1
|
Ding Y, Sun Q, Ping Q, Wang L, Li Y. Tracking the transformation of extracellular polymeric substances during the ultraviolet/peracetic acid disinfection process: Emphasizing on molecular-level analysis and overlooked mechanisms. WATER RESEARCH 2024; 266:122351. [PMID: 39217641 DOI: 10.1016/j.watres.2024.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In this study, the transformation mechanisms of extracellular polymeric substances (EPS) during ultraviolet/peracetic acid (UV/PAA) disinfection were elucidated based on multiple molecular-level analyses. After UV/PAA disinfection, the contents of soluble EPS (S-EPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were reduced by 70.47 %, 57.05 % and 47.46 %, respectively. Fluorescence excitation-emission matrix-parallel factor and Fourier transform ion cyclotron resonance mass spectrometry analyses showed that during UV/PAA disinfection, EPS was transformed from the state characterized by high aromaticity, low saturation and low oxidation to the one with reduced aromaticity, increased saturation and higher oxidation. Specifically, sulfur-containing molecules (CHOS, CHONS, etc.) in EPS were converted into highly saturated and oxidized species (such as CHO), with the aromaticity index (AImod) decreasing by up to 53.84 %. Molecular characteristics analyses further indicated that saturation degree, oxidation state of carbon and molecular weight exhibited the most significant changes in S-EPS, LB-EPS and TB-EPS, respectively. Additionally, mechanistic analysis revealed that oxygen addition reaction was the predominant reaction for S-EPS (+O) and TB-EPS (+3O) (accounting for 31.78 % and 36.47 %, respectively), while the dealkylation was the main reaction for LB-EPS (29.73 %). The results were consistent with functional groups sequential responses analyzed by Fourier transform infrared and two-dimensional correlation spectroscopy, and were further verified by density functional theory calculations. Most reactions were thermodynamically feasible, with reaction sites predominantly located at functional groups such as CO, CO, CN and aromatic rings. Moreover, metabolomics analysis suggested that changes in metabolites in raw secondary effluent during UV/PAA disinfection were strongly correlated with EPS transformation. Our study not only provides a strong basis for understanding EPS transformation during UV/PAA disinfection at molecular-level but also offers valuable insights for the application this promising disinfection process.
Collapse
Affiliation(s)
- Yizhe Ding
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| |
Collapse
|
2
|
Kwon H, Lim DJ, Choi C. Prevention of foodborne viruses and pathogens in fresh produce and root vegetables. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:219-285. [PMID: 40023562 DOI: 10.1016/bs.afnr.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Every year, 1 in 10 people suffers from food poisoning, and in recent years, the highest number of foodborne outbreaks has been attributed to roots/underground vegetables and fresh produce. Major pathogens include as Escherichia coli, Salmonella enterica, Listeria monocytogenes, Human Norovirus, Hepatitis A virus and Cyclospora. The primary sources of contamination for agriculture products stem from uncontrolled exposure to soil, water, and animal waste. Contamination can occur in various ways during food cultivation, harvesting, processing, and distribution. Mechanical washing and disinfection are primarily employed as practices to control biological contaminants such as bacteria, viruses, and parasites. Current practices may encounter challenges such as microbial resistance to disinfectants or antibiotics, and the cleaning effectiveness could be compromised due to the internalization of bacteria and viruses into some plants. High-pressure processing, pulse electric fields, and cold plasma are environmentally friendly technologies, albeit with associated costs. Low-temperature sterilization technologies capable of controlling biological contaminants, such as bacteria and viruses, play a crucial role in preventing food safety issues. Compared to conventional cleaning methods, these technologies are effective in controlling microorganisms that are strongly attached to the food surface or internalized due to damage. Periodic surveillance is essential to ensure the overall microbiological safety of fresh produce and root vegetables.
