1
|
Fonseca J, Broto-Ribas A, Jiao L, Pei X. Pickering emulsions stabilized by metal-organic framework nanoparticles. Adv Colloid Interface Sci 2025; 342:103532. [PMID: 40328072 DOI: 10.1016/j.cis.2025.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/31/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Pickering emulsions are attractive formulations due to their simplicity, similar to traditional surfactant-based emulsions, and their potential to create functional materials. Recently, Pickering emulsions stabilized by metal-organic framework (MOF) nanoparticles have garnered significant interest. This Review aims to systematize our knowledge of how MOF nanoparticles stabilize Pickering emulsions, providing fundamental insights for advancing this field. We thoroughly examine the emulsification process of Pickering emulsions stabilized by MOF nanoparticles. Additionally, we detail the superstructures derived from these emulsions, including colloidosomes, hydrogel droplets, 3D honeycomb network structures, molecularly imprinted polymers, monoliths, and micromotors. Finally, we discuss challenges and future research opportunities related to this type of emulsion.
Collapse
Affiliation(s)
- Javier Fonseca
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115-5000, United States.
| | - Anna Broto-Ribas
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Li Jiao
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115-5000, United States
| | - Xiaoyan Pei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, PR China
| |
Collapse
|
2
|
Guiñez M, Martínez-Pérez-Cejuela H, Roubineau AM, Herrero-Martínez JM, Cerutti S. Quantitative evaluation of food-relevant heterocyclic aromatic amines in water samples for agricultural and human use. Selective extraction and cancer risk assessment. Food Chem Toxicol 2025; 202:115558. [PMID: 40383430 DOI: 10.1016/j.fct.2025.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Heterocyclic aromatic amines (HAAs) are organic pollutants originating from several emission sources and pose significant health risks. There is a gap in information regarding their concentration levels in environmental samples. This study presents a novel methodology for the extraction and preconcentration of HAAs in waters. The proposed methodology employs a μSPE strategy followed by ultra-high-performance liquid chromatography coupled to mass spectrometry determination. This methodology demonstrated a satisfactory alignment with the principles of green chemistry. The concentrations of HAAs detected ranged from non-detectable levels to 0.15 μg L-1 in irrigation water samples collected from rural areas, and up to 0.49 μg L-1 in urban areas. Additionally, drinking and bottled water samples exhibited concentrations ranging from 0.24 to 1.60 μg L-1. Significantly lower concentrations of HAAs were observed in mineral water samples. Finally, an analysis of the incremental lifetime cancer risk associated with ingesting HAAs-contaminated water was conducted.
Collapse
Affiliation(s)
- María Guiñez
- Instituto de Química de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina; Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de Los Andes 950, San Luis, CP 5700, Argentina
| | | | - Alejandro Mandelli Roubineau
- Instituto de Química de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina; Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de Los Andes 950, San Luis, CP 5700, Argentina
| | - José M Herrero-Martínez
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain
| | - Soledad Cerutti
- Instituto de Química de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina; Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de Los Andes 950, San Luis, CP 5700, Argentina.
| |
Collapse
|
3
|
Zhao Q, Hou HM, Zhang GL, Hao H, Zhu BW, Bi J. Defective UiO-66/cellulose nanocomposite aerogel for the adsorption of heterocyclic aromatic amines. Food Chem 2024; 449:139225. [PMID: 38599107 DOI: 10.1016/j.foodchem.2024.139225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 μmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.
Collapse
Affiliation(s)
- Qiyue Zhao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hong-Man Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Gong-Liang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hongshun Hao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China.
| |
Collapse
|
4
|
Zhao Q, Hou HM, Zhang GL, Hao H, Zhu BW, Bi J. In-situ growth of metal-organic frameworks on cellulose nanofiber aerogels for rapid adsorption of heterocyclic aromatic amines. Int J Biol Macromol 2024; 267:131584. [PMID: 38615856 DOI: 10.1016/j.ijbiomac.2024.131584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 μmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.
Collapse
Affiliation(s)
- Qiyue Zhao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hong-Man Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Gong-Liang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hongshun Hao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China.
