1
|
Qin W, Yang J, Zhang C, Song Y, Jiang J, Ma J. The role of biochar in algal source water treatment: Algal cells integrity and N-Nitrosodimethylamine (NDMA) formation potential. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138292. [PMID: 40239530 DOI: 10.1016/j.jhazmat.2025.138292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
The effects of unmodified and modified biochars (BC) made by tea (TBC), coconut shell (NBC), corn straw (SBC), and orange peel (OBC) on algae removal efficiency and NDMA formation potential (NDMA-FP) in algae-containing water were investigated. The algae removals (12 %-45 %) and NDMA-FP reductions (1 %-20 %) were enhanced by unmodified BC, indicating that the potential application of BC in algae removal and NDMA formation risk control. Cu(Ⅰ/Ⅱ)-modified BC (Cu(Ⅰ/Ⅱ)-BC) significantly promoted algae removal efficiency (up to 80 %) with the most significant physical membrane damage to Microcystis aeruginosa (85-99 %), leading to an increase in NDMA-FP (21 %-31 %). In contrast, Fe(Ⅲ)-modified BC (Fe(Ⅲ)-BC) not only exhibited superior algae removal performance (5 %) with minimal physical damage (membrane damage rate < 15 %), but also provided better control over NDMA-FP (2 %-23 %). Fe(Ⅲ)-BC performed strong adsorption capacity for AOM, with an adsorption efficiency of up to 86 %. NDMA-FP control in algae-containing water by BC depended on its physical damage to cells and AOM adsorption. A positive correlation was observed between membrane damage and AOM adsorption. These findings support optimizing algal removal and NDMA-FP control in drinking water treatment.
Collapse
Affiliation(s)
- Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Jingru Yang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Changyang Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Jin Jiang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Kang H, Chen Y, Cheng M, Guo H, Zhang G, Shi Q, Zhou W, Zhao C, Zou B, Lv X, Yuan Z, Zeng G. State-Of-The-Art Structural Regulation Methods and Quantum Chemistry for Carbon-Based Single-Atom Catalysts in Advanced Oxidation Process: Critical Perspectives into Molecular Level. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2505128. [PMID: 40401577 DOI: 10.1002/adma.202505128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Advanced oxidation processes (AOPs) by carbon-based single-atom catalysts (SACs) are recognized as an attractive scientific frontier for water treatment, with the outstanding benefits of ultra-effective and anti-interference capability. However, most of the research has paid more attention to the performance of SACs, while the in-depth understanding of catalytic regulation by molecular interaction is relatively deficient. This critical review delves into deciphering the catalytic mechanism through a micro-level, which makes it more convenient to interpret apparent catalytic phenomena. It first summarizes basic theories of quantum chemistry, which provide mechanism interpretation and prediction for molecular-oxidation systems. Additionally, corresponding oxidation pathways of common oxidants are underscored. Following the oxidants, state-of-the-art regulation methods are discussed with special attention to involved molecular interactions and pollutants. Particularly, the preliminary insights into the "oxidant-catalyst-pollutants" internal relationships are provided to help construct the SAC-AOP system from a molecular standpoint. Meanwhile, some cutting-edge laboratory devices and pilot-scale engineering are presented to illustrate the ultimate purpose of scientific molecular exploration. Eventually, relative challenges of SACs-AOPs upon the design of catalytic systems and investigation methods are provided. This review aims to promote the large-scale potential of SACs-based AOPs in practical water treatment by emphasizing the pivotal role of micro-insights.
Collapse
Affiliation(s)
- Huayue Kang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Qingkai Shi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wencheng Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chen Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Bin Zou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xinyue Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Ziyue Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
3
|
Jia S, Li Y, Chen Y, Wu Y, Zhou T, Chi N, He G, Zhang W, Luo W, Li H, Deng Y. Ultrasensitive simultaneous detection of lead and cadmium in water using gold nanocluster-modified gold electrodes. RSC Adv 2025; 15:17535-17547. [PMID: 40433036 PMCID: PMC12107533 DOI: 10.1039/d5ra02612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Heavy metals (HMs) pose significant environmental risks due to their widespread presence. In particular, lead (Pb) and cadmium (Cd) can accumulate in the human body through prolonged exposure or bioaccumulation via the food chain, presenting substantial threats to human health and ecosystems. This study developed a novel electrochemical sensing platform for simultaneous detection of trace Pb2+ and Cd2+ using a bare gold electrode modified with gold nanoclusters (GNPs-Au) through a potentiostatic method. Through systematic optimization of deposition parameters including 2 mmol per L HAuCl4, 0.2 V deposition potential, and 80 s deposition time, the modified electrode exhibited 7.2-fold increased surface area compared to the bare gold electrode, as confirmed by field emission scanning electron microscopy (FESEM) and electrochemical characterization. The enhanced surface area provided abundant electrochemical reaction sites, significantly improving detection sensitivity. Under optimal detection conditions comprising pH 3.3, -4 V enrichment potential, and 390 s enrichment time, the modified electrode demonstrated linear responses for Pb2+ and Cd2+ in the range of 1-250 μg L-1 with a detection limit of 1 ng L-1. The spike-recovery test yielded quantitative recoveries ranging from 90.86% to 113.47%. The interference experiment confirmed Cu2+ has a significant effect on the measurement. Moreover, the method successfully detected Pb2+ and Cd2+ in real water samples, with results showing minor errors compared to atomic absorption spectroscopy (AAS). These findings demonstrate the robust potential of GNPs-Au for trace heavy metal ion detection in environmental monitoring.
