1
|
Shao Z, Wei T, Zhang X, Liao K, Hou X, Deng H, Liu X, Lin Z, Chai L. Key Factors and Evaluation Model of Valuable Metal Separation in Low-Concentration Smelting Slag. ACS OMEGA 2025; 10:9691-9702. [PMID: 40092819 PMCID: PMC11904678 DOI: 10.1021/acsomega.4c10942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
The low concentration of valuable metals in smelting slags poses a significant challenge for separation. Despite the effective separation achieved by current pyrometallurgical or hydrometallurgical methods, the intricate mineralogy of slag and numerous leaching factors present considerable challenges in selecting the appropriate separation techniques and parameters for efficient and rapid extraction. In this study, copper slag flotation tailings (CSFT) were taken as an example, and the microexistence forms of valuable metals were analyzed through XRD and SEM-EDS. By integrating theoretical calculations and TGA analysis, a method involving concentrated sulfuric acid roasting and subsequent water leaching was employed to sufficiently extract valuable metals Mg, Cu, and Ni, concurrently achieving depth separation from Fe in the slag. Concurrently, a dynamic evaluation model correlating metal leaching efficiency (X t ) with key factors has been established, enabling the quantification of valuable metal leaching performance under various conditions. Based on the kinetics equation and Arrhenius formula, with roasting temperature (T), roasting time (t), acid-to-solid ratio (r), and particle size (d) as key parameters, using experimental data, a dynamic evaluation model with kinetic characteristics was established as follows: 1/3ln(1- X t ) - [1 - (1 - X t )-1/3] = 9.36r 1.55 d -1.40 e -21957.8/RT t. The influence order was determined as roasting temperature > acid-to-solid ratio > particle size. The simulated values closely matched the experimental values, allowing the model to accurately predict the metal leaching rates. This provides an essential method for the design of metal recovery reaction parameters and optimization of engineering outcomes in the treatment of smelting slag.
Collapse
Affiliation(s)
- Zhuandi Shao
- School
of Environment and Energy, The Key Laboratory of Pollution Control
and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, China
- Guangdong
Engineering and Technology Research Center for Environmental Nanomaterials, Guangdong Provincial Key Laboratory of Solid Wastes
Pollution Control and Recycling, Guangzhou 510006, China
| | - Tiantian Wei
- School
of Environment and Energy, The Key Laboratory of Pollution Control
and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, China
- Guangdong
Engineering and Technology Research Center for Environmental Nanomaterials, Guangdong Provincial Key Laboratory of Solid Wastes
Pollution Control and Recycling, Guangzhou 510006, China
| | - Xiujuan Zhang
- School
of Environment and Energy, The Key Laboratory of Pollution Control
and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, China
- Guangdong
Engineering and Technology Research Center for Environmental Nanomaterials, Guangdong Provincial Key Laboratory of Solid Wastes
Pollution Control and Recycling, Guangzhou 510006, China
| | - Kang Liao
- School
of Environment and Energy, The Key Laboratory of Pollution Control
and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, China
- Guangdong
Engineering and Technology Research Center for Environmental Nanomaterials, Guangdong Provincial Key Laboratory of Solid Wastes
Pollution Control and Recycling, Guangzhou 510006, China
| | - Xiaogang Hou
- Lanzhou
Lanshi Zhongke Nanotechnology Co.,Ltd, Lanzhou 730000, China
| | - Hong Deng
- School
of Environment and Energy, The Key Laboratory of Pollution Control
and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, China
- Guangdong
Engineering and Technology Research Center for Environmental Nanomaterials, Guangdong Provincial Key Laboratory of Solid Wastes
Pollution Control and Recycling, Guangzhou 510006, China
| | - Xueming Liu
- School
of Environment and Energy, The Key Laboratory of Pollution Control
and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, China
- Guangdong
Engineering and Technology Research Center for Environmental Nanomaterials, Guangdong Provincial Key Laboratory of Solid Wastes
Pollution Control and Recycling, Guangzhou 510006, China
- College
of Metallurgy and Environment, Central South
University, Changsha 410083, China
| | - Zhang Lin
- College
of Metallurgy and Environment, Central South
University, Changsha 410083, China
| | - Liyuan Chai
- College
of Metallurgy and Environment, Central South
University, Changsha 410083, China
| |
Collapse
|
2
|
Zhou J, Liu Z, Li Z, Xie R, Jiang X, Cheng J, Chen T, Yang X. Heavy metals release in lead-zinc tailings: Effects of weathering and acid rain. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136645. [PMID: 39603131 DOI: 10.1016/j.jhazmat.2024.136645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Heavy metals (HMs) release from lead (Pb)-zinc (Zn) tailings poses significant environmental risks to surrounding areas. Furthermore, with the natural weathering and frequently happened acid rain events, the release of HMs could be elevated. This study conducted a series of laboratory column experiments with thermodynamics and hydrogeochemical analysis to investigate the environmental behavior of HMs release in Pb-Zn tailings under natural weathering conditions and acid rain events. Results showed that the weathering of calcite facilitates the release of Pb (17.9 mg/kg) and cadmium (Cd) (0.15 mg/kg), while acid rain promotes Zn release (10.5 mg/kg) from the Fe-Mn oxides, with no significant change for arsenic (As). Among the influencing factors during the column experiments, the oxidation-reduction potential (ORP) was identified as the primary indicator for the predictions of the HMs release behavior based upon the Random Forest model (R2 = 0.973 - 0.997). Correlation analysis revealed a strong relationship between coexistent ions and HM release patterns. Therefore, saturation index (SI) could effectively identify the influence range of each mineral phase on HM release. This study provides scientific evidence for effective management in carbonate-type tailings ponds.
