with different species of S and doses of sulfate. Results show that the elevated redox potential (1) increased MeHg concentrations by 10.9%-35.2%, which were mainly attributed to the re-oxidation of other S species to sulfate and thus the elevated abundance of sulfate-reducing bacteria, and (2) increased MeHg phytoavailability by up to 75% due to the reductions in acid volatile sulfide (AVS) that strongly binds MeHg in soils. Results obtained from this study call for attention to the increased MeHg production and phytoavailability in paddy soils under elevated redox potentials due to water management, which might aggravate the MeHg production induced by S fertilization and thus enhance MeHg accumulation in rice.
Collapse
Affiliation(s)
- Wenli Tang
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China.
| | - Chao Tang
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Pei Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|