1
|
Uddin M, Venkatesan SK, Pal SK, Vinu R, Sekar K, Kandasamy R. Accelerating biodegradation efficiency of low-density polyethylene and its hazardous dissolved organic matter using unexplored polyolefin-respiring bacteria: New insights on degradation characterization, biomolecule influence and biotransformation pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138144. [PMID: 40187246 DOI: 10.1016/j.jhazmat.2025.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The COVID-19 outbreak has significantly increased low-density polyethylene (LDPE) waste in landfills, posing new environmental risks due to the release of hazardous dissolved organic matter (DOM). Current LDPE degradation technologies are inadequate and are restricted by a limited understanding of the biotransformation pathway. This study aims to accelerate the biodegradability of LDPE and DOM using Morganella morganii PQ533186 isolated from LDPE-laden municipal landfill. The in-vitro LDPE biodegradation demonstrated a 42.18 % weight loss within 120 days. The accelerated biodegradability of LDPE by M. morganii is attributed to the concurrent production of biocatalysts and bio-amphiphiles, coupled with effective bacterial colonization on LDPE surfaces. The FT-IR analysis reveals oxidation with enhancement in O-H (11.29-folds), CO (17.65-folds), CC (6.70-folds), C-O (8.51-folds), and C-O-C (6.37-folds) indices. The DSC and XRD analyses divulge reduced crystallinity (33.57 %) and increased interplanar d-spacing of (110) and (200) reflections from 4.09 and 3.71 Å to 4.17 and 3.80 Å, respectively. The Raman, XPS, TG-DTG, and Contact-angle measurements demonstrate reduced density, carbon content, thermal stability, and hydrophobicity. The degradation was confirmed using 1H NMR, GC-MS, and Py/GC-MS analyses. Furthermore, DOM released from LDPE biodegradation, comprising monomers and additives was biodegraded with an 84.61 % COD reduction within 6 days. The mechanistic investigation elucidated a two-stage oxidoreductase and hydrolase-mediated LDPE biotransformation pathway involving biocatalytic oxidation and DOM release. Subsequently, the released DOM undergoes terminal biocatalytic oxidation, yielding simpler non-toxic end products. The present study is the first report to present novel insights into the degradation characterization, pivotal contribution of biomolecules, and in-depth biotransformation pathways which are responsible for the accelerated degradation of both LDPE and hazardous DOM.
Collapse
Affiliation(s)
- Maseed Uddin
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Swathi Krishnan Venkatesan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subhan Kumar Pal
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ravikrishnan Vinu
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Indo German Center for Sustainability, Indian Institute of Technology Madras, Chennai 600036, India
| | - Karthikeyan Sekar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ramani Kandasamy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
Ossai IC, Hamid FS, Aboudi-Mana SC, Hassan A. Ecotoxicological effects, human and animal health risks of pollution and exposure to waste engine oils: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:416. [PMID: 39240425 DOI: 10.1007/s10653-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Waste engine oils are hazardous waste oils originating from the transportation sector and industrial heavy-duty machinery operations. Improper handling, disposal, and miscellaneous misuses cause significant air, soil, sediments, surface water, and groundwater pollution. Occupational exposure by prolonged and repeated contact poses direct or indirect health risks, resulting in short-term (acute) or long-term (chronic) toxicities. Soil pollution causes geotoxicity by disrupting the biocenosis and physicochemical properties of the soil, and phytotoxicity by impairing plant growth, physiology and metabolism. Surface water pollution impacts aquatic ecosystems and biodiversity. Air pollution from incineration causes the release of greenhouse gases creating global warming, noxious gases and particulate matter eliciting pulmonary disorders. The toxicity of waste engine oil is due to the total petroleum hydrocarbons (TPH) composition, including polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, xylene (BTEX), polychlorinated biphenyls (PCBs) congeners, organometallic compounds, and toxic chemical additives. The paper aims to provide a comprehensive overview of the ecotoxicological effects, human and animal health toxicology and exposure to waste engine oils. It highlights the properties and functions of engine oil and describes waste engine oil generation, disposal and recycling. It provides intensive evaluations and descriptions of the toxicokinetics, metabolism, routes of exposure and toxicosis in human and animal studies based on toxicological, epidemiological and experimental studies. It emphasises the preventive measures in occupational exposure and recommends risk-based remediation techniques to mitigate environmental pollution. The review will assist in understanding the potential risks of waste engine oil with significant consideration of the public health benefits and importance.
Collapse
Affiliation(s)
- Innocent Chukwunonso Ossai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Waste Management, Institute of Research Management and Monitoring, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Tetragram Bioresources Limited, Federal Capital Territory (FCT), Abuja, Nigeria.
