1
|
Yang Z, Zhang B, Zhang Y, Bartlam M, Wang Y. Stereoisomer-specific bacterial mechanisms for hexabromocyclododecane biotransformation. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137589. [PMID: 39954446 DOI: 10.1016/j.jhazmat.2025.137589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Hexabromocyclododecane (HBCD), a flame retardant classified as a Persistent Organic Pollutant (POP), undergoes stereoisomer-specific microbial transformation with significant environmental and health implications. However, the underlying mechanisms of this stereoisomer-specific microbial transformation remain poorly understood. In this study, high-purity HBCD chiral isomers were isolated using an optimized high-performance liquid chromatography (HPLC) method and their transformation by Acinetobacter hemolyticum sp. strain HW-2 was investigated through transcriptomic analysis. Within three days, strain HW-2 removed (+) α-, (-) α-, (+) β-, (-) β-, (+) γ-, and (-) γ-HBCD with respective removal efficiencies of 52.38 %, 71.08 %, 71.07 %, 63.34 %, 47.47 %, and 77.05 %. Transcriptomic data revealed stereoisomer-specific processes in HBCD transport, response, and transformation. Strain HW-2 upregulated major facilitator superfamily (MFS) transport genes for HBCD uptake, with distinct genes activated for different diastereoisomers. Compared to γ-HBCD, α- and β-HBCD exerted greater stress on strain HW-2, leading to increased expression of efflux genes and antioxidant-related genes. The transformation of HBCD stereoisomers involved distinct functional enzymes, with only (-) γ-HBCD metabolized via the aromatic compound metabolic pathway. This study elucidates the stereoisomeric-specific transformation mechanisms underlying HBCD transformation by strain HW-2, offering valuable insights for theoretical and practical applications in HBCD remediation.
Collapse
Affiliation(s)
- Zhao Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Bidan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Yi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Hu B, Hu S, You L, Chen Z. Understanding arbuscular mycorrhizal fungi's contribution to hexabromocyclododecane metabolism: Pathways and ecological implications in contaminated environments. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137396. [PMID: 39893978 DOI: 10.1016/j.jhazmat.2025.137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
This study investigates the role of arbuscular mycorrhizal fungi (AMF) in the metabolism of hexabromocyclododecane (HBCD) and its ecological effects in contaminated environments. We focused on the symbiotic relationships between Iris pseudacorus L. and AMF (Rhizophagus irregularis) under HBCD exposure. Our results show that HBCD induces oxidative damage, which hinders plant growth. However, AMF significantly enhance the plant's antioxidant defenses, reducing oxidative damage and supporting better growth of I. pseudacorus. HBCD biodegradation patterns showed β- > γ- > α-HBCD, with AMF playing a key role in stabilizing rhizosphere microbial communities, particularly promoting Proteobacteria and potential bacterial degraders like Aeromonas and Trichococcus, which contributed to HBCD removal. Additionally, AMF appear to upregulate genes such as cypD_E, GST, dehH, dehA, dehM, Em3.8.1.2, and ligB, which are involved in debromination and hydroxylation reactions. This research highlights AMF's potential to enhance the phytoremediation of HBCD, providing valuable insights for environmental remediation strategies.
Collapse
Affiliation(s)
- Bo Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shanshan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lexing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha - Suchdol, Praha 16500, Czech Republic.