Collapse
Affiliation(s)
- Shunyao Jia
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education Changsha 410082 China
| | - Yanting Wu
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Tianyun Zhou
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Nianping Chi
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - GuoWen He
- School of Materials and Chemical Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Wei Zhang
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Wenqiang Luo
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Hao Li
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| | - Yumei Deng
- School of Municipal and Geomatics Engineering, Hunan City University Yiyang Hunan 413000 China
| |
Collapse
|
4
|
Chen Y, Zhou W, Li Y, Kang H, Zhao M, Liu Y, Wang J, Zhao C, Zou B, Jia X, Zhang W. In-situ structural modification on spinel oxide to achieve efficient removal of refractory organics: Triple optimisation of degradation performance. J Colloid Interface Sci 2025; 686:471-486. [PMID: 39908839 DOI: 10.1016/j.jcis.2025.01.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
Spinel oxide has attracted interest in wastewater treatment, owing to its visible light (VIS) adsorption properties and bimetallic synergism. However, owing to the inefficient separation of photogenerated carriers and poor redox property, there is an urgent need to develop appropriate modification strategies to address these bottlenecks. This study aimed to develop CuFe2O4/CuFeSx (CFO/CFSx) heterojunction with oxygen vacancies (OVs) via an in-situ structural modification to trigger the generation of more radicals with low oxidant consumption for the efficient degradation of refractory organics. This customized heterojunction improved the light-trapping ability and photoelectrons utilisation, promoting the reduction of metal valence by photoelectrons to enhance the activation of peroxymonosulfate (PMS). Meanwhile, OVs also provided more active sites to activate PMS to generate superoxide radicals (O2-), which were further converted to hydroxyl radicals (OH) to ensure considerable oxidation capability. Notably, Sulfur-mediated metal valence reduction boosted the cycle of Cu(I)/Cu(II) and Fe(II)/Fe(III), guaranteeing the regeneration of the active sites. Triple optimisation of the modified spinel oxide presented a striking oxidant utilisation efficiency with a substantial increase in the concentration of radicals. This study provides a simple and reliable reference for designing high-performance CuFe2O4 (CFO) photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 China.
| | - Wencheng Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 China
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Huayue Kang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 China
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 China
| | - Yihuan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 China
| | - Chen Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 China
| | - Bin Zou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 China
| | - Xuyang Jia
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 China
| | - Wei Zhang
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, China
| |
Collapse
|
5
|
Cui X, Sun Y, Song C, Hu Y, Man Y, Li J, Zhao R, He L. Removal of Mycotoxins in Food by Emerging Porous Materials: Advances, Mechanisms and Prospects. Compr Rev Food Sci Food Saf 2025; 24:e70182. [PMID: 40326702 DOI: 10.1111/1541-4337.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025]
Abstract
Mycotoxins are toxic secondary metabolites produced by various toxigenic fungi and are widely present in food and agricultural products, posing serious threats to food safety and human health. Effective removal of mycotoxin contamination from food remains a critical challenge in ensuring food security. Emerging porous materials (PMs) have recently gained significant attention in mycotoxin removal due to their unique properties. Encouraging progress has been developed during the past five years in the removal of mycotoxins using PMs. However, there is no critical review on the removal of mycotoxins from food by emerging PMs, especially the removal performance and mechanism. Herein, this comprehensive review summarizes recent research on the removal of prevalent mycotoxins, such as aflatoxins, patulin, and ochratoxin A, from food using emerging PMs, including metal-organic frameworks and their derivatives, biochar, and covalent organic frameworks. Additionally, this review highlights the mechanisms underlying two primary removal methods, adsorption and degradation, along with the possible degradation pathways and products of mycotoxins. Given the requirement of safety and regulatory consideration, the risk assessment of PM-based removal method is also discussed. Finally, specific challenges and prospects associated with the industrial application of PMs for mycotoxin removal are explored. This review provides a valuable reference for advancing mycotoxin removal technologies from food, which is of great significance for ensuring food safety and human health.