Collapse
Affiliation(s)
- Hyojin Kwon
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Dong Jae Lim
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Yin W, Liu T, Chen J, Zhang L, Ji R, Xu Y, Xu J, Li N, Zhou X, Zhang Y. Using UV/peracetic acid as pretreatment for subsequent bio-treatment of antibiotic-containing wastewater treatment: Mitigating microbial inhibition and antibiotic resistance genes proliferation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134166. [PMID: 38554511 DOI: 10.1016/j.jhazmat.2024.134166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruicheng Ji
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Li S, Dai C, Li J, Duan Y, Fu R, Zhang Y, Hu J, Zhou L, Wan L, Zhang Q, Zhang Z. Unlocking the power of activated carbon-mediated peracetic acid activation for efficient antibiotics abatement in groundwater: Coupling the processes of electron transfer, radical production, and adsorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133911. [PMID: 38430597 DOI: 10.1016/j.jhazmat.2024.133911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The activation of peracetic acid (PAA) by activated carbon (AC) is a promising approach for reducing micropollutants in groundwater. However, to harness the PAA/AC system's potential and achieve sustainable and low-impact groundwater remediation, it is crucial to quantify the individual contributions of active species. In this study, we developed a combined degradation kinetic and adsorption mass transfer model to elucidate the roles of free radicals, electron transfer processes (ETP), and adsorption on the degradation of antibiotics by PAA in groundwater. Our findings reveal that ETP predominantly facilitated the activation of PAA by modified activated carbon (AC600), contributing to ∼61% of the overall degradation of sulfamethoxazole (SMX). The carbonyl group (CO) on the surface of AC600 was identified as a probable site for the ETP. Free radicals contributed to ∼39% of the degradation, while adsorption was negligible. Thermodynamic and activation energy analyses indicate that the degradation of SMX within the PAA/AC600 system requires a relatively low energy input (27.66 kJ/mol), which is within the lower range of various heterogeneous Fenton-like reactions, thus making it easily achievable. These novel insights enhance our understanding of the AC600-mediated PAA activation mechanism and lay the groundwork for developing efficient and sustainable technologies for mitigating groundwater pollution. ENVIRONMENTAL IMPLICATION: The antibiotics in groundwater raises alarming environmental concerns. As groundwater serves as a primary source of drinking water for nearly half the global population, the development of eco-friendly technologies for antibiotic-contaminated groundwater remediation becomes imperative. The innovative PAA/AC600 system demonstrates significant efficacy in degrading micropollutants, particularly sulfonamide antibiotics. By integrating degradation kinetics and adsorption mass transfer models, this study sheds light on the intricate mechanisms involved, emphasizing the potential of carbon materials as sustainable tools in the ongoing battle for clean and safe groundwater.
Collapse
Affiliation(s)
- Si Li
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China.
| | - Yanping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, China
| | - Rongbing Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lang Zhou
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Luochao Wan
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiming Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
| | - Zhibo Zhang
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
5
|
Zhang Z, Zhang H, Wu G, Xu X, Cao R, Wan Q, Xu H, Wang J, Huang T, Wen G. The aggregation characteristics of Aspergillus spores under various conditions and the impact on LPUV inactivation: Comparisons with chlorine-based disinfection. WATER RESEARCH 2024; 253:121323. [PMID: 38377927 DOI: 10.1016/j.watres.2024.121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Aggregation is the primary step prior to fungal biofilm development. Understanding the attributes of aggregation is of great significance to better control the emergence of waterborne fungi. In this study, the aggregation of Aspergills spores (A. flavus and A. fumigatus) under various salt, culture medium, and humic acid (HA) conditions was investigated for the first time, and the inactivation via low-pressure ultraviolet (LPUV) upon aggregated Aspergillus spores was also presented. The aggregation efficiency and size of aggregates increased over time and at low salt (NaCl and CaCl2) concentration (10 mM) while decreasing with the continuous increase of salt concentration (100 and 200 mM). Increasing the concentration of culture medium and HA promoted the aggregation of fungal spores. Spores became hydrated, swelled, and secreted more viscous substances during the growth period, which accelerated the aggregation process. Results also suggested that fungal spores aggregated more easily in actual water, posing a high risk of biohazard in real-life scenarios. Inactivation efficiency by LPUV decreased with higher aggregation degrees due to the protection from the damaged spores on the outer layer and the shielding of pigments in the cell wall. Compared to chlorine-based disinfection, the aggregation resulted in the extension of shoulder length yet neglectable change of inactivation rate constant under LPUV treatment. Further investigation of cell membrane integrity and intracellular reactive oxygen species was conducted to elucidate the difference in mechanisms between various techniques. This study provides insight into the understanding and controlling of the aggregation of fungal spores.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Huan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China.