| |
Collapse
|
3
|
Chen J, Wang R, Wang C, Wang P, Gao H, Hu Y, Nie Q, Zhang S. Enhanced microbial degradation of hexabromocyclododecane in riparian sediments through regulating flooding regimes. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137406. [PMID: 40098214 DOI: 10.1016/j.jhazmat.2025.137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Hexabromocyclododecane (HBCD), a persistent halogenated organic pollutant, has been commonly detected in river sediments, especially in riparian zones, but strategies for promoting its microbial degradation remain insufficiently explored. This study hypothesized that regulating the flooding regime of sediments could accelerate microbial degradation of HBCD in riparian zones and evaluated the underlying mechanisms. Results showed that, compared with high-frequency flooding-drying or no alternations, the low-frequency flooding-drying alternation (6 weeks of flooding and 6 weeks of drying, 6F:6D) significantly promoted microbial degradation of HBCD. This may be due to changes in sediment redox potential under the 6F:6D regime, facilitating the sequential reductive debromination and aerobic degradation process of HBCD. The abundances of organohalide-respiring bacteria (Dehalococcoides spp. and Dehalogenimonas spp.) were always high in the 6F:6D regime, irrespective of flooding or drying periods. Furthermore, the complex bacterial co-occurrence patterns, specific ecological clusters, and potential keystone species including the genera Methylibium, Nitrospira, and Dehalococcoides, may play important degradative roles of HBCD in the 6F:6D regime. Overall, microbial degradation of HBCD can be promoted under low-frequency flooding-drying alternation regulated by hydraulic structures, providing an effective and eco-friendly strategy for ecological restoration.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Qihao Nie
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shunqing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
4
|
Lin YJ, Hsieh PH, Mao CC, Shih YH, Chen SH, Lin CY. Interpretation of machine learning-based prediction models and functional metagenomic approach to identify critical genes in HBCD degradation. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136976. [PMID: 39740553 DOI: 10.1016/j.jhazmat.2024.136976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/01/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Hexabromocyclododecane (HBCD) poses significant environmental risks, and identifying HBCD-degrading microbes and their enzymatic mechanisms is challenging due to the complexity of microbial interactions and metabolic pathways. This study aimed to identify critical genes involved in HBCD biodegradation through two approaches: functional annotation of metagenomes and the interpretation of machine learning-based prediction models. Our functional analysis revealed a rich metabolic potential in Chiang Chun soil (CCS) metagenomes, particularly in carbohydrate metabolism. Among the machine learning algorithms tested, random forest models outperformed others, especially when trained on datasets reflecting the degradation patterns of species like Dehalococcoides mccartyi and Pseudomonas aeruginosa. These models highlighted enzymes such as EC 1.8.3.2 (thiol oxidase) and EC 4.1.1.43 (phenylpyruvate decarboxylase) as inhibitors of degradation, while EC 2.7.1.83 (pseudouridine kinase) was linked to enhanced degradation. This dual-methodology approach not only deepens our understanding of microbial functions in HBCD degradation but also provides an unbiased view of the microbial and enzymatic interactions involved, offering a more targeted and effective bioremediation strategy.
Collapse
Affiliation(s)
- Yu-Jie Lin
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Ping-Heng Hsieh
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Chun-Chia Mao
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Shu-Hwa Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan; Institute of Fisheries Science, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
5
|
Song H, Chen WJ, Chen SF, Liu M, Si G, Zhu X, Bhatt K, Mishra S, Ghorab MA, Chen S. Unveiling the hydrolase Oph2876 mediated chlorpyrifos degradation mechanism in Pseudomonas nitroreducens and its potential for environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136570. [PMID: 39603136 DOI: 10.1016/j.jhazmat.2024.136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Chlorpyrifos contamination is a currently on-going issue with significant environmental impacts. As such, rapid and effective techniques that remove chlorpyrifos from the environment are urgently required. Here, a strain of Pseudomonas nitroreducens W-7 exhibited exceptional degradation ability towards both chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol (TCP). W-7 can effectively reduce the toxicity of chlorpyrifos and TCP towards a variety of sensitive organisms through its superior degradation capacity. W-7 demonstrated efficient soil bioremediation by removing over 50 % of chlorpyrifos (25 mg/kg) from both sterile and non-sterile soils within 5 days, with significantly reduced half-lives. Additionally, 16S rDNA high-throughput sequencing of the soil revealed that the introduction of W-7 had no significant impact on the soil microbial community. A pivotal hydrolase Oph2876 containing conserved motif (HxHxDH) and a bimetallic catalytic center was identified from W-7. Oph2876 was a heat- and alkali-resistant enzyme with low sequence similarity (< 44 %) with other reported organophosphorus hydrolases, with a better substrate affinity for hydrolysis of chlorpyrifos to TCP. The molecular docking and site-directed mutagenesis studies indicated that the amino acid residues Asp235, His214, and His282, which were associated with the conserved sequence "HxHxDH", were crucial for the activity of Oph2876. These findings contribute to a better understanding of the biodegradation mechanism of chlorpyrifos and present useful agents for the development of effective chlorpyrifos bioremediation strategies.
