1
|
Wang J, Hu Y, Cao T, Duan Z, Zhao Z, Sun Y, Gu J, Wang X. Electro-oxidation of lincomycin and human pathogenic bacteria using carbon-supported lanthanide derivatives anodes: Accelerating wastewater remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125682. [PMID: 40378792 DOI: 10.1016/j.jenvman.2025.125682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/09/2025] [Accepted: 05/04/2025] [Indexed: 05/19/2025]
Abstract
Lanthanide metal-organic framework derivatives (Ln-MOFs) have emerged as effective conductive catalysts for enhancing the electrochemical performance of electrodes. This study presents a strategic approach to significantly improve the electrocatalytic activity of an anode in electrooxidation by integrating high-valence lanthanide metals into a carboxymethyl-functionalized carbon substrate. The focus is on investigating the degradation property of lincomycin (LIN) and the inactivation of human pathogenic bacteria (HPB, Escherichia coli (E. coli)). The results demonstrated that the Sm-MOF carboxymethyl-functionalized derived carbon (Sm-MOF/MCF) electrode exhibited exceptional electrochemical properties, including minimal charge transfer resistance (97.613 Ω/cm2), low corrosion current density (1.213 × 10-5 mA/cm2), high carrier density (2.071 × 1032), and an electrochemically active area of 229.600 cm2. As a promising anode, Sm-MOF/MCF achieved 99 % removal of LIN within 60 min and 95 % inactivation of E. coli within 20 min. Notably, density functional theory (DFT) calculations revealed that doping with Sm-MOF derivatives significantly reduced the activation energy barrier for hydroxyl radical (·OH) formation, thereby facilitating its generation and subsequent reaction with LIN and E. coli. In brief, this work offers innovative strategies for the development of electrodes aimed at effectively removing LIN and inactivating harmful HPB, highlighting new avenues for environmental remediation.
Collapse
Affiliation(s)
- Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tao Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zichen Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zixuan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Wei R, Zhang X, Yan M, Wang X, Wei X, Zhang R, Wang Y, Wang L, Yin S. Self-assembled PtNi layered metallene nanobowls for pH-universal electrocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 667:175-183. [PMID: 38636219 DOI: 10.1016/j.jcis.2024.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Compared with layered materials such as graphite and transition metal disulfide compounds with highly anisotropic in-plane covalent bonds, it is inherently more challenging to obtain independent metallic two-dimensional films with atomic thickness. In this study, PtNi layered metallene nanobowls (LMBs) with multilayer atomic-scale nanosheets and bowl-like structures have been synthesized in one step using structural and electronic effects. The material has the advantage of catalyzing pH-universal hydrogen evolution reaction (HER). Compared with Pt/C, PtNi LMBs exhibited excellent HER activity and stability under all pH conditions. The overpotentials of 10 mA cm-2 at 0.5 M H2SO4, 1.0 M phosphate buffer and 1.0 M KOH were 14.8, 20.3, and 34.0 mV, respectively. Under acidic, neutral and alkaline conditions, the HER Faraday efficiencies reach 98.97%, 98.85%, and 99.04%, respectively. This study provides an example for the preparation of unique multilayer nanobowls, and also provides a basic research platform for the development of special HER materials.
Collapse
Affiliation(s)
- Ranran Wei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaoying Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Min Yan
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xianlong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xuewen Wei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Runqi Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuli Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
3
|
Chen H, Hu W, Ma T, Pu Y, Wang S, Wang Y, Yuan S. Molybdenum-Modified Titanium Dioxide Nanotube Arrays as an Efficient Electrode for the Electroreduction of Nitrate to Ammonia. Molecules 2024; 29:2782. [PMID: 38930847 PMCID: PMC11206489 DOI: 10.3390/molecules29122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Electrochemical nitrate reduction (NO3-RR) has been recognized as a promising strategy for sustainable ammonia (NH3) production due to its environmental friendliness and economical nature. However, the NO3-RR reaction involves an eight-electron coupled proton transfer process with many by-products and low Faraday efficiency. In this work, a molybdenum oxide (MoOx)-decorated titanium dioxide nanotube on Ti foil (Mo/TiO2) was prepared by means of an electrodeposition and calcination process. The structure of MoOx can be controlled by regulating the concentration of molybdate during the electrodeposition process, which can further influence the electron transfer from Ti to Mo atoms, and enhance the binding energy of intermediate species in NO3-RR. The optimized Mo/TiO2-M with more Mo(IV) sites exhibited a better activity for NO3-RR. The Mo/TiO2-M electrode delivered a NH3 yield of 5.18 mg h-1 cm-2 at -1.7 V vs. Ag/AgCl, and exhibited a Faraday efficiency of 88.05% at -1.4 V vs. Ag/AgCl. In addition, the cycling test demonstrated that the Mo/TiO2-M electrode possessed a good stability. This work not only provides an attractive electrode material, but also offers new insights into the rational design of catalysts for NO3-RR.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Wang
- Low-Carbon Technology & Chemical Reaction Engineering Labaratory, College of Chemical Engineering, Sichuan University, Chengdu 610065, China; (H.C.); (W.H.); (T.M.); (Y.P.); (S.W.)