| |
Collapse
|
6
|
Bai Y, Zhou Y, Chang R, Hu X, Zhou Y, Chen J, Zhang Z, Yao J. Transcription profiles and phenotype reveal global response of Staphylococcus aureus exposed to ultrasound and ultraviolet stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169146. [PMID: 38061661 DOI: 10.1016/j.scitotenv.2023.169146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Ultrasound and ultraviolet light have good inactivation performance against pathogens in sewage. In this study, the inactivation mechanisms of 60 kHz ultrasound and ultraviolet radiation against Staphylococcus aureus (S. aureus) were studied from the perspectives of cell phenotype and transcriptome for the first time. The results showed that both ultrasound and ultraviolet treatments had adverse impacts on the cellular morphology of S. aureus to varying degrees at cellular level. The transcriptomic analysis revealed that there were 225 and 1077 differentially expressed genes (DEGs) in the ultrasound and ultraviolet treatments, respectively. The result revealed that both ultrasound and ultraviolet could interfere with the expression of the genes involved in ABC transporters, amino acid and fatty acid metabolism to influence the membrane permeability. Besides the membrane permeability, ultraviolet also could disturb the ATP synthesis, DNA replication and cell division through restraining the expression of several genes related to carbohydrate metabolism, peptidoglycan synthesis, DNA-binding/repair protein synthesis. Compared with the single inactivation pathway of ultrasound, ultraviolet inactivation of S. aureus is multi-target and multi-pathway. We believe that the bactericidal mechanisms of ultrasound and ultraviolet radiation presented by this study could provide theoretical guidance for the synergistic inactivation of pathogens in sewage by ultrasound and ultraviolet radiation in the future.
Collapse
Affiliation(s)
- Yun Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuanhang Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ruiting Chang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xueli Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jiabo Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
7
|
Lin Y, He Y, Sun Q, Ping Q, Huang M, Wang L, Li Y. Underlying the mechanisms of pathogen inactivation and regrowth in wastewater using peracetic acid-based disinfection processes: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132868. [PMID: 37944231 DOI: 10.1016/j.jhazmat.2023.132868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Peracetic acid (PAA) disinfection is an emerging wastewater disinfection process. Its advantages include excellent pathogen inactivation performance and little generation of toxic and harmful disinfection byproducts. The objective of this review is to comprehensively analyze the experimental data and scientific information related to PAA-based disinfection processes. Kinetic models and modeling frameworks are discussed to provide effective tools to assess pathogen inactivation efficacy. Then, the efficacy of PAA-based disinfection processes for pathogen inactivation is summarized, and the inactivation mechanisms involved in disinfection and the interactions of PAA with conventional disinfection processes are elaborated. Subsequently, the risk of pathogen regrowth after PAA-based disinfection process is clearly discussed. Finally, to address ecological risks related to PAA-based disinfection, its impact on the spread of antibiotic-resistant bacteria and the transfer of antibiotic resistance genes (ARGs) is also assessed. Among advanced PAA-based disinfection processes, ultraviolet/PAA is promising not only because it has practical application value but also because pathogen regrowth can be inhibited and ARGs transfer risk can be significantly reduced via this process. This review presents valuable and comprehensive information to provide an in-depth understanding of PAA as an alternative wastewater disinfection technology.
Collapse
Affiliation(s)
- Yuqian Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Yunpeng He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Manhong Huang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
8
|
Bai Y, Zhou Y, Chang R, Zhou Y, Hu X, Hu J, Yang C, Chen J, Zhang Z, Yao J. Investigating synergism and mechanism during sequential inactivation of Staphylococcus aureus with ultrasound followed by UV/peracetic acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132609. [PMID: 37844493 DOI: 10.1016/j.jhazmat.2023.132609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/18/2023]
Abstract
This study explored the inactivation of Staphylococcus aureus (S. aureus) by ultrasound (US) and peracetic acid (PAA) coupling with UV simultaneously (US/PAA/UV) or sequentially (US→PAA/UV) for the strengthened disinfection. The result showed that US→PAA/UV system had excellent inactivation performance with 5.05-log in a short time. Besides US, UV, PAA and free radicals, the contribution of the synergy of all components to the entire disinfection were obvious under US→PAA/UV system. The inactivation performance of S. aureus significantly decreased with the increase of humic acid (HA) concentration and pH; however, the rising temperature contributes to the enhancement of the inactivation efficiency under the US→PAA/UV system. The disinfection mechanism includes a decrease of cell agglomeration, a loss of intracellular substance, and changes of cell structure and membrane permeability, as evidenced through a nanoparticle size analyzer, scanning electron microscope (SEM), transmission electron microscope (TEM) and laser confocal microscopy (LSCM). Furthermore, the inactivation efficiency of the US→PAA/UV system for the total bacteria from actual sewage (the untreated inflow) was high, which reached 3.86-log. In general, the pretreatment of US combined with UV/PAA showed a promising application in the rapid disinfection of sewage.