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Waste Management, Institute of Research Management and Monitoring, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suzanne Christine Aboudi-Mana
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Waste Management, Institute of Research Management and Monitoring, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Auwalu Hassan
- Centre for Research Excellence and Incubation Management, Universiti Sultan Zainal Abdidin, 21300, Kuala Nerus, Terengganu Darul Iman, Malaysia
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abdidin, 21300, Kuala Nerus, Terengganu Darul Iman, Malaysia
- Department of Biological Sciences, Faculty of Science, Federal University Kashere, Kashere, Gombe State, Nigeria
| |
Collapse
|
3
|
Aminian-Dehkordi J, Rahimi S, Golzar-Ahmadi M, Singh A, Lopez J, Ledesma-Amaro R, Mijakovic I. Synthetic biology tools for environmental protection. Biotechnol Adv 2023; 68:108239. [PMID: 37619824 DOI: 10.1016/j.biotechadv.2023.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Synthetic biology transforms the way we perceive biological systems. Emerging technologies in this field affect many disciplines of science and engineering. Traditionally, synthetic biology approaches were commonly aimed at developing cost-effective microbial cell factories to produce chemicals from renewable sources. Based on this, the immediate beneficial impact of synthetic biology on the environment came from reducing our oil dependency. However, synthetic biology is starting to play a more direct role in environmental protection. Toxic chemicals released by industries and agriculture endanger the environment, disrupting ecosystem balance and biodiversity loss. This review highlights synthetic biology approaches that can help environmental protection by providing remediation systems capable of sensing and responding to specific pollutants. Remediation strategies based on genetically engineered microbes and plants are discussed. Further, an overview of computational approaches that facilitate the design and application of synthetic biology tools in environmental protection is presented.
Collapse
Affiliation(s)
| | - Shadi Rahimi
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Amritpal Singh
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | - Javiera Lopez
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | | | - Ivan Mijakovic
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
4
|
Rajasekaran M, Kandasamy R. High-throughput bioamphiphile production by ethyl methane sulphonate induced mutant of hydrocarbonoclastic Enterobacter xiangfangensis STP-3: In depth structural elucidation and application to petroleum refinery oil sludge bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131961. [PMID: 37393827 DOI: 10.1016/j.jhazmat.2023.131961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The environmental release of noxious petroleum hydrocarbons (PHCs) from the petroleum refining industries is an intractable global challenge. Indigenous PHCs degrading microbes produce insufficient yield of amphiphilic biomolecules with trivial efficiency makes the bioremediation process ineffective. In this concern, the present study is focused on the production of high yield multi-functional amphiphilic biomolecule through the genetic modification of Enterobacter xiangfangensis STP-3 strain using Ethyl methane sulphonate (EMS) induced mutagenesis. Mutant M9E.xiangfangensis showed 2.32-fold increased yield of bioamphiphile than wild-type strain. Novel bioamphiphile produced by M9E.xiangfangensis exhibited improved surface and emulsification activities which ensure the maximum degradation of petroleum oil sludge (POS) by 86% than wild-type (72%). SARA, FT-IR, and GC-MS analyses confirmed the expedited degradation of POS and ICP-MS analysis indicated the enhanced removal of heavy metals in connection with the ample production of functionally improved bioamphiphile. FT-IR NMR, MALDI-TOF, GC-MS and LC-MS/MS analyses portrayed the lipoprotein nature of bioamphiphile comprising pentameric fatty acid moiety conjugated with the catalytic esterase moiety. Further, homology modelling and molecular docking revealed the stronger interaction of hydrophobic amino acids, leucine and isoleucine with the PHCs in the case of wild-type esterase moiety, whereas in the mutant, aromatic amino acids were majorly interacted with the long chain and branched chain alkanes, thereby exhibited better efficiency. This is the first report on the adoption of EMS induced mutagenesis strategy to ameliorate the amphiphilic biomolecules for their sustainable applications in diverse biotechnological, environmental and industrial arenas.