| | - Shaojun Yuan
- Low-Carbon Technology & Chemical Reaction Engineering Labaratory, College of Chemical Engineering, Sichuan University, Chengdu 610065, China; (H.C.); (W.H.); (T.M.); (Y.P.); (S.W.)
| |
Collapse
|
4
|
He Y, Zhong D, Xu Y, Jiang R, Zhang J, Liao P. Preparation of Ti/SnO 2-Sb 2O 4-La Electrode with TiO 2 Nanotubes Intermediate Layer and the Electrochemical Oxidation Performance of Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7569-7580. [PMID: 38544311 DOI: 10.1021/acs.langmuir.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A La-doped Ti/SnO2-Sb2O4 electrode with TiO2-NTs intermediate layer (Ti/TiO2-NTs/SnO2-Sb2O4-La) was created via the electrodeposition technique. The physicochemical and electrochemical properties of the electrode were analyzed through FESEM, XRD, XPS, CV, and LSV electrochemical tests. The results showed that TiO2-NTs were tightly packed on the surface of Ti substrate, thus improving the binding force of the SnO2-Sb2O4-La coating, offering greater specific surface area, more active spots, higher current response, and longer lifespan for the degradation of rhodamine B. The lifespan of the Ti/TiO2-NTs/SnO2-Sb2O4-La electrode reached 200 min (1000 mA cm-2, 1 M H2SO4), while the actual service life was up to 3699 h. Under the conditions of initial pH 3.0, Na2SO4 concentration of 0.1 M, current density of 30 mA cm-2, and initial rhodamine B concentration of 20 mg L-1, the color and TOC removal rate of rhodamine B reached 100% and 86.13% within 15 and 30 min, respectively. Rhodamine B was decomposed into acids, esters, and other molecular compounds under the action of •OH and SO4•- free radicals and electrocatalysis, and finally completely mineralized into CO2 and H2O. It is anticipated that this work will yield a novel research concept for producing DSA electrodes with superior catalytic efficacy and elevated stability.
Collapse
Affiliation(s)
- Yuanzhen He
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ran Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiayou Zhang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pengfei Liao
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
5
|
Guo X, Zhang Y, Xia H, Chen J, Zhu Z, Qi J, Li X. Waste biomass-derived N, P co-doping carbon aerogel-coated Co xFe 1-xP with modulated electron density for efficient electrooxidation of contaminants. J Colloid Interface Sci 2023; 652:174-183. [PMID: 37591079 DOI: 10.1016/j.jcis.2023.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Developing low-cost, green, high-performing electrode materials to address environmental pollutants and the energy crisis is significant but challenging. Herein, the bimetallic iron cobalt phosphide coated in waste biomass-derived N, P co-doping carbon (CoxFe1-xP@NPC) is constructed. Furthermore, the active site density and the water decomposition energy barrier of surface-coated NPC are modulated by optimizing the electronic structure of CoxFe1-xP via doping engineering. The Fe-modulated CoxFe1-xP@NPC exhibits a hierarchical porous self-supporting structure and excellent physical & chemical properties with excellent electrooxidation performance, achieving over 95% removal of TCH within 60 min. The density functional theory (DFT) calculations further confirms that N carries more positive charge and P carries more negative charge in the NPC of CoxFe1-xP@NPC with Fe modulation, which can promote the adsorption and dissociation of water molecules. Of note, Co0.75Fe025P@NPC displays a low water dissociation energy barrier to produce ·OH and a high energy barrier to produce O2 than its counterparts. This study offers new insight into controllable modulation of biomass carbon-based composite electrode catalytic activity for high-efficiency degradation of contaminants.