Collapse
Affiliation(s)
- Haoran Song
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Liu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guiling Si
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xixian Zhu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Kalpana Bhatt
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI 48824, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616-8741, USA
| | - Shaohua Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Xue S, Yi X, Peng J, Bak F, Zhang L, Duan G, Liesack W, Zhu Y. Fulvic Acid Enhances Nitrogen Fixation and Retention in Paddy Soils through Microbial-Coupled Carbon and Nitrogen Cycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18777-18787. [PMID: 39382160 DOI: 10.1021/acs.est.4c07616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Fulvic acid, the most soluble and active humic substance, is widely used as an agent to remediate contaminated soils and improve soil fertility. However, the influence of fulvic acid (FA), as a microbial carbon source, on carbon and nitrogen cycles in paddy soils remains elusive. Therefore, to investigate it, an incubation experiment was conducted. Gas analyses indicated that the carbon dioxide and methane emissions were enhanced in FA treatment, which increased up to 94.08-fold and 5.06-fold, respectively. 15N-labeling experiments revealed that nitrogen fixation capability was promoted (1.2-fold) to reduce the carbon and nitrogen imbalance due to fulvic acid amendment. Metagenomic analysis further revealed that gene abundances of degradation of lignin-like compounds, gallate degradation, methanogenesis, nitrogen fixation, and urea hydrolysis increased, while the bacterial ammonia oxidation and anaerobic ammonium oxidation decreased, caused by FA application. Metabolic reconstruction of metagenome-assembled genomes revealed that Azospirillaceae, Methanosarcinaceae, and Bathyarchaeota, with higher abundance in FA treatment, were the key microorganisms to maintain the carbon and nitrogen balance. The metabolic pathways of fulvic acid degradation and coupled nitrogen fixation and retention were constructed. Collectively, our results provided novel insights into the theoretical basis of the use of humic substances for reducing nitrogen fertilization and climate change.
Collapse
Affiliation(s)
- Shudan Xue
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyun Yi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Jingjing Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Frederik Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Limei Zhang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg D-35043, Germany
| | - Yongguan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
7
|
Chen J, Zhuang J, Dai T, Zhang R, Zeng Y, Jiang B, Guo H, Guo X, Yang Y. Enhancing soil petrochemical contaminant remediation through nutrient addition and exogenous bacterial introduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135078. [PMID: 38964043 DOI: 10.1016/j.jhazmat.2024.135078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Biostimulation (providing favorable environmental conditions for microbial growth) and bioaugmentation (introducing exogenous microorganisms) are effective approaches in the bioremediation of petroleum-contaminated soil. However, uncertainty remains in the effectiveness of these two approaches in practical application. In this study, we constructed mesocosms using petroleum hydrocarbon-contaminated soil. We compared the effects of adding nutrients, introducing exogenous bacterial degraders, and their combination on remediating petroleum contamination in the soil. Adding nutrients more effectively accelerated total petroleum hydrocarbon (TPH) degradation than other treatments in the initial 60 days' incubation. Despite both approaches stimulating bacterial richness, the community turnover caused by nutrient addition was gentler than bacterial degrader introduction. As TPH concentrations decreased, we observed a succession in microbial communities characterized by a decline in copiotrophic, fast-growing bacterial r-strategists with high rRNA operon (rrn) copy numbers. Ecological network analysis indicated that both nutrient addition and bacterial degrader introduction enhanced the complexity and stability of bacterial networks. Compared to the other treatment, the bacterial network with nutrient addition had more keystone species and a higher proportion of negative associations, factors that may enhance microbial community stability. Our study demonstrated that nutrient addition effectively regulates community succession and ecological interaction to accelerate the soil TPH degradation.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jugui Zhuang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tianjiao Dai
- School of Environment, Tsinghua University, Beijing 100084, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Ruihuan Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yufei Zeng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huaming Guo
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xue Guo
- School of Environment, Tsinghua University, Beijing 100084, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
8
|
Chen Z, Zhang J, Lv W, Zhang H, Li S, Zhang H, Shen Y, Geng C, Bai N. The unexpected effect of the compound microbial agent NP-M2 on microbial community dynamics in a nonylphenol-contaminated soil: the self-stability of soil ecosystem. PeerJ 2024; 12:e17424. [PMID: 38827279 PMCID: PMC11144391 DOI: 10.7717/peerj.