Collapse
Affiliation(s)
- Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenyuan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhen Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Ruoni Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xueqing Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiayi Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Lee YJ, Lee CG, Min KJ, Park SJ. Efficient cadmium removal from industrial wastewater generated from smelter using chemical precipitation and oxidation assistance. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11059. [PMID: 38812097 DOI: 10.1002/wer.11059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
The effective treatment of cadmium (Cd) in smelting wastewater is of great industrial importance. This study investigates the efficient removal of Cd from real industrial smelting wastewater via chemical precipitation using a series of experiments. In particular, the effects of different precipitants, agitation conditions, and the addition of NaOCl on Cd removal and pH variation are investigated. CaO (3.75 g/L), NaOH (3.50 g/L), and Ca(OH)2 (3.75 g/L) are found to be effective in elevating the wastewater pH and achieving high Cd removal rates (>99.9%), while the use of NaOH as a precipitant maintains a high Cd removal rate even at low agitation intensities. The properties of the produced sludge and supernatant are also determined using moisture content, particle size, and sludge leaching analyses due to the importance of economic and environmental sustainability in filtration, dewatering, and waste disposal processes. In addition, the addition of 2% NaOCl is tested, revealing that it can improve the Cd removal efficiency of Ca(OH)2, thus potentially reducing processing costs and enhancing the environmental benefits. Overall, these findings offer valuable insights into the removal of Cd from smelting wastewater, with potential implications for both environmental sustainability and economic viability. PRACTITIONER POINTS: CaO, NaOH, and Ca(OH)2 effectively remove Cd (>99.9%) from smelting wastewater. The use of NaOH leads to high Cd removal rates even at low agitation speeds. Adding 2% NaOCl can reduce the Ca(OH)2 dose for more economical Cd removal.
Collapse
Affiliation(s)
- Yeon-Jin Lee
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, South Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, South Korea
| | - Kyung Jin Min
- Department of Tech Center for Research Facilities, Konkuk University, Seoul, South Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, South Korea
| |
Collapse
|
4
|
Wang Z, Gao J, Lan X, Guo Z. A green method to clean copper slag and rapidly recover copper resources via reduction-sulfurizing smelting and super-gravity separation at low temperature. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133834. [PMID: 38387176 DOI: 10.1016/j.jhazmat.2024.133834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Massive copper slag containing heavy metals is produced in copper making and 0.5 - 8.0 wt% Cu is lost into it, deserving to be recovered. In this study, the waste coke and gypsum were employed to clean the copper slag, the lost copper was reduction-sulfurized and enriched to the matte droplets. However, the free-settling of matte droplets under normal gravity needed a higher temperature of 1350 ℃. On this basis, the matte droplets were efficiently separated from the cleaned slag via super-gravity at a low temperature of 1200 ℃ within 3 min, the recovery ratio of Cu was up to 99.56%, and the grade of Cu in the matte phase and cleaned slag was 85.84 wt% and 0.08 wt%, respectively. Moreover, the migration, distribution and leaching behavior of heavy metal elements (Pb, Zn, Ni, etc.,) were performed and analyzed, and the treatment and utilization of volatilized vapors and tailings were also discussed. This study proposed a green method to clean the copper slag and simultaneously recover copper resources via reduction-sulfurizing smelting and super-gravity separation at a low temperature, providing scientific guidance and application prospects for the synergistic treatment of hot copper slag with waste coke and gypsum.