Collapse
Affiliation(s)
- Xu Guo
- National Engineering Research Center for Bioenergy (Harbin Institute of Technology), Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongzheng Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Houbing Xia
- National Engineering Research Center for Bioenergy (Harbin Institute of Technology), Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - ZhenZhen Zhu
- National Engineering Research Center for Bioenergy (Harbin Institute of Technology), Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jingyao Qi
- National Engineering Research Center for Bioenergy (Harbin Institute of Technology), Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Liu Y, He H, Zhang TJ, Zhang TC, Wang Y, Yuan S. A biomimetic beetle-like membrane with superoleophilic SiO 2-induced oil coalescence on superhydrophilic CuC 2O 4 nanosheet arrays for effective O/W emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131142. [PMID: 36893603 DOI: 10.1016/j.jhazmat.2023.131142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
It is highly attractive to develop highly efficient oil-in-water (O/W) emulsion separation technologies for promoting the oily wastewater treatment. Herein, a novel inversely Stenocara beetle-like hierarchical structure of superhydrophobic SiO2 nanoparticle-decorated CuC2O4 nanosheet arrays were prepared on copper mesh membrane by bridging polydopamine (PDA) to make a SiO2/PDA@CuC2O4 membrane for substantially enhanced separation of O/W emulsions. The superhydrophobic SiO2 particles on the as-prepared SiO2/PDA@CuC2O4 membranes were served as localized active sites to induce coalescence of small-size oil droplets in oil-in-water (O/W) emulsions. Such innovated membrane delivered outstanding demulsification ability of O/W emulsion with a high separation flux of 2.5 kL⋅m-2⋅h-1 and its filtrate's chemical oxygen demand (COD) being 30 and 100 mg⋅L-1 for surfactant-free emulsion (SFE) and surfactant-stabilized emulsion (SSE), respectively, and also exhibited a good anti-fouling performance in cycling tests. The innovative design strategy developed in this work broadens the application of superwetting materials for oil-water separation and presents a promising prospect in practical oily wastewater treatment applications.
Collapse
Affiliation(s)
- Yajie Liu
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huaqiang He
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tie-Jun Zhang
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Tian C Zhang
- Civil and Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Chen D, Zhao L, Chen D, Hou P, Liu J, Wang C, Aborisade MA, Yin M, Yang Y. Fabrication of a SnO 2-Sb electrode with TiO 2 nanotube array as the middle layer for efficient electrochemical oxidation of amaranth dye. CHEMOSPHERE 2023; 325:138380. [PMID: 36907492 DOI: 10.1016/j.chemosphere.2023.138380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Efficient, stable, and easily producible electrodes are useful for treating dye wastewater through electrochemical oxidation. In this study, an Sb-doped SnO2 electrode with TiO2 nanotubes as the middle layer (TiO2-NTs/SnO2-Sb) was prepared through an optimized electrodeposition process. Analyses of the coating morphology, crystal structure, chemical state, and electrochemical properties revealed that tightly packed TiO2 clusters provided a larger surface area and more contact points, which is conducive to reinforcing the binding of SnO2-Sb coatings. Compared with a Ti/SnO2-Sb electrode without a TiO2-NT interlayer, the catalytic activity and stability of the TiO2-NTs/SnO2-Sb electrode significantly improved (P < 0.05), as reflected by the 21.8% increase in the amaranth dye decolorization efficiency and 200% increase in the service life. The effects of current density, pH, electrolyte concentration, initial amaranth concentration, and the interaction between various combinations of parameters on the electrolysis performance were investigated. Based on response surface optimization, the maximum decolorization efficiency of the amaranth dye could reach 96.2% within 120 min under the following set of optimized parameter values: 50 mg L-1 amaranth concentration, 20 mA cm-2 current density, and 5.0 pH. A potential degradation mechanism of the amaranth dye was proposed based on the experimental results of a quenching test, ultraviolet-visible spectroscopy, and high-performance liquid chromatography-mass spectrometry. This study provides a more sustainable method for fabricating SnO2-Sb electrodes with TiO2-NT interlayers to treat refractory dye wastewater.
Collapse
Affiliation(s)
- Daying Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300350, PR China
| | - Danning Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China; GreenLand Environmental Technology Co., LTD, Tianjin, 300193, PR China
| | - Pengfei Hou
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jiashu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Chuanbin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China
| | | | - Meilin Yin
- School of Chemical Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China; Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin, 300350, PR China.