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Background Nonylphenol (NP) is widely recognized as a crucial environmental endocrine-disrupting chemical and persistent toxic substance. The remediation of NP-contaminated sites primarily relies on biological degradation. Compound microbial products, as opposed to pure strains, possess a greater variety of metabolic pathways and can thrive in a wider range of environmental conditions. This characteristic is believed to facilitate the synergistic degradation of pollutants. Limited research has been conducted to thoroughly examine the potential compatibility of compound microbial agents with indigenous microflora, their ability to function effectively in practical environments, their capacity to enhance the dissipation of NP, and their potential to improve soil physicochemical and biological characteristics. Methods In order to efficiently eliminate NP in contaminated soil in an eco-friendly manner, a simulation study was conducted to investigate the impact of bioaugmentation using the functional compound microbial agent NP-M2 at varying concentrations (50 and 200 mg/L) on the dynamics of the soil microbial community. The treatments were set as follows: sterilized soil with 50 mg/kg NP (CK50) or 200 mg/kg NP (CK200); non-sterilized soil with 50 mg/kg NP (TU50) or 200 mg/kg NP (TU200); non-sterilized soil with the compound microbial agent NP-M2 at 50 mg/kg NP (J50) or 200 mg/kg NP (J200). Full-length 16S rRNA analysis was performed using the PacBio Sequel II platform. Results Both the indigenous microbes (TU50 and TU200 treatments) and the application of NP-M2 (J50 and J200 treatments) exhibited rapid NP removal, with removal rates ranging from 93% to 99%. The application of NP-M2 further accelerated the degradation rate of NP for a subtle lag period. Although the different treatments had minimal impacts on the soil bacterial α-diversity, they significantly altered the β-diversity and composition of the bacterial community. The dominant phyla were Proteobacteria (35.54%-44.14%), Acidobacteria (13.55%-17.07%), Planctomycetes (10.78%-11.42%), Bacteroidetes (5.60%-10.74%), and Actinobacteria (6.44%-8.68%). The core species were Luteitalea_pratensis, Pyrinomonas_methylaliphatogenes, Fimbriiglobus_ruber, Longimicrobium_terrae, and Massilia_sp003590855. The bacterial community structure and taxon distribution in polluted soils were significantly influenced by the activities of soil catalase, sucrase, and polyphenol oxidase, which were identified as the major environmental factors. Notably, the concentration of NP and, to a lesser extent, the compound microbial agent NP-M2 were found to cause major shifts in the bacterial community. This study highlights the importance of conducting bioremediation experiments in conjunction with microbiome assessment to better understand the impact of bioaugmentation/biostimulation on the potential functions of complex microbial communities present in contaminated soils, which is essential for bioremediation success.
Collapse
Affiliation(s)
- Zhaoliang Chen
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Juanqin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Hanlin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Shuangxi Li
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Haiyun Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Yue Shen
- Shanghai Agricultural Science and Technology Service Center, Shanghai, China
| | - Chunnu Geng
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Naling Bai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| |
Collapse
|
9
|
Chang J, Liang J, Zhang Y, Zhang R, Fang W, Zhang H, Lam SS, Zhang P, Zhang G. Insights into the influence of polystyrene microplastics on the bio-degradation behavior of tetrabromobisphenol A in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134152. [PMID: 38552398 DOI: 10.1016/j.jhazmat.2024.134152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Soil contamination by emerging pollutants tetrabromobisphenol A (TBBPA) and microplastics has become a global environmental issue in recent years. However, little is known about the effect of microplastics on degradation of TBBPA in soil, especially aged microplastics. In this study, the effect of aged polystyrene (PS) microplastics on the degradation of TBBPA in soil and the mechanisms were investigated. The results suggested that the aged microplastics exhibited a stronger inhibitory effect on the degradation of TBBPA in soil than the pristine microplastics, and the degradation efficiency of TBBPA decreased by 21.57% at the aged microplastic content of 1%. This might be related to the higher TBBPA adsorption capacity of aged microplastics compared to pristine microplastics. Aged microplastics strongly altered TBBPA-contaminated soil properties, reduced oxidoreductase activity and affected microbial community composition. The decrease in soil oxidoreductase activity and relative abundance of functional microorganisms (e.g., Bacillus, Pseudarthrobacter and Sphingomonas) caused by aged microplastics interfered with metabolic pathways of TBBPA. This study indicated the importance the risk assessment and soil remediation for TBBPA-contaminated soil with aged microplastics.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yajie Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
10
|
Leri AC, Hettithanthri O, Bolan S, Zhang T, Unrine J, Myneni S, Nachman DR, Tran HT, Phillips AJ, Hou D, Wang Y, Vithanage M, Padhye LP, Jasemi Zad T, Heitz A, Siddique KHM, Wang H, Rinklebe J, Kirkham MB, Bolan N. Bromine contamination and risk management in terrestrial and aquatic ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133881. [PMID: 38422740 PMCID: PMC11380803 DOI: 10.1016/j.jhazmat.2024.133881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments. Volcanic eruptions, geothermal streams, and seawater are the major natural sources of Br. In soils and sediments, Br undergoes natural cycling between organic and inorganic forms, with bromination reactions occurring both abiotically and through microbial activity. For organisms, Br is a non-essential element; it is passively taken up by plant roots in the form of the Br- anion. Elevated Br- levels can limit plant growth on coastal soils of arid and semi-arid environments. Br is used in the chemical industry to manufacture pesticides, flame retardants, pharmaceuticals, and other products. Anthropogenic sources of organobromine contaminants in the environment are primarily wastewater treatment, fumigants, and flame retardants. When aqueous Br- reacts with oxidants in water treatment plants, it can generate brominated disinfection by-products (DBPs), and exposure to DBPs is linked to adverse human health effects including increased cancer risk. Br- can be removed from aquatic systems using adsorbents, and amelioration of soils containing excess Br- can be achieved by leaching, adding various amendments, or phytoremediation. Developing cost-effective methods for Br- removal from wastewater would help address the problem of toxic brominated DBPs. Other anthropogenic organobromines, such as polybrominated diphenyl ether (PBDE) flame retardants, are persistent, toxic, and bioaccumulative, posing a challenge in environmental remediation. Future research directives for managing Br pollution sustainably in various environmental settings are suggested here.