Collapse
Affiliation(s)
- Xiaoshuang Cui
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P.R. China
| | - Yaming Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P.R. China
| | - Chenchen Song
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P.R. China
| | - Yongxing Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P.R. China
| | - Yong Man
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P.R. China
| | - Jingna Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P.R. China
| | - Renyong Zhao
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, P.R. China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P.R. China
| |
Collapse
|
6
|
Manickavasagam G, He C, Lin KYA, Saaid M, Oh WD. Recent advances in catalyst design, performance, and challenges of metal-heteroatom-co-doped biochar as peroxymonosulfate activator for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 252:118919. [PMID: 38631468 DOI: 10.1016/j.envres.2024.118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.
Collapse
Affiliation(s)
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
7
|
Deng W, Kuang X, Xu Z, Li D, Li Y, Zhang Y. Adsorption of Cadmium and Lead Capacity and Environmental Stability of Magnesium-Modified High-Sulfur Hydrochar: Greenly Utilizing Chicken Feather. TOXICS 2024; 12:356. [PMID: 38787135 PMCID: PMC11126130 DOI: 10.3390/toxics12050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Chicken feathers represent a viable material for producing biochar adsorbents. Traditional slow pyrolysis methods often result in sulfur element losses from chicken feathers, whereas hydrothermal reactions generate substantial amounts of nutrient-rich hydrothermal liquor. Magnesium-modified high-sulfur hydrochar MWF was synthesized through magnesium modification, achieving a S content of 3.68%. The maximum equilibrium adsorption amounts of MWF for Cd2+ and Pb2+ were 25.12 mg·g-1 and 70.41 mg·g-1, respectively, representing 4.00 times and 2.75 times of WF. Magnesium modification elevated the sulfur content, pH, ash content, and electronegativity of MWF. The primary mechanisms behind MWF's adsorption of Cd2+ and Pb2+ involve magnesium ion exchange and complexation with C=O/O=C-O, quaternary N, and S functional groups. MWF maintains robust stability and antioxidative properties, even with low aromaticity levels. Given the lower energy consumption during hydrochar production, MWF offers notable carbon sequestration benefits. The hydrothermal solution derived from MWF is nutrient-rich. Following supplementation with inorganic fertilizer, the hydrothermal solution of MWF significantly enhanced bok choy growth compared to the control group. In general, adopting magnesium-modified hydrothermal reactions to produce hydrochar and converting the resultant hydrothermal solution into water-soluble fertilizer proves a viable strategy for the eco-friendly utilization of chicken feathers. This approach carries substantial value for heavy metal remediation and agricultural practices.
Collapse
Affiliation(s)
- Weiqi Deng
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
- WENS Foodstuff Group Co., Ltd., Yunfu 527400, China
| | - Xubin Kuang
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Xu
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Deyun Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Yongtao Li
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yulong Zhang
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
- WENS Foodstuff Group Co., Ltd., Yunfu 527400, China
| |
Collapse
|
8
|
Chen Y, Yuan Y, Li Y, Chen L, Jiang H, Wang J, Li H, Chen Y, Wang Q, Luo M. The effects of different electrode materials on the electric field-assisted co-composting system for the soil remediation of heavy metal pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171600. [PMID: 38461986 DOI: 10.1016/j.scitotenv.2024.171600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The electric field-assisted composting system (EACS) is an emerging technology that can enhance composting efficiency, but little attention has been given to electrode materials. Herein, an EACS was established to investigate the effects of electrode materials on humic substance formation and heavy metal speciation. Excitation-emission matrix analysis showed that carbon-felt and stainless-steel electrodes increased humic acid (HA) by 48.57 % and 47.53 %, respectively. In the EACS with the carbon-felt electrode, the bioavailability factors (BF) of Cu and Cr decreased by 18.00 % and 7.61 %, respectively. Despite that the stainless-steel electrodes decreased the BF of As by 11.26 %, the leaching of Cr, Ni, Cu, and Fe from the electrode itself is an inevitable concern. Microbial community analyses indicated that the electric field increased the abundance of Actinobacteria and stimulated the multiplication of heavy metal-tolerant bacteria. Redundancy analysis indicates that OM, pH, and current significantly affect the evolution of heavy metal speciation in the EACS. This study first evaluated the metal leaching risk of stainless-steel electrode, and confirmed that carbon-felt electrode is environment-friendly material with high performance and low risk in future research with EACS.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Qianruyu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mengwei Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