Collapse
Affiliation(s)
- Yun Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuanhang Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ruiting Chang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xueli Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jiawei Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chuanyao Yang
- Analysis and Testing Center, Chongqing University, Chongqing 400045, China
| | - Jiabo Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
9
|
Zhao D, Zhang Y, Jin Z, Bai R, Wang J, Wu L, He Y. Benzalkonium Chloride and Benzethonium Chloride Effectively Reduce Spore Germination of Ginger Soft Rot Pathogens: Fusarium solani and Fusarium oxysporum. J Fungi (Basel) 2023; 10:8. [PMID: 38248918 PMCID: PMC10816859 DOI: 10.3390/jof10010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Ginger soft rot is a serious soil-borne disease caused by Fusarium solani and Fusarium oxysporum, resulting in reduced crop yields. The application of common chemical fungicides is considered to be an effective method of sterilization, and therefore, they pose a serious threat to the environment and human health due to their high toxicity. Benzalkonium chloride (BAC) and benzethonium chloride (BEC) are two popular quaternary ammonium salts with a wide range of fungicidal effects. In this study, we investigated the fungicidal effects of BAC and BEC on soft rot disease of ginger as alternatives to common chemical fungicides. Two soft rot pathogens of ginger were successfully isolated from diseased ginger by using the spread plate method and sequenced as F. solani and F. oxysporum using the high-throughput fungal sequencing method. We investigated the fungicidal effects of BAC and BEC on F. solani and F. oxysporum, and we explored the antifungal mechanisms. Almost complete inactivation of spores of F. solani and F. oxysporum was observed at 100 mg/L fungicide concentration. Only a small amount of spore regrowth was observed after the inactivation treatment of spores of F. solani and F. oxysporum in soil, which proved that BAC and BEC have the potential to be used as an alternative to common chemical fungicides for soil disinfection of diseased ginger.
Collapse
Affiliation(s)
- Dongxu Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Jin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruxiao Bai
- Institute of Farmland Water Conservancy and Soil Fertilizers, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Jun Wang
- Institute of Farmland Water Conservancy and Soil Fertilizers, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Farmland Water Conservancy and Soil Fertilizers, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Yin W, Yang L, Zhou X, Liu T, Zhang L, Xu Y, Li N, Chen J, Zhang Y. Peracetic acid disinfection induces antibiotic-resistant E. coli into VBNC state but ineffectively eliminates the transmission potential of ARGs. WATER RESEARCH 2023; 242:120260. [PMID: 37392507 DOI: 10.1016/j.watres.2023.120260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The occurrence of a viable but nonculturable (VBNC) state in antibiotic-resistant E. coli (AR E. coli) and inefficient degradation of their antibiotic resistance genes (ARGs) may cause potential health risks during disinfection. Peracetic acid (PAA) is an alternative disinfectant for replacing chlorine-based oxidants in wastewater treatment, and the potential of PAA to induce a VBNC state in AR E. coli and to remove the transformation functionality of ARGs were investigated for the first time. Results show that PAA exhibits excellent performance in inactivating AR E. coli (over 7.0-logs) and persistently inhibiting its regeneration. After PAA disinfection, insignificant changes in the ratio of living to dead cells (∼4%) and the level of cell metabolism, indicating that AR E. coli were induced into VBNC states. Unexpectedly, PAA was found to induce AR E. coli into VBNC state by destroying the proteins containing reactive amino acids at thiol, thioether and imidazole groups, rather than the result of membrane damage, oxidative stress, lipid destruction and DNA disruption in the conventional disinfection processes. Moreover, the result of poor reactivity between PAA and plasmid strands and bases confirmed that PAA hardly reduced the abundance of ARGs and damaged the plasmid's integrity. Transformation assays and real environment validation indicated that PAA-treated AR E. coli could release large abundance of naked ARGs with high-efficiency transformation functionality (∼5.4 × 10-4 - ∼8.3 × 10-6) into the environment. This study has significant environmental implications for assessing the transmission of antimicrobial resistance during PAA disinfection.