Collapse
Affiliation(s)
- Zengwu Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Jintao Gao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Xi Lan
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhancheng Guo
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
5
|
Chen T, Wen X, Zhou J, Lu Z, Li X, Yan B. A critical review on the migration and transformation processes of heavy metal contamination in lead-zinc tailings of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122667. [PMID: 37783414 DOI: 10.1016/j.envpol.2023.122667] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The health risks of lead-zinc (Pb-Zn) tailings from heavy metal (HMs) contamination have been gaining increasing public concern. The dispersal of HMs from tailings poses a substantial threat to ecosystems. Therefore, studying the mechanisms of migration and transformation of HMs in Pb-Zn tailings has significant ecological and environmental significance. Initially, this study encapsulated the distribution and contamination status of Pb-Zn tailings in China. Subsequently, we comprehensively scrutinized the mechanisms governing the migration and transformation of HMs in the Pb-Zn tailings from a geochemical perspective. This examination reveals the intricate interplay between various biotic and abiotic constituents, including environmental factors (EFs), characteristic minerals, organic flotation reagents (OFRs), and microorganisms within Pb-Zn tailings interact through a series of physical, chemical, and biological processes, leading to the formation of complexes, chelates, and aggregates involving HMs and OFRs. These interactions ultimately influence the migration and transformation of HMs. Finally, we provide an overview of contaminant migration prediction and ecological remediation in Pb-Zn tailings. In this systematic review, we identify several forthcoming research imperatives and methodologies. Specifically, understanding the dynamic mechanisms underlying the migration and transformation of HMs is challenging. These challenges encompass an exploration of the weathering processes of characteristic minerals and their interactions with HMs, the complex interplay between HMs and OFRs in Pb-Zn tailings, the effects of microbial community succession during the storage and remediation of Pb-Zn tailings, and the importance of utilizing process-based models in predicting the fate of HMs, and the potential for microbial remediation of tailings.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Xiaocui Wen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zheng Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xueying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| |
Collapse
|
6
|
Sun Q, Yang H, Feng X, Liang Y, Gao P, Song Y. Synchronous stabilization of Pb, Zn, Cd, and As in lead smelting slag by industrial solid waste. CHEMOSPHERE 2023; 339:139755. [PMID: 37567265 DOI: 10.1016/j.chemosphere.2023.139755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
In order to prevent heavy metal (HM) pollution from lead smelting slag (LSS) to the surrounding environment, this work investigated the feasibility, influencing factors, and mechanisms of using industrial solid waste such as fly ash (FA), oil sludge pyrolysis residue (PR), and steel slag (SS) as remediation amendments. The results demonstrated that the stabilization process was influenced by the material dosage, water content, and LSS particle size. Compared to single materials, the combination amendment PR2FA1 (with a mass ratio of PR to FA as 2:1) exhibited the best stabilization effect, simultaneously reducing the leaching concentrations of As, Zn, Cd, and Pb in LSS to 0.032, 0.034, 0.002, and 0.014 mg/L, respectively. The pH value of the leachate remained between 8 and 9, which met the requirements of surface water quality class IV (GB3838-2002). Through morphological analysis, microscopic characterization, and simulated solution adsorption experiments, it was determined that the stabilization process of HMs was controlled by various mechanisms, including electrostatic attraction, physical adsorption, ion exchange, and chemical precipitation. PR2FA1 had more active components, and its fine-porous structure provided more active sites, resulting in good stabilization performance for As, Zn, Cd, and Pb. Furthermore, cost analysis showed that PR2FA1, as an environmentally friendly material, could generate profits of 157.2 ¥/ton. In conclusion, the prepared PR2FA1 not only addressed the HMs pollution from lead smelting slag to the surrounding environment but also achieved the safe and resourceful disposal of hazardous waste-oil sludge. Its excellent performance in stabilizing HMs and cost-effectiveness suggested promising commercial applications.
Collapse
Affiliation(s)
- Qiwei Sun
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huifen Yang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xiaodi Feng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuhao Liang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Pu Gao
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingliang Song
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
7
|
Shi T, Xu B, He J, Liu X, Zuo Z. Arsenic release pathway and the interaction principle among major species in vacuum sulfide reduction roasting of copper smelting flue dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121809. [PMID: 37172770 DOI: 10.1016/j.envpol.2023.121809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
The efficient release of arsenic in copper smelting flue dust (CSFD) with complicated production conditions and composition under the premise of environmental safety is difficult for the copper smelting industry. The vacuum environment is conducive to the volatilization of low-boiling arsenic compounds, which is beneficial to the physical process and chemical reaction of increasing the volume. In the present study, combined with thermodynamic calculations, the roasting process of pyrite and CSFD mixed in proportion in vacuum was simulated. Additionally, the release process of arsenic and the interaction mechanism of the main phases were performed in detail. The addition of pyrite facilitated the decomposition of stable arsenate in CSFD into volatile arsenic oxides. The results indicated that exceeding 98% of arsenic in CSFD volatilized into the condenser, while the arsenic content in the residue was reduced to 0.32% under optimal conditions. Pyrite could reduce the oxygen potential during the chemical reaction with CSFD, reacting with sulfates in CSFD to convert into sulfides and magnetic iron oxide (Fe3O4) simultaneously, and Bi2O3 would be transformed into metallic Bi. These findings are significant for developing arsenic-containing hazardous waste treatment routes and the application of innovative technical approaches.