Collapse
Affiliation(s)
- Alessandra C Leri
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States.
| | - Oshadi Hettithanthri
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, United States; Kentucky Water Research Institute, University of Kentucky, Lexington, KY 40506, United States
| | - Satish Myneni
- Department of Geosciences, Princeton Univ., Princeton, NJ 08544, United States
| | - Danielle R Nachman
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Huu Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145, India
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yidong Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Tahereh Jasemi Zad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Anna Heitz
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| |
Collapse
|
11
|
Yu F, Zhang B, Liu Y, Luo W, Chen H, Gao J, Ye X, Li J, Xie Q, Peng T, Wang H, Huang T, Hu Z. Biotransformation of HBCDs by the microbial communities enriched from mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134036. [PMID: 38493623 DOI: 10.1016/j.jhazmat.2024.134036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
1,2,5,6,9,10-Hexabromocyclododecanes (HBCDs) are a sort of persistent organic pollutants (POPs). This research investigated 12 microbial communities enriched from sediments of four mangroves in China to transform HBCDs. Six microbial communities gained high transformation rates (27.5-97.7%) after 12 generations of serial transfer. Bacteria were the main contributors to transform HBCDs rather than fungi. Analyses on the bacterial compositions and binning genomes showed that Alcanivorax (55.246-84.942%) harboring haloalkane dehalogenase genes dadAH and dadBH dominated the microbial communities with high transformation rates. Moreover, expressions of dadAH and dadBH in the microbial communities and Alcanivorax isolate could be induced by HBCDs. Further, it was found that purified proteins DadAH and DadBH showed high conversion rates on HBCDs in 36 h (91.9 ± 7.4 and 101.0 ± 1.8%, respectively). The engineered Escherichia coli BL21 strains harbored two genes could convert 5.7 ± 0.4 and 35.1 ± 0.1% HBCDs, respectively, lower than their cell-free crude extracts (61.2 ± 5.2 and 56.5 ± 8.7%, respectively). The diastereoisomer-specific transforming trend by both microbial communities and enzymes were γ- > α- > β-HBCD, differed from α- > β- > γ-HBCD by the Alcanivorax isolate. The identified transformation products indicated that HBCDs were dehalogenated via HBr elimination (dehydrobromination), hydrolytic and reductive debromination pathways in the enriched cultures. Two enzymes converted HBCDs via hydrolytic debromination. The present research provided theoretical bases for the biotransformation of HBCDs by microbial community and the bioremediation of HBCDs contamination in the environment.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Bing Zhang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Haonan Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Jun'na Gao
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Xueying Ye
- School of Life Sciences, Huizhou University, Huizhou 516007, Guangdong Province, China
| | - Jin Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, Guangdong Province, China
| | - Qingyi Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong Province, China.