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Bai Y, Shi C, Zhou Y, Zhou Y, Zhang H, Chang R, Hu X, Hu J, Yang C, Peng K, Xiang P, Zhang Z. Enhanced inactivation of Escherichia coli by ultrasound combined with peracetic acid during water disinfection. CHEMOSPHERE 2023; 322:138095. [PMID: 36758811 DOI: 10.1016/j.chemosphere.2023.138095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Peracetic acid (PAA) is a desirable disinfectant for municipal wastewater because of its potent disinfection performance and limited toxic by-products. This study explored the efficiency and mechanism of Escherichia coli inactivation by PAA combined with ultrasound simultaneously (ultrasound + PAA) or (ultrasound → PAA) sequentially. The result showed that 60 kHz ultrasound combined with PAA sequentially (60 kHz → PAA) had excellent inactivation performance on E. coli, up to 4.69-log10. The result also showed that the increase of pH and humic acid concentration in solution significantly reduced the inactivation efficiency of 60 kHz → PAA treatment. We also observed that the increase of temperature was beneficial to the disinfection, while anions (Cl-; HCO3-) had little effect. With 60 kHz → PAA, the PAA and the synergism between PAA and ultrasound played major contribution to the inactivation, which we assumed might be due to both the diffusion of PAA into the cells and the damage to the cytomembrane by ultrasound, as evidenced through the laser confocal microscopy (LSCM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The inactivation mechanism involved the destruction of cell membrane and loss of intracellular material. Empirically, 60 kHz → PAA was found to be effective for the inactivation of E. coli in actual wastewater, and the regrowth potential of E. coli treated by 60 kHz → PAA was significantly lower than that treated only by PAA.
Collapse
Affiliation(s)
- Yun Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Chunhai Shi
- Northwest China Municipal Engineering Design and Research Institute, Lanzhou, 730000, China
| | - Yuanhang Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Haocheng Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Ruiting Chang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xueli Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jiawei Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Chuanyao Yang
- Analysis and Testing Center, Chongqing University, Chongqing, 400045, China
| | - Kedi Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Ping Xiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
12
|
Cao L, Wang J, Wang Z, Cheng Y, Dai J, Ma J, Chen Y, Liu Z, Xie P. Comparison of peracetic acid and sodium hypochlorite enhanced Fe(Ⅱ) coagulation on algae-laden water treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130571. [PMID: 37055977 DOI: 10.1016/j.jhazmat.2022.130571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 06/19/2023]
Abstract
In this study, Fe(Ⅱ)/peracetic acid (PAA) and Fe(Ⅱ)/sodium hypochlorite (NaClO) systems were applied as the combined preoxidation and coagulation process to enhance algae removal. A high removal rate of algae and turbidity could be achieved, with most algal cells keeping intact when adding reasonable concentrations of PAA and NaClO to enhance Fe(Ⅱ) coagulation. The variations of chlorophyll a, malondialdehyde, and intracellular reactive oxygen species suggested that moderate oxidation with only destroying surface-adsorbed organic matter rather than cell integrity was realized. The generated organic radicals, Fe(Ⅳ), and hydroxy radical played the major roles in the Fe(Ⅱ)/PAA system for the moderate oxidation of algal cells, but direct oxidation by NaClO rather than producing reactive species in the Fe(Ⅱ)/NaClO process contributed to the preoxidation. Concurrently, the in-situ formed Fe(Ⅲ) greatly promoted the agglomerating and settling of algae. The analysis of cell integrity, biochemical compositions, and fluorescence excitation-emission matrices spectra demonstrated that excess NaClO but not PAA would seriously damage the algal cells. This might be because that NaClO would directly oxidize the cell wall/membrane, while PAA mainly permeates into the cell to inactivate algae. These results suggest that Fe(Ⅱ)/PAA is an efficient strategy for algae-laden water treatment without serious algae lysis.