| |
Collapse
|
5
|
Shi R, Huang Y, Ruan G, Chen Z, Yang Y, Wu Z. Controlled synthesis of sulfhydryl-dendritic mesoporous silica nanospheres for ultrafast extraction and sensitive analysis of organochlorine herbicides containing amide groups. J Chromatogr A 2024; 1720:464794. [PMID: 38484640 DOI: 10.1016/j.chroma.2024.464794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The distinctive morphology of dendritic mesoporous silica nanoparticles (DMSN) has recently attracted considerable attention in scientific community. However, synthesis of DMSN with well-defined structure and uniform size for ultrafast extraction of trace herbicide residues from environmental and food samples remains to be a compelling challenge. In this study, sulfhydryl functionalized dendritic mesoporous silica (SH-DMSN) was synthesized and the SH-DMSN showcases monodisperse microspheres with flower shape and precisely tailored and controllable pore sizes. This distinctive structural configuration accelerates mass transfer within the silica layer, resulting in heightened adsorption efficiencies. Furthermore, the particle sizes (455, 765, and 808) of the adsorbent can be meticulously fine-tuned by introducing distinct templates. Specifically, when the particle size is 765 nm, the optimized SH-DMSN exhibits a substantial specific surface area (691.32 m²/g), outstanding adsorption efficiencies (>90 %), remarkably swift adsorption and desorption kinetics (2 min and 3 min, respectively), and exceptional stability. The superior adsorption capabilities of this novel adsorbent, ranging from 481.65 to 1021.7 µg/g for organochlorine herbicides containing amide groups, can be attributed to the interplay of S-π interactions, halogen bonding, and electrostatic attraction interaction. These interactions involve the lone pair electrons of sulfhydryl and silanol groups with the π-electrons, halogen atoms and amide groups in herbicide molecules. This study not only offers a new perspective on advancing the practical utilization of dendritic mesoporous silica but also provides a pragmatic strategy for the separation and analysis of herbicides in diverse sample matrices.
Collapse
Affiliation(s)
- Rui Shi
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Yipeng Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China.
| | - Guihua Ruan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China.
| | - Zhengyi Chen
- Pharmacy School, Guilin Medical University, Guangxi, 541004, China
| | - Yanqun Yang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Zhuqiang Wu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| |
Collapse
|
6
|
Ou X, He M, Chen B, Hu B. Covalent organic frameworks based hierarchical porous hybrid monolithic capillary: Synthesis, characterization, and applications in trace metals analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132680. [PMID: 37832443 DOI: 10.1016/j.jhazmat.2023.132680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The preparation of hierarchical porous monolithic column with high covalent organic frameworks (COF) loading and micropores accessibility is challenging due to the easy aggregability and sedimentation of COFs. Herein, a novel strategy based on high internal phase emulsion (HIPE) polymerization was proposed for preparing COF hybrid capillary monolithic column with hierarchical porosity. COFs with different frameworks including imine COFs (COF-OMe, COF-F and COF-SH), triazine COF (CTF-1) and boron-based COF (COF-5) were selected to investigate the universality of the preparation strategy. The presence of COF in the monolithic capillary was confirmed by scanning electron microscope, X-ray diffraction and fourier transform infrared spectroscopy. Nitrogen adsorption/desorption experiments and thermogravimetric analysis showed that the prepared COF hybrid monolithic capillary exhibited high COF loading (e.g., 28.7% for COF-SH) and accessibility (e.g., 98.5% for COF-SH), mainly due to the thin walls of void-window structures originated from polymerization of HIPE. The successful preparation of water-stable COF-F, COF-OMe, COF-SH and CTF-1 hybrid monolithic columns demonstrated the proposed synthesis strategy is universal to water-stable COF without tedious optimization of dispersion system, effectively avoiding the sedimentation of COF in pre-polymerization solution. Then, the sulfhydryl-modified COF hybrid polymer (poly(COF-SH-HIPE)) monolithic column was evaluated for the extraction of heavy metal ions, and a method based on poly(COF-SH-HIPE) monolithic capillary microextraction on-line coupled with inductively coupled plasma mass spectrometry detection was developed for analysis of trace Cd, Hg and Pb in human fluid samples.
Collapse
Affiliation(s)
- Xiaoxiao Ou
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
7
|
Wu G, Zhang C, Liu C, Li X, Cai Y, Wang M, Chu D, Liu L, Meng T, Chen Z. Magnetic tubular nickel@silica-graphene nanocomposites with high preconcentration capacity for organothiophosphate pesticide removal in environmental water: Fabrication, magnetic solid-phase extraction, and trace detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131788. [PMID: 37302192 DOI: 10.1016/j.jhazmat.2023.131788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
Organothiophosphate pesticides (OPPs) are the most common water contaminants, significantly endangering human health and bringing serious public safety issues. Thus, developing effective technologies for the removal or trace detection of OPPs from water is urgent. Herein, a novel graphene-based silica-coated core-shell tubular magnetic nanocomposite (Ni@SiO2-G) was fabricated for the first time and used for the efficient magnetic solid-phase extraction (MSPE) of the OPPs chlorpyrifos, diazinon, and fenitrothion from environmental water. The experimental factors affecting extraction efficiency such as adsorbent dosage, extraction time, desorption solvent, desorption mode, desorption time, and adsorbent type were evaluated. The synthesized Ni@SiO2-G nanocomposites showed a higher preconcentration capacity than the Ni nanotubes, Ni@SiO2 nanotubes, and graphene. Under the optimized conditions, 5 mg of tubular nano-adsorbent displayed good linearity within the range of 0.1-1 μg·mL-1, low limits of detection (0.04-0.25 pg·mL-1), low limits of quantification (0.132-0.834 pg·mL-1), good reusability (n = 5; relative standard deviations between 1.46% and 9.65%), low dosage (5 mg), and low real detection concentration (< 3.0 ng·mL-1). Moreover, the possible interaction mechanism was investigated by density functional theory calculation. Results showed that Ni@SiO2-G was a potential magnetic material for the preconcentration and extraction of formed OPPs at ultra-trace levels from environmental water.