| |
Collapse
|
12
|
Yan PF, Dong S, Woodcock MJ, Manz KE, Garza-Rubalcava U, Abriola LM, Pennell KD, Cápiro NL. Biotransformation of 6:2 fluorotelomer sulfonate and microbial community dynamics in water-saturated one-dimensional flow-through columns. WATER RESEARCH 2024; 252:121146. [PMID: 38306753 DOI: 10.1016/j.watres.2024.121146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Nearly all per- and polyfluoroalkyl substances (PFAS) biotransformation studies reported to date have been limited to laboratory-scale batch reactors. The fate and transport of PFAS in systems that more closely represent field conditions, i.e., in saturated porous media under flowing conditions, remain largely unexplored. This study investigated the biotransformation of 6:2 fluorotelomer sulfonate (6:2 FTS), a representative PFAS of widespread environmental occurrence, in one-dimensional water-saturated flow-through columns packed with soil obtained from a PFAS-contaminated site. The 305-day column experiments demonstrated that 6:2 FTS biotransformation was rate-limited, where a decrease in pore-water velocity from 3.7 to 2.4 cm/day, resulted in a 21.7-26.1 % decrease in effluent concentrations of 6:2 FTS and higher yields (1.0-1.4 mol% vs. 0.3 mol%) of late-stage biotransformation products (C4C7 perfluoroalkyl carboxylates). Flow interruptions (2 and 7 days) were found to enhance 6:2 FTS biotransformation during the 6-7 pore volumes following flow resumption. Model-fitted 6:2 FTS column biotransformation rates (0.039-0.041 cmw3/gs/d) were ∼3.5 times smaller than those observed in microcosms (0.137 cmw3/gs/d). Additionally, during column experiments, planktonic microbial communities remained relatively stable, whereas the composition of the attached microbial communities shifted along the flow path, which may have been attributed to oxygen availability and the toxicity of 6:2 FTS and associated biotransformation products. Genus Pseudomonas dominated in planktonic microbial communities, while in the attached microbial communities, Rhodococcus decreased and Pelotomaculum increased along the flow path, suggesting their potential involvement in early- and late-stage 6:2 FTS biotransformation, respectively. Overall, this study highlights the importance of incorporating realistic environmental conditions into experimental systems to obtain a more representative assessment of in-situ PFAS biotransformation.
Collapse
Affiliation(s)
- Peng-Fei Yan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States.
| | - Sheng Dong
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | | | - Katherine E Manz
- School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | | | - Linda M Abriola
- School of Engineering, Brown University, Providence, RI, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
13
|
Yao Q, Xu J, Tang N, Chen W, Gu Q, Li H. Screening, cloning, immobilization and application prospects of a novel β-glucosidase from the soil metagenome. ENVIRONMENTAL RESEARCH 2024; 244:117676. [PMID: 37996002 DOI: 10.1016/j.envres.2023.117676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
The soil environment for straw return is a rich and valuable library containing many microorganisms and proteins. In this study, we aimed to screen a high-quality β-glucosidase (BGL) from the soil metagenomic library and to overcome the limitation of the low extraction rate of resveratrol in Polygonum cuspidatum. This includes the construction of a soil metagenomic library, screening of BGL, bioinformatics analysis, cloning, expression, immobilization, enzymatic property analysis, and application for the transformation of polydatin. The results showed that the soil metagenomic library of straw return was successfully constructed, and a novel BGL was screened. The identified 1356 bp long BGL belonged to the glycoside hydrolase 1 (GH1) family and was named Bgl1356. After successful cloning and expression of Bgl1356, it was immobilized using chitosan. The optimum temperature of immobilized Bgl1356 was 50 °C, and the pH was 5. It exhibited good tolerance for various metal ions (CO2+, Ni2+, Cu2+, Mn2+, Na2+, Ca2+, and Ag+) and organic solvents (DMSO, Triton-X-10, and ethanol). Enzymatic kinetics assays showed that Bgl1356 had good affinity for the substrate, and the specific enzyme activity was 234.03 U/mg. The conversion rate of polydatin by immobilized Bgl1356 was 95.70 ± 1.08%, facilitating the production of high amounts of resveratrol. Thus, this paper reports a novel temperature-, organic solvent-, and metal ion-tolerant BGL that has good application prospects in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qian Yao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| | - Jin Xu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| | - Nan Tang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Weiji Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Quliang Gu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - He Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Zhang G, Li W, Li D, Wang S, Lv L. Integration of ammonium assimilation with denitrifying phosphorus removal for efficient nutrient management in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120116. [PMID: 38280251 DOI: 10.1016/j.jenvman.2024.120116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024]
Abstract
Nutrient removal from sewage is transitioning to nutrient recovery. However, biological treatment technologies to remove and recover nutrients from domestic sewage are still under investigation. This study delved into the integration of ammonium assimilation with denitrifying phosphorus removal (DPR) as a method for efficient nutrient management in sewage treatment. Results indicated this approach eliminated over 80 % of the nitrogen in the influent, simultaneously recovering over 60 % of the nitrogen as the activated sludge through ammonia assimilation, and glycerol facilitated this process. The nitrification/denitrifying phosphorus removal ensured the stability of both nitrogen and phosphorus removal. The phosphorus removal rate exceeded 96 %, and the DPR rate reached over 90 %. Network analysis highlighted a stable community structure with Proteobacteria and Bacteroidota driving ammonium assimilation. The synergistic effect of fermentation bacteria, denitrifying glycogen-accumulating organisms, and denitrifying phosphorus-accumulating organisms contributed to the stability of nitrogen and phosphorus removal. This approach offers a promising method for sustainable nutrient management in sewage treatment.