Collapse
Affiliation(s)
- Lisan Cao
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingwen Wang
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zongping Wang
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Cheng
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiayue Dai
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Pengchao Xie
- a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
13
|
Wan Q, Wen G, Cui Y, Cao R, Xu X, Wu G, Wang J, Huang T. Occurrence and control of fungi in water: New challenges in biological risk and safety assurance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160536. [PMID: 36574558 DOI: 10.1016/j.scitotenv.2022.160536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Recently, the contamination of fungi in water has aroused widespread concern, which will pose a threat to water quality and safety, and raise diseases risk in the immunocompromised individuals. In this review, the characteristics and different physiological state of fungi in water are summarized. A comprehensive evaluation of the control efficiency and mechanism of waterborne fungi by the commonly used disinfection methods is provided as well. During the disinfection processes of chlorine, chlorine dioxide, chloramine and advanced disinfection processes (ADPs) such as O3-based ADPs and UV-based ADPs, the fungal spores firstly lost their culturability, followed by membrane integrity, and the intracellular reactive oxygen species level increased at the same time, eventually the fungal spores were completely inactivated. The security strategies of drinking water against the contamination of fungi are also discussed in terms of water sources, water treatment plants and pipe network. Finally, future researches need to be explored are proposed: the rapid detection methods, the production laws and control of mycotoxin, and the outbreak conditions of fungi in water. Specifically, exploring efficient, safe and economical technologies, especially ADPs, is still the main direction in the disinfection of fungi in future studies. This review can offer a comprehensive understanding on the occurrence and control of fungi in water to fill the knowledge gap and provide guidance for the future research.
Collapse
Affiliation(s)
- Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Yuhong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
14
|
Lin W, Zuo J, Li K, Hu R, Xu X, Huang T, Wen G, Ma J. Pre-exposure of peracetic acid enhances its subsequent combination with ultraviolet for the inactivation of fungal spores: Efficiency, mechanisms, and implications. WATER RESEARCH 2023; 229:119404. [PMID: 36446176 DOI: 10.1016/j.watres.2022.119404] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Waterborne fungi pose a potential threat to water supply safety due to their high resistance to disinfectants. Peracetic acid, as a promising alternative disinfectant to chlorine, has attracted increasing attention in water treatment. In this study, the inactivation of two dominant fungal species (Aspergillus niger and Aspergillus flavus) by sequential application of peracetic acid and ultraviolet (PAA-UV/PAA) was reported for the first time. Results revealed that the pre-exposure of PAA could facilitate the subsequent process of UV/PAA combination and shorten the lag phase in fungi inactivation. After 10 min of PAA pre-exposure, PAA-UV/PAA achieved 3.03 and 2.40 log inactivation of Aspergillus niger and Aspergillus flavus, which were 2- and 4.3-fold higher than that of direct UV/PAA under the same UV and PAA doses. PAA-UV/PAA disinfection also exhibited a stronger regrowth inhibition for incompletely inactivated fungal spores than direct UV/PAA. The increase of pH (5.0-9.0) and humic acid concentration (1.0-5.0 mg L - 1) showed an inhibitory effect on PAA-UV/PAA inactivation, but PAA-UV/PAA was more adaptable in a wide pH range and the presence of humic acid compared to direct UV/PAA. The more severe cell membrane damage and higher reactive oxygen species level in PAA-UV/PAA were evidenced for the first time by flow cytometry. The increased hydroxyl radical generation and higher synergism were primarily responsible for inactivation improvement. This study enhances the further understanding of the PAA-UV/PAA process, and the findings are expected to promote the development of PAA as a promising disinfectant for effective fungi control.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jie Zuo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruizhu Hu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Lu YH, Wu H, Zhang HH, Li WS, Lai ACK. Synergistic disinfection of aerosolized bacteria and bacteriophage by far-UVC (222-nm) and negative air ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129876. [PMID: 36087531 DOI: 10.1016/j.jhazmat.2022.129876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Air ionizers and 222-nm krypton-chlorine (KrCl) excilamp have proven to be effective disinfection apparatus for bacteria and viruses with limited health risks. We determined inactivation efficiencies by operating them individually and in combined modules. Gram-positive and gram-negative bacteria, non-enveloped dsDNA virus, and enveloped dsRNA virus were examined in a designed air disinfection system. Our results showed that the bioaerosols were inactivated efficiently by negative ionizers and far-UVC (222-nm), either used individually or in combination. Among which the combined modules of negative ionizers and KrCl excilamp had the best disinfection performance for the bacteria. The aerosolized virus P22 and Phi 6 were more susceptible to 222-nm emitted by KrCl excilamp than negative air ions. Significant greater inactivation of bacterial bioaerosols were identified after treated by combined treatment of negative air ion and far-UVC for 2 minutes (Escherichia coli, 6.25 natural log (ln) reduction; Staphylococcus epidermidis, 3.66 ln reduction), as compared to the mean sum value of inactivation results by respective individual treatment of negative ionizers and KrCl excilamp (Escherichia coli, 4.34 ln; Staphylococcus epidermidis, 1.75 ln), indicating a synergistic inactivation effect. The findings provide important baseline data to support the design and development of safe and high-efficient disinfection systems.