| |
Collapse
|
8
|
Ji W, Li W, Zhang TC, Wang Y, Yuan S. Constructing Dimensionally Stable TiO2 Nanotube Arrays/SnO2/RuO2 Anode via Successive Electrodeposition for Efficient Electrocatalytic Oxidation of As(III). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Polypyrrole-Coated Low-Crystallinity Iron Oxide Grown on Carbon Cloth Enabling Enhanced Electrochemical Supercapacitor Performance. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010434. [PMID: 36615623 PMCID: PMC9823998 DOI: 10.3390/molecules28010434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
It is highly attractive to design pseudocapacitive metal oxides as anodes for supercapacitors (SCs). However, as they have poor conductivity and lack active sites, they generally exhibit an unsatisfied capacitance under high current density. Herein, polypyrrole-coated low-crystallinity Fe2O3 supported on carbon cloth (D-Fe2O3@PPy/CC) was prepared by chemical reduction and electrodeposition methods. The low-crystallinity Fe2O3 nanorod achieved using a NaBH4 treatment offered more active sites and enhanced the Faradaic reaction in surface or near-surface regions. The construction of a PPy layer gave more charge storage at the Fe2O3/PPy interface, favoring the limitation of the volume effect derived from Na+ transfer in the bulk phase. Consequently, D-Fe2O3@PPy/CC displayed enhanced capacitance and stability. In 1 M Na2SO4, it showed a specific capacitance of 615 mF cm-2 (640 F g-1) at 1 mA cm-2 and still retained 79.3% of its initial capacitance at 10 mA cm-2 after 5000 cycles. The design of low-crystallinity metal oxides and polymer nanocomposites is expected to be widely applicable for the development of state-of-the-art electrodes, thus opening new avenues for energy storage.
Collapse
|
10
|
Sun Z, Ni Y, Wu Y, Yue W, Zhang G, Bai J. Electrocatalytic degradation of methyl orange and 4-nitrophenol on a Ti/TiO 2-NTA/La-PbO 2 electrode: electrode characterization and operating parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6262-6274. [PMID: 35994150 DOI: 10.1007/s11356-022-22610-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The anode material plays a crucial role in the process of electrochemical oxidation. Herein, a TiO2 nanotube arrays (TiO2-NTA) intermediate layer and La-PbO2 catalytic layer were synthesized on a Ti surface by the electrochemical anodic oxidation and electrochemical deposition technology, respectively. The prepared Ti/TiO2-NTA/La-PbO2 electrode was used as an electrocatalytic oxidation anode for pollutant degradation. Scanning electron microscopy (SEM) analysis showed that the TiO2-NTA layer possessed a highly ordered and well-aligned nanotube array morphology, and the La-PbO2 layer with angular cone cluster was uniform and tightly bonded. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the intermediate layer primarily consisted of the anatase crystal structure of TiO2 and the catalyst layer was made of La-PbO2. Electrochemical analysis revealed that Ti/TiO2-NTA/La-PbO2 electrode exhibited higher oxidation peak current, electrochemical active surface area, and oxygen evolution potential (OEP, 1.64 V). Using methyl orange and 4-nitrophenol as model pollutants, electrocatalytic properties of the prepared Ti/TiO2-NTA/La-PbO2 electrode were systematically investigated under different conditions, and the electrochemical degradation fitted well with the pseudo-first-order kinetics model. Efficient anodic oxidation of model pollutants was mainly attributed to the indirect oxidation mediated by hydroxyl radicals (•OH). The total organic carbon (TOC) removal efficiency of methyl orange and 4-nitrophenol was 70.2 and 72.8%, and low energy consumption (2.50 and 1.89 kWh g-1) was achieved after 240 min of electrolysis under the conditions of initial concentration of model pollutant, electrode spacing, and electrolyte concentration were 50 mg L-1, 2 cm, and 0.1 mol L-1, respectively. This work provided a new strategy to develop the high-efficiency electrode for refractory pollutants degradation.
Collapse
Affiliation(s)
- Zepeng Sun
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Yue Ni
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yuandong Wu
- Shenzhen Institute, Peking University, Shenzhen, 518057, China
| | - Wenqing Yue
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Ge Zhang
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianmei Bai
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
11
|
Zhang W, Huang W, Tan J, Guo Q, Wu B. Heterogeneous catalysis mediated by light, electricity and enzyme via machine learning: Paradigms, applications and prospects. CHEMOSPHERE 2022; 308:136447. [PMID: 36116627 DOI: 10.1016/j.chemosphere.2022.136447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Energy crisis and environmental pollution have become the bottleneck of human sustainable development. Therefore, there is an urgent need to develop new catalysts for energy production and environmental remediation. Due to the high cost caused by blind screening and limited valuable computing resources, the traditional experimental methods and theoretical calculations are difficult to meet with the requirements. In the past decades, computer science has made great progress, especially in the field of machine learning (ML). As a new research paradigm, ML greatly accelerates the theoretical calculation methods represented by first principal calculation and molecular dynamics, and establish the physical picture of heterogeneous catalytic processes for energy and environment. This review firstly summarized the general research paradigms of ML in the discovery of catalysts. Then, the latest progresses of ML in light-, electricity- and enzyme-mediated heterogeneous catalysis were reviewed from the perspective of catalytic performance, operating conditions and reaction mechanism. The general guidelines of ML for heterogeneous catalysis were proposed. Finally, the existing problems and future development trend of ML in heterogeneous catalysis mediated by light, electricity and enzyme were summarized. We highly expect that this review will facilitate the interaction between ML and heterogeneous catalysis, and illuminate the development prospect of heterogeneous catalysis.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Wenguang Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China.