Collapse
Affiliation(s)
- Tengteng Shi
- National Engineering Research Center for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan, 650093, PR China; Kunming University of Science and Technology, Kunming, PR China
| | - Baoqiang Xu
- The State Key Laboratory of Complex Non-Ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan, 650093, PR China; National Engineering Research Center for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, Yunnan, 650093, PR China; Kunming University of Science and Technology, Kunming, PR China.
| | - Jilin He
- Zhengzhou University, Zhengzhou, PR China
| | - Xinyang Liu
- Kunming University of Science and Technology, Kunming, PR China
| | - Zibin Zuo
- The State Key Laboratory of Complex Non-Ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan, 650093, PR China; Kunming University of Science and Technology, Kunming, PR China
| |
Collapse
|
8
|
Ma Y, Li Y, Fang T, He Y, Wang J, Liu X, Wang Z, Guo G. Analysis of driving factors of spatial distribution of heavy metals in soil of non-ferrous metal smelting sites: Screening the geodetector calculation results combined with correlation analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130614. [PMID: 37056003 DOI: 10.1016/j.jhazmat.2022.130614] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 12/13/2022] [Indexed: 06/19/2023]
Abstract
Heavy metals (HMs) discharged from smelting production may pose a major threat to human health and soil ecosystems. In this study, the spatial distribution characteristics of HMs in the soil of a non-ferrous metal smelting site were assessed. This study employed the geodetector (GD) by optimizing the classification condition and supplementing the correlation analysis (CA). The contribution of driving factors, such as production workshop distributions, hydrogeological conditions, and soil physicochemical properties, to the distribution of HMs in soil in the horizontal and vertical dimensions was assessed. The results showed that the main factors underlying the spatial distribution of As, Cd, Hg, Pb, Sb, and Zn in the horizontal direction were the distance from the sintering workshop (the maximum q value of that factor, q=0.28), raw material yard (q=0.14), and electrolyzer (q=0.29), while those in the vertical direction were the soil moisture content (q=0.17), formation lithology (q=0.12), and soil pH (q=0.06). The findings revealed that the CA is a simple and effective method to supplement the GD analysis underlying the spatial distribution characteristics of HMs at site scale. This study provides useful suggestions for environmental management to prevent HMs pollution and control HMs in the soil of non-ferrous metal smelting sites.
Collapse
Affiliation(s)
- Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yang Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Tingting Fang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Yinhai He
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Juan Wang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xiaoyang Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Zhiyu Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Guanlin Guo
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|
9
|
Xu DM, Fu RB. The mechanistic insights into the leaching behaviors of potentially toxic elements from the indigenous zinc smelting slags under the slag dumping site scenario. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129368. [PMID: 35897171 DOI: 10.1016/j.jhazmat.2022.129368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Since lager quantities of the zinc (Zn) smelting slags were traditionally dumped at the indigenous Zn smelting sites, the release characterization of potentially toxic elements (PTEs) from the Zn smelting slags under various environmental conditions were of great significance for an environmental risk analysis. The acidification of the Zn smelting slags to pH= 4 and 6 would result in the leaching concentrations of Cd and Mn exceeding the fourth-class standard of surface water quality standard in China (GB3838-2002). Notably, most metals exhibited an amphoteric leaching pattern, where the highest leached concentrations of As, Cd, Cu, Mn, Pb, and Zn were 4.15, 4.21, 140.0, 78.1, 156.9 and 477.0 mg/L, respectively. In addition, the highest release of toxic metals within 96 h reached 0.17 % of As, 3.50 % of Cd, 2.77 % of Cu, 6.92 % of Mn, 0.13 % of Pb, and 2.57 % of Zn, respectively. The combined results of various characterization techniques suggested that the PTEs remobilization effected by rhizosphere-like organic acids were mainly controlled by the precipitation of newly formed Fe, Mn and Al (hydr) oxides and the complexation of organic ligands. The present study results could provide valuable insights into the long-term leaching behaviors of PTEs from the Zn smelting slags to reduce ecological hazard.
Collapse
Affiliation(s)
- Da-Mao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Rong-Bing Fu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
10
|
Effect of Sulfur Content on Copper Recovery in the Reduction Smelting Process. METALS 2022. [DOI: 10.3390/met12050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work discussed the advantages of reducing copper in molten copper slag with low S content. FactSage calculated the distribution of copper at equilibrium under different sulfur contents. The effect of sulfur content on copper recovery under different oxygen partial pressures in 1400 °C was pointed out. The effect of sulfur content on copper recovery in the actual reduction process was explored through experimental research. Under the condition of low sulfur, the recovery ratio of copper and the stability of the experiment have an ideal result in fixed C/O in the experiment.
Collapse
|