Collapse
Affiliation(s)
- Guanglin Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Donghui Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shuncai Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
15
|
Wu Z, Kang L, Man Q, Xu X, Zhu F, Lyu H. Effects of hexabromocyclododecane and polyethylene microplastics on soil bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167691. [PMID: 37827321 DOI: 10.1016/j.scitotenv.2023.167691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Hexabromocyclododecane (HBCD) and polyethylene (PE) microplastic are ubiquitous pollutants, and knowledge about the effects of HBCD and PE pollution on soil bacterial communities remains obscure. In this study, the effects of different HBCD and PE concentrations and combined HBCD and PE exposure on the diversity, composition, and function of agricultural soil bacterial communities over 4 months were systematically examined for the first time. Generally, soil bacterial communities were influenced in both the 1-month and 4-month scenarios through HBCD and PE separately as well as combined exposure. After 4 months of exposure, PE and combined exposure significantly affected soil bacterial alpha diversity, however, low concentration of HBCD showed no apparent influence. 1-month and 4-month HBCD, PE, and combined exposure significantly influenced bacterial beta diversity. Compared with 1 month of exposure, HBCD, PE, and combined exposure demonstrated remarkable influences on soil bacteria after 4 months of exposure, especially on Nitrospirae, Elusimicrobia, Rokubacteria at the phylum level, and on MND1, Ruminiclostridium, Lysobacter, Anaeromyxobacter, Alistipes, WCHB1 at the genus level. The bacterial function analysis indicated that amino acid metabolism, carbohydrate metabolism, and membrane transport were the three predominant enriched bacterial functions after 1-month and 4-month HBCD and PE exposure. This research provides a comprehensive grasp of the effects of HBCD and PE pollution on soil microbial communities, which could have a beneficial impact on future soil pollution control.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Linhao Kang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Quanli Man
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiaoyi Xu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fujie Zhu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Honghong Lyu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
16
|
Qin Z, Zhao Z, Xia L, Yu G, Miao A, Yang Z. Vertical and seasonal dynamics of bacterial pathogenic communities at an aged organic contaminated site: Insights into microbial diversity, composition, interactions, and assembly processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132255. [PMID: 37703736 DOI: 10.1016/j.jhazmat.2023.132255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Under the background of the Coronavirus Disease 2019 (COVID-19) pandemic, research on pathogens deserves greater attention in the natural environment, especially in the widely distributed contaminated sites with complicated and severe organic pollution. In this study, the community composition and assembly of soil pathogens identified by the newly-developed 16S-based pipeline of multiple bacterial pathogen detection (MBPD) have been investigated on spatiotemporal scales in the selected organic polluted site. We demonstrated that the richness and diversity of the pathogenic communities were primarily controlled by soil depth, while the structure and composition of pathogenic communities varied pronouncedly with seasonal changes, which were driven by the alterations in both physiochemical parameters and organic contaminants over time. Network analysis revealed that the overwhelmingly positive interactions, identified multiple keystone species, and a well-organized modular structure maintained the stability and functionality of the pathogenic communities under environmental pressures. Additionally, the null-model analysis showed that deterministic processes dominated the pathogenic community assembly across soil profiles. In three seasons, stochasticity-dominated processes in spring and summer changed into determinism-dominated processes in winter. These findings extend our knowledge of the response of the bacterial pathogenic community to environmental disruptions brought on by organic contaminated sites.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing 210016, China
| | - Guangwen Yu
- China National Chemical Civil Engineering Co., Ltd, Nanjing 210031, China
| | - Aihua Miao
- China National Chemical Civil Engineering Co., Ltd, Nanjing 210031, China
| | - Zijun Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
17
|
Yu F, Luo W, Xie W, Li Y, Liu Y, Ye X, Peng T, Wang H, Huang T, Hu Z. The effects of long-term hexabromocyclododecanes contamination on microbial communities in the microcosms. CHEMOSPHERE 2023; 325:138412. [PMID: 36925001 DOI: 10.1016/j.chemosphere.2023.138412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of microbial community to the long-term contamination of hexabromocyclododecanes (HBCDs) has not been well studied. Our previous study found that the HBCDs contamination in the microcosms constructed of sediments from two different mangrove forests in 8 months resulted in serious acidification (pH2-3). This study reanalyzed previous sequencing data and compared them with data after 20 months to investigate the adaptive properties of microbial communities in the stress of HBCDs and acidification. It hypothesized that the reassembly was based on the fitness of taxa. The results indicated that eukaryotes and fungi might have better adaptive capacity to these deteriorated habitats. Eukaryotic taxa Eufallia and Syncystis, and fungal taxa Wickerhamomyces were only detected after 20 months of contamination. Moreover, eukaryotic taxa Caloneis and Nitzschia, and fungal taxa Talaromyces were dominant in most of microbial communities (14.467-95.941%). The functional compositions were sediment-dependent and more divergent than community reassemblies. Network and co-occurrence analysis suggested that acidophiles such as Acidisoma and Acidiphilium were gaining more positive relations in the long-term stress. The acidophilic taxa and genes involved in resistance to the acidification and toxicity of HBCDs were enriched, for example, bacteria Acidisoma and Acidiphilium, archaea Thermogymnomonas, and eukaryotes Nitzschia, and genes kdpC, odc1, polA, gst, and sod-2. These genes involved in oxidative stress response, energy metabolism, DNA damage repair, potassium transportation, and decarboxylation. It suggested that the microbial communities might cope with the stress from HBCDs and acidification via multiple pathways. The present research shed light on the evolution of microbial communities under the long-term stress of HBCDs contamination and acidification.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China.