Collapse
Affiliation(s)
- Y H Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China
| | - H Wu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China; Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong China
| | - H H Zhang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China
| | - W S Li
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong China
| | - A C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China.
| |
Collapse
|
16
|
Li C, Liu X, Du M, Yang J, Lu Q, Fu Q, He D, Zhao J, Wang D. Peracetic acid promotes biohydrogen production from anaerobic dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156991. [PMID: 35772535 DOI: 10.1016/j.scitotenv.2022.156991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA), a widely used organic peroxide with strong disinfection and oxidizing effect, has recently attracted research interest in waste activated sludge (WAS) treatment to achieve sludge reduction and resource utilization. However, its impact on hydrogen accumulation from WAS dark fermentation has not been documented. This study therefore is intended to fill in this knowledge gap and clarify the underlying mechanism of PAA-promoted hydrogen generation. Batch experiments revealed that when raised PAA dosage from 0 to 8 mg/g TSS (total suspended solids), cumulative hydrogen production within 168 h fermentation increased from 1.3 to 14.2 mL/g VSS (volatile suspended solids), however, further increase PAA dosage to 10 mg/g TSS resulted in a slight decrease in hydrogen yield. Mechanism studies revealed that PAA was beneficial to sludge disintegration (10 mg/g TSS PAA increased SCOD (soluble chemical oxygen demand) by 254 %). Although PAA inhibited the activity of all microorganism involved in dark fermentation, the inhibitory effect on hydrogen consumers were much more serious than that on hydrogen producers (-45.8 % versus -5.1 % and - 7.3 %). The fermentation was found to shift from propionate type to acetate and butyrate type, favoring hydrogen production. Moreover, the methane production process was effectively inhibited by PAA, which meant less hydrogen consumption. Microbial community analysis results unveiled that PAA increased the abundances of hydrolytic bacteria (e.g., norank_f__Saprospiraceae) and hydrogen producers (e.g., Clostridium_sensu_stricto_10). These findings obtained in this work provide new insights into oxidants-involved sludge treatment process and might have important implication for WAS treatment and bioenergy production in the future.
Collapse
Affiliation(s)
- Chenxi Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Mingting Du
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Jingnan Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qi Lu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qizi Fu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Dandan He
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
17
|
Li Y, Li K, Wan Q, Xu X, Cao R, Wang J, Huang T, Wen G. Inactivation of fungal spores in water by CuO-activated peracetic acid: Kinetics, mechanism and regrowth. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129611. [PMID: 35863220 DOI: 10.1016/j.jhazmat.2022.129611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The disinfection of pathogenic microorganisms in water treatment by peracetic acid (PAA)-based advanced oxidation processes (AOPs) has been gaining increasing concern. In this work, the inactivation mechanism, influencing factors and regrowth of two pathogenic Aspergillus species in the system of CuO-activated PAA were studied for the first time. The k values of A. niger and A. flavus inactivated by PAA/CuO system were 3.9 and 2.1-fold higher than those inactivated by PAA alone. PAA concentration and CuO dose were positively correlated with the inactivation efficiency, while humic acid and pH were negatively correlated. The main active species that contributed to the inactivation of fungal spores in PAA/CuO system were •OH, CH3C(O)OO• and 1O2. PAA/CuO system had more intense oxidative stimulation and more serious damage to fungal spores according to the analysis of cell membrane integrity and intracellular ROS levels. In addition, the PAA/CuO system was less impacted by the water matrix and kept a good inactivation efficiency in real water samples. The regrowth potential of fungal spores after disinfection was also reduced in PAA/CuO system so as to avoid the risk of biological regrowth. This study provides a feasible PAA-based advanced oxidation method for activating PAA and inactivating fungal spores.