Collapse
Affiliation(s)
- Muneeswari Rajasekaran
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Ramani Kandasamy
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
5
|
Wang H, Zhou Y, Xu S, Zhang B, Cernava T, Ma Z, Chen Y. Enhancement of herbicolin A production by integrated fermentation optimization and strain engineering in Pantoea agglomerans ZJU23. Microb Cell Fact 2023; 22:50. [PMID: 36915090 PMCID: PMC10012537 DOI: 10.1186/s12934-023-02051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND The lipopeptide herbicolin A (HA) secreted by the biocontrol agent Pantoea agglomerans ZJU23 is a promising antifungal drug to combat fungal pathogens by targeting lipid rafts, both in agricultural and clinical settings. Improvement of HA production would be of great significance in promoting its commercialization. This study aims to enhance the HA production in ZJU23 by combining fermentation optimization and strain engineering. RESULTS Based on the results in the single-factor experiments, corn steep liquor, temperature and initial pH were identified as the significant affecting factors by the Plackett-Burman design. The fermentation medium and conditions were further optimized using the Box-Behnken response surface method, and the HA production of the wild type strain ZJU23 was improved from ~ 87 mg/mL in King's B medium to ~ 211 mg/mL in HA induction (HAI) medium. A transposon library was constructed in ZJU23 to screen for mutants with higher HA production, and two transcriptional repressors for HA biosynthesis, LrhA and PurR, were identified. Disruption of the LrhA gene led to increased mRNA expression of HA biosynthetic genes, and subsequently improved about twofold HA production. Finally, the HA production reached ~ 471 mg/mL in the ΔLrhA mutant under optimized fermentation conditions, which is about 5.4 times higher than before (~ 87 mg/mL). The bacterial suspension of the ΔLrhA mutant fermented in HAI medium significantly enhanced its biocontrol efficacy against gray mold disease and Fusarium crown rot of wheat, showing equivalent control efficacies as the chemical fungicides used in this study. Furthermore, HA was effective against fungicide resistant Botrytis cinerea. Increased HA production substantially improved the control efficacy against gray mold disease caused by a pyrimethanil resistant strain. CONCLUSIONS This study reveals that the transcriptional repressor LrhA negatively regulates HA biosynthesis and the defined HAI medium is suitable for HA production. These findings provide an extended basis for large-scale production of HA and promote biofungicide development based on ZJU23 and HA in the future.
Collapse
Affiliation(s)
- Hongkai Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Yaqi Zhou
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Sunde Xu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Boyan Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Lin K, Zhao Y, Kuo JH, Lin CL. Agglomeration-influenced transformation of heavy metals in gas-solid phases during simulated sewage sludge co-incineration: Effects of phosphorus and operating temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159759. [PMID: 36349628 DOI: 10.1016/j.scitotenv.2022.159759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus and operating temperature not only affect the agglomeration behavior but also the transformation and migration of heavy metals. Accordingly, this study examined the effect of temperature and phosphorus in a fluidized bed combustion process to understand the emission and distribution of heavy metals by both experimental and thermodynamic calculations. The experimental results indicated that the sodium-phosphate reactions occur before the sodium-silicate reaction in the solid phase when the ratio of P/Na was 1/2. A low-melting-point sodium phosphate component, such as NaPO3, leads to easier particle agglomeration than Na2O-SiO2. In terms of the emissions of heavy metals, Pb and Cd show a similar trend: both the amount of emission smaller than that without adding phosphorus and the amount of emission share an upward trend with the operating time increased during MSS fluidized bed combustion. However, with the presence of phosphorus, the emission of Cr shows slightly decreased, and then sharply dropped, after that, increasing with operating time increased. Generally speaking, the maximum amount of Pb and Cd emitted was at 900 °C, followed by 800 °C and 700 °C. The higher temperature would promote the volatilization of Pb and Cd to emit. On the other hand, Cr emitted at the beginning tended to increase but later decreases when the temperatures were 700 and 900 °C, which may be due to the emission of Cr being influenced by the different affinities of both Al and Cr, reacting with Na in a fluidized bed incinerator. As for the distribution of heavy metals in the solid phase, a higher concentration of heavy metals was found in both the coarsest and finest particles during the process of agglomeration/defluidization.
Collapse
Affiliation(s)
- Kunsen Lin
- The State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jia-Hong Kuo
- Department of Safety, Health and Environmental Engineering, National United University, 36063 Miaoli, Taiwan.