Collapse
Affiliation(s)
- Guoxin Wu
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Chuanqi Zhang
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Chang Liu
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Xiangzi Li
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China; Anhui Laboratory of Molecule-based Materials, College of Chemistry and Materials, Anhui Normal University, Wuhu 241002, China.
| | - Yuanyuan Cai
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Meifang Wang
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Deqiang Chu
- Criminal Police Detachment Material Evidence Identification Center, Wuhu Municipal Public Security Bureau, Wuhu 241000, China
| | - Liyun Liu
- Criminal Police Detachment Material Evidence Identification Center, Wuhu Municipal Public Security Bureau, Wuhu 241000, China
| | - Tian Meng
- Criminal Police Detachment Material Evidence Identification Center, Wuhu Municipal Public Security Bureau, Wuhu 241000, China
| | - Zhiming Chen
- College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
8
|
Porous aromatic frameworks with high Pd nanoparticles loading as efficient catalysts for the Suzuki coupling reaction. J Colloid Interface Sci 2022; 628:1023-1032. [PMID: 35970128 DOI: 10.1016/j.jcis.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
The development of efficient and recyclable heterogeneous Pd catalysts is an area of continuing attention due to their critical applications in organic synthesis and pharmaceutical production. In this study, two novel heterogeneous catalysts Pd@PAF-182 and Pd@PAF-183 were prepared by the immobilization/NaBH4 reduction of PdCl42- on hydrophilic cationic porous aromatic frameworks (PAF-182 and PAF-183), which were synthesized via a Yamamoto-type Ullmann coupling reaction from the corresponding aryl quaternary phosphonium salt monomer. Characterization by powder X-ray diffraction (PXRD), solid-state Cross-Polarization Magic-Angle-Spinning Nuclear Magnetic Resonance (CP/MAS NMR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) established the structures of the as-prepared catalysts. Inductively coupled plasma atomic emission spectrometry (ICP-AES) detection showed that the loading of Pd nanoparticles (Pd NPs) were 29.4 wt% for Pd@PAF-182 and 37.5 wt% for Pd@PAF-183, much higher than those of similar porous materials. Evaluation of the catalytic activity of the Pd@PAFs using Suzuki coupling as the model reaction demonstrated that as little as 0.12 mol% of Pd NPs could catalyze the Suzuki coupling with high efficiency, achieving yields up to 99% at 80 °C in 8 h. Recycling experiments also suggested that Pd@PAF-182 and Pd@PAF-183 maintained high catalytic activity with negligible leaching of Pd NPs after five cycles.
Collapse
|
9
|
Pan H, Gan Z, Hu H, Liu C, Huang Y, Ruan G. Magnetic phenolic resin core-shell structure derived carbon microspheres for ultrafast magnetic solid-phase extraction of triazine herbicides. J Sep Sci 2022; 45:2687-2698. [PMID: 35579607 DOI: 10.1002/jssc.202200283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
In this study, monodisperse magnetic carbon microspheres were successfully synthesized through the carbonization of phenolic resin encapsulated Fe3 O4 core-shell structures. The magnetic carbon microspheres showed high performance in ultrafast extraction and separation of trace triazine herbicides from environmental water samples. Under optimized conditions, both the adsorption and desorption processes could be achieved in 2 min, and the maximum adsorption capacity for simazine and prometryn were 387.6 and 448.5 μg/g. Coupled with HPLC-UV detection technology, the detection limit of triazine herbicides was in the range of 0.30-0.41 ng/mL. The mean recoveries ranged from 81.44 to 91.03% with relative standard deviations lower than 7.47%. The excellent magnetic solid phase extraction performance indicates that magnetic carbon microspheres are promising candidate adsorbent for the fast analysis of environmental contaminants. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hong Pan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| | - Zushan Gan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| | - Haoyun Hu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| | - Cheng Liu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| | - Yipeng Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| | - Guihua Ruan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, P. R. China
| |
Collapse
|