| | - Jie Tan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China
| | - Qingwei Guo
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215002, People's Republic of China.
| |
Collapse
|
12
|
Li G, Zhang L, Xu P, Jiang S, Bi Q, Xue J. Hydrothermal synthesis of a 3-D SnO2 nanoflower electrode with C and N co-doped interlayer for the degradation of real cyanide wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Dai J, Feng H, Shi K, Ma X, Yan Y, Ye L, Xia Y. Electrochemical degradation of antibiotic enoxacin using a novel PbO 2 electrode with a graphene nanoplatelets inter-layer: Characteristics, efficiency and mechanism. CHEMOSPHERE 2022; 307:135833. [PMID: 35948101 DOI: 10.1016/j.chemosphere.2022.135833] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
A novel PbO2 electrode was fabricated by adding graphene nanoplatelets (GNP) inter-layer into β-PbO2 active layer (called GNP-PbO2) and utilized to degradation of antibiotic enoxacin (ENO). The GNP-PbO2 electrode had a much rougher surface than the typical PbO2 electrode, with smaller crystal size and lower charge-transfer resistance at the electrode/electrolyte interface. Notably, the GNP inter-layer increased the oxygen evolution potential of PbO2 electrode (2.05 V vs. SCE), which was very beneficial to inhibit oxygen evolution and promote ·OH production. The relatively best operating parameters for ENO removal and energy efficiency were current density of 20 mA cm-2, initial pH of 7, initial ENO concentration of 100 mg L-1 and electrode distance of 4 cm. Furthermore, indirect radical oxidation was found to be the main way during electrolysis process. Based on the observed analysis of intermediate products, the main reaction pathways of ENO included hydroxylation, defluorination and piperazine ring-opening. Finally, combinating with the electro-oxidation capability, stability and safety evaluation, we can conclude that GNP-PbO2 is a promising anode for treatment of various organic pollutants in wastewater.
Collapse
Affiliation(s)
- Jingsong Dai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kefan Shi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiangjuan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yan Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ling Ye
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Bu J, Wan Q, Deng Z, Liu H, Li T, Zhou C, Zhong S. Waste coal cinder catalyst enhanced electrocatalytic oxidation and persulfate advanced oxidation for the degradation of sulfadiazine. CHEMOSPHERE 2022; 303:134880. [PMID: 35584712 DOI: 10.1016/j.chemosphere.2022.134880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Waste coal cinder, a kind of waste cinder discharged from coal combustion of thermal power plants, industrial and civil boilers, and other equipment, was rich in metal oxides with catalytic activity. In this work, waste coal cinder was used to enhance electrochemical coupling peroxymonosulfate (PMS) advanced oxidation degradation of sulfadiazine (SD). The surface morphology, elemental composition, and electrocatalytic activity of waste coal cinder were characterized by various characterization instruments. The results show that compared with simple electrocatalytic oxidation, electrocatalytic oxidation + waste coal cinder and electrocatalytic coupled persulfate oxidation, electrocatalytic oxidation + PMS advanced oxidation + waste coal cinder has the largest removal efficiency (99.95%) and mineralization rates (90.16%) of SD in 90 min, indicating that the introduction of waste coal cinder greatly increases the degradation efficiency. •OH and SO4-• were detected during the process of degradation. The optimal degradation process parameters were explored through different voltage, pH, plate spacing, aeration flow rate, potassium peroxymonosulfate sulfate complex salt dose, and Na2SO4 dosage. Cycling experiments show waste coal cinder has good structural stability. Through the analysis of triple quadrupole liquid chromatography-mass spectrometry (LC-MS), we put forward three possible ways of SD degradation. This research will provide a novel vision for water treatment.
Collapse
Affiliation(s)
- Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Qingqing Wan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
15
|
Ji W, Wang Y, Xiong Y, Zhang TC, Yuan S. Hydrophobic Ce-doped β-PbO2-SDS anode achieving synergistic effects for enhanced electrocatalytic oxidation of As(III). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|