| | - Chiou-Liang Lin
- Department of Civil and Environmental Engineering, National University of Kaohsiung, 81148 Kaohsiung, Taiwan
| |
Collapse
|
7
|
Venkatesan SK, Uddin M, Rajasekaran M, Ganesan S. Supramolecular bioamphiphile facilitated bioemulsification and concomitant treatment of recalcitrant hydrocarbons in petroleum refining industry oily waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120164. [PMID: 36113645 DOI: 10.1016/j.envpol.2022.120164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Bioremediation of real-time petroleum refining industry oily waste (PRIOW) is a major challenge due to the poor emulsification potential and oil sludge disintegration efficiency of conventional bioamphiphile molecules. The present study was focused on the design of a covalently engineered supramolecular bioamphiphile complex (SUBC) rich in hydrophobic amino acids for proficient emulsification of hydrocarbons followed by the concomitant degradation of total petroleum hydrocarbons (TPH) in PRIOW using the hydrocarbonoclastic microbial bio-formulation system. The synthesis of SUBC was carried out by pH regulated microbial biosynthesis process and the yield was obtained to be 450.8 mg/g of petroleum oil sludge. The FT-IR and XPS analyses of SUBC revealed the anchoring of hydrophilic moieties of monomeric bioamphiphilic molecules, resulting in the formation of SUBC via covalent interaction. The SUBC was found to be lipoprotein in nature. The maximum loading capacity of SUBC onto surface modified rice hull (SMRH) was achieved to be 45.25 mg/g SMRH at the optimized conditions using RSM-CCD design. The SUBC anchored SMRH was confirmed using SEM, FT-IR, XRD and TGA analyses. The adsorption isotherm models of SUBC onto SMRH were performed. The integrated approach of SUBC-SMRH and hydrocarbonoclastic microbial bio-formulation system, emulsified oil from PRIOW by 92.86 ± 2.26% within 24 h and degraded TPH by 89.25 ± 1.75% within 4 days at the optimum dosage ratio of SUBC-SMRH (0.25 g): PRIOW (1 g): mass of microbial-assisted biocarrier material (0.05 g). The TPH degradation was confirmed by SARA fractional analysis, FT-IR, 1H NMR and GC-MS analyses. The study suggested that the application of covalently engineered SUBC has resulted in the accelerated degradation of real-time PRIOW in a very short duration without any secondary sludge generation. Thus, the SUBC integrated approach can be considered to effectively manage the hydrocarbon contaminants from petroleum refining industries under optimal conditions.
Collapse
Affiliation(s)
- Swathi Krishnan Venkatesan
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Chengalpattu District, Tamil Nadu, India
| | - Maseed Uddin
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Chengalpattu District, Tamil Nadu, India
| | - Muneeswari Rajasekaran
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Chengalpattu District, Tamil Nadu, India
| | - Sekaran Ganesan
- SRM Institute of Science and Technology, Ramapuram Campus, Chennai-600089, India
| |
Collapse
|
8
|
Gong Z, Chu Z, Zhu L, Li X, Han Y, Guo J, Shang P, Zheng W, Ding J, Tian M. Simulation study on comprehensive thermal treatment of oil sludge based on Aspen plus. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:552-566. [PMID: 35670532 DOI: 10.1080/10934529.2022.2083902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
This article proposed an original comprehensive thermal treatment coupled with gasification and combustion (CGC) of oil sludge (OS), which was designed to produce hydrogen-rich syngas. Based on the experimental results of OS gasification with steam, the combustion characteristics of char from OS gasification were analyzed by thermogravimetric experiments under different heating rates of 10, 20 and 30 °C/min. The combustion process of OS gasification char can be divided into three stages, including water evaporation, volatile combustion and heavy component combustion. The average values of activation energy (E) obtained by Friedman, FWO and Starink methods were 89.98 kJ/mol, 147.61 kJ/mol and 143.09 kJ/mol, respectively. According to OS gasification and OS gasification char combustion experiments, the comprehensive thermal treatment process CGC of OS was simulated by Aspen Plus. The simulation results showed that increasing both gasification temperature and the mass ratio of steam to OS (SOS) could promote the hydrogen production. Considering energy consumption, the recommended OS gasification temperature, SOS and char combustion temperature were 800 ∼ 900 °C, 0.3 ∼ 0.5, and 900 ∼ 1000 °C, respectively, which could ensure full burning of char and reduce the generation of pollutants. The CGC process could reduce CO2 emissions by 44.2% from carbon flow analysis.
Collapse
Affiliation(s)
- Zhiqiang Gong
- State Grid Shandong Electric Power Research Institute, Jinan, China
| | - Zhiwei Chu
- School of Energy and Power Engineering, Shandong University, Jinan, China
| | - Lingkai Zhu
- State Grid Shandong Electric Power Research Institute, Jinan, China
| | - Xiaoyu Li
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Yue Han
- State Grid Shandong Electric Power Research Institute, Jinan, China
| | - Junshan Guo
- State Grid Shandong Electric Power Research Institute, Jinan, China
| | - Panfeng Shang
- State Grid Shandong Electric Power Research Institute, Jinan, China
| | - Wei Zheng
- State Grid Shandong Electric Power Research Institute, Jinan, China
| | - Junqi Ding
- State Grid Shandong Electric Power Research Institute, Jinan, China
| | - Maocheng Tian
- School of Energy and Power Engineering, Shandong University, Jinan, China
| |
Collapse
|