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong Province, China.
| |
Collapse
|
18
|
Liu Z, Chen J, Su Z, Liu Z, Li Y, Wang J, Wu L, Wei H, Zhang J. Acid rain reduces plant-photosynthesized carbon sequestration and soil microbial network complexity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162030. [PMID: 36740064 DOI: 10.1016/j.scitotenv.2023.162030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Acid rain threatens the structure and function of terrestrial ecosystems; however, the mechanisms by which acid rain affects the photosynthesized carbon (C) fluxes and soil microbial communities are far less understood, thus impeding accurate projections of regional C flux in the plant-soil-atmosphere system. In this study, we performed an isotopic 13C labeling experiment to trace C footprints in a maize-soil system under acid rain pollution (pH 4.5 and 3.0; SO42-/NO3-= 2:1). Our results showed that acid rain exerted a negligible effect on total plant biomass as well as shoot biomass. Acid rain of pH 3.0 inhibited plant 13C assimilation and the flow of fixed 13C to the soil. Acid rain decreased soil total C and organic nitrogen (N) but increased inorganic N (i.e., nitrate-N) content. The acid rain of pH 3.0 enhanced soil bulk density, led to soil acidification, and promoted soil microbial diversity. However, acid rain reduced the connectivity and complexity of soil microbial network. Soil 13C content was mainly regulated by soil pH, ammonium-N, and root biomass. Our findings demonstrated that acid rain reduces photosynthesized C sequestration of maize-soil system and soil microbial taxa interactions.
Collapse
Affiliation(s)
- Ziqiang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Chen
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Zhijun Su
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Zhenxiu Liu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yazheng Li
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jing Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Lizhu Wu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Liu Z, Li Y, Wang J, Wu L, Liu Z, Wei H, Zhang J. Unraveling consequences of the co-exposure of polyethylene microplastics and acid rain on plant-microbe-soil system. CHEMOSPHERE 2022; 307:135941. [PMID: 35940419 DOI: 10.1016/j.chemosphere.2022.135941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Emerging microplastics (MPs) pollution and continuing acid rain (AR) co-exist in terrestrial ecosystems, and are considered as threats to ecosystems health. However, few data are available on MPs-AR interactions in plant-microbe-soil systems. Here, a microcosm experiment was manipulated to elucidate the co-exposure of polyethylene MPs (PE MPs; 1%, 5% and 10%) and AR (pH 4.0) on soil-lettuce system, in which the properties of soil and lettuce, and their links were explored. We found that 10% PE MPs increased soil CO2 emission and its temperature sensitivity (Q10) in combination with AR, while 1% PE MPs reduced soil CO2 emission irrespective of AR. PE MPs addition did not influence lettuce production (total biomass) though its photosynthesis was affected. PE MPs exerted negative impact on soil water availability. PE MPs treatments increased NH4+-N content of soil without AR, and dissolved organic carbon content of soil sprayed with AR. 10% PE MPs combined with AR reduced soil microbial biomass, while soil microbial community diversity was not affected by PE MPs or AR. Interestingly, 10% PE MPs addition altered soil microbial community structure, and promoted the complexity and connectivity of soil microbial networks. 5% and 10% PE MPs addition decreased soil urease activity under AR, but this was not the case without AR. These findings highlight the critical role of AR in regulating PE MPs impacts on plant-microbe-soil ecosystems, and the necessity to incorporate other environmental factors when evaluating the actual impacts or risks of MPs pollution in terrestrial ecosystems.
Collapse
Affiliation(s)
- Ziqiang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yazheng Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Lizhu Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenxiu Liu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|