Collapse
Affiliation(s)
- Yangfan Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
18
|
Xu X, Cao R, Li K, Wan Q, Wu G, Lin Y, Huang T, Wen G. The protective role and mechanism of melanin for Aspergillus niger and Aspergillus flavus against chlorine-based disinfectants. WATER RESEARCH 2022; 223:119039. [PMID: 36084430 DOI: 10.1016/j.watres.2022.119039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Melanin is a critical component of fungal cell wall which protect fungi from adverse environmental tress. However, the role of melanin for fungi during the disinfection with chlorine-based disinfectants has not been elucidated. The results showed that the inactivation rate constants of Aspergillus niger with chlorine and chlorine dioxide decreased from 0.08 to 2.10 min-1 to 0 after addition of 0.32 mg/L melanin. The results indicated addition of extracted fungal melanin inhibited the inactivation efficiency of chlorine and chlorine dioxide. In contrast, the k of Aspergillus niger after inactivation with monochloramine ranged from 1.50 to 1.78 min-1 after addition of melanin which indicated effect of melanin on the inactivation efficiency of monochloramine was negligible. In addition, the extracted fungal melanin exhibited high reactivity with chlorine and chlorine dioxide but very low reactivity with monochloramine. The different inactivation mechanisms of chlorine-based disinfectants and different reactivity of melanin with chlorine-based disinfectants led to the different protective mechanism of melanin for A. niger and A. flavus spores against disinfection with chlorine-based disinfectants. The chlorine and chlorine dioxide appeared to react with functional groups of melanin in cell wall of spores, so sacrificial reactions between melanin and disinfectants decreased the available disinfectants and limited the diffusion of disinfectants to the reactive site on cell membrane, which led to the decrease of the disinfection efficiency for chlorine and chlorine dioxide. The monochloramine could penetrate into cell and damage DNA without the effect of melanin due to its strong penetration and low reactivity with melanin. Our results systematically demonstrate the protective roles of melanin on the fungal spores against chlorine-based disinfectants and the underlying mechanisms in resisting the environmental stress caused by chlorine-based disinfectants, which provides important implications for the control of fungi, especially for fungi producing melanin.
Collapse
Affiliation(s)
- Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuzhao Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
19
|
Wan Q, Xia Y, Li Y, Wu G, Wang J, Huang T, Wen G. Enhanced solar inactivation of fungal spores by addition of low-dose chlorine: Efficiency and mechanism. WATER RESEARCH 2022; 222:118964. [PMID: 35970005 DOI: 10.1016/j.watres.2022.118964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
This work demonstrated that the solar inactivation of fungal spores was enhanced by addition of low-dose chlorine. Although the effect of low-dose chlorine alone (2.0 mg/L) on culturability of fungal spores was negligible, the solar/chlorine inactivation on fungal spores performed better than solar alone inactivation, with a lower shoulder length and a higher maximum inactivation rate constant. The enhanced inactivation of Aspergillus niger can be ascribed to the membrane oxidation by chlorine, and the enhanced inactivation of Penicillium polonicum can be ascribed to the membrane oxidation by chlorine and ·OH (·OH plays a major role). The oxidization by chlorine and ·OH led to an increase in membrane permeability of fungal spores, which enhanced the solar inactivation, resulting in an increase in intracellular ROS and more serious morphological damage. Due to the presence of background substances such as dissolved organic matter and metal ions (Fe2+, Mn2+, etc.), the inactivation efficiency in real water matrices was decreased. The main disinfection by-products (DBPs) produced in the inactivation of fungal spores in chlorine alone and solar/chlorine treatments were dichloroacetic acid, trichloroacetic acid, trichloroacetone and trichloromethane. Generally, DBPs formation in solar/chlorine treatment was lower than those in chlorine alone treatment. Moreover, the regrowth potential of the two genera of fungal spores in R2A medium could be inhibited by adding low-dose chlorine.
Collapse
Affiliation(s)
- Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuancheng Xia
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yangfan Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|