9
|
Sun A, Bian S, Li L, Guo Z, Li W, Li J, Xu S, Liu PD. Preparation of highly adsorptive biochar by sequential iron impregnation under refluxing and pyrolysis at low temperature for removal of tetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123886. [PMID: 38556153 DOI: 10.1016/j.envpol.2024.123886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Iron-doping modification is a prevailing approach for improving adsorption capability of biochar with environmental friendliness, but usually requires high temperature and suffers from iron aggregation. Herein, a highly adsorptive biochar was manufactured via sequential disperse impregnation of iron by refluxing and pyrolysis at low temperature for eliminating tetracycline (TC) from aqueous solution. Iron oxides and hydroxides were impregnated and stably dispersed on the carbon matrix as pyrolyzed at 200 °C, meanwhile abundant oxygen and nitrogen functional groups were generated on surface. The iron-doped biochar exhibited up to 891.37 mg/g adsorption capacity at pH 5, and could be recycled with high adsorption capability. The adsorption of TC should be mostly contributed to the hydrogen bonding of N/O functional groups and the hydrogen bonding/coordination of iron oxides/hydroxides. This would provide a valuable guide for dispersedly doping iron and conserving functional groups on biochar, and a super iron-doped biochar was prepared with superior recyclability.
Collapse
Affiliation(s)
- Ahui Sun
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Siyao Bian
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Linzhou Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Zijing Guo
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Wanjie Li
- Danzhou Environmental Monitoring Station, Port Service Center, Danzhou, 578001, China
| | - Jihui Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Shuying Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Pan-Dao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
10
|
Hama Aziz KH, Fatah NM, Muhammad KT. Advancements in application of modified biochar as a green and low-cost adsorbent for wastewater remediation from organic dyes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:232033. [PMID: 39076783 PMCID: PMC11285854 DOI: 10.1098/rsos.232033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/10/2024] [Indexed: 07/31/2024]
Abstract
Synthetic organic dyes, which are resistant to biodegradation, pose a notable health risk, potentially leading to cancer and respiratory infections. Researchers have addressed this concern by exploring physicochemical methods to remove organic dyes from wastewater. A particularly promising solution involves modified biochar adsorbents, which demonstrate high efficiency in organic dye removal. Biochar, a charcoal-like material derived from biomass pyrolysis, offers advantages such as low cost, eco-friendliness, high efficiency and reusability. Beyond its role in sustainable soil remediation, biochar proves effective in removing organic dyes from wastewater after undergoing physical or chemical modification. Acid-base activation or metal-heteroatom impregnation enhances biochar's adsorption capacity. This comprehensive review examines the attributes of biochar, common methods for production and modification, and the impacts of raw materials, pyrolysis temperature, heating rate and residence time. It further elucidates the biochar adsorption mechanism in the removal of organic dyes, assessing factors influencing efficiency, including biochar feedstock, solution pH, adsorption temperature, particle size, initial dye concentration, biochar dosage and reaction time. It explores challenges, opportunities, reusability and regeneration methods of biochar in treating organic dye wastewater. It also discusses recent advances in organic dye removal using adsorption-based biochar. The review ultimately advocates for enhancing biochar's adsorption performance through post-modification.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah City, Kurdistan Region 46001, Iraq
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University-Sulaimaniya, Sulaymaniyah, Kurdistan Region 46001, Iraq
| | - Nazhad Majeed Fatah
- Department of Environmental Science, College of Environmental Sciences, University of Sulaimani, Sulaymaniyah-Chwarta 46001, Iraq
| | - Khalid Taib Muhammad
- Department of Natural Resources, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaymaniyah 46001, Iraq
| |
Collapse
|
11
|
Wang Y, Yu S, Yuan H, Zhang L. Constructing N,S co-doped network biochar confined CoFe 2O 4 magnetic nanoparticles adsorbent: Insights into the synergistic and competitive adsorption of Pb 2+ and ciprofloxacin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123178. [PMID: 38103717 DOI: 10.1016/j.envpol.2023.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
To solve the problem of biochar lack of adsorption sites for heavy metal ions and the difficulty of recycling, CoFe2O4 magnetic nanoparticles confined in nitrogen, sulfur co-doped 3D network biochar matrix (C-CoFe2O4/N,S-BC) was designed and fabricated successfully. The obtained C-CoFe2O4/N,S-BC displays remarkable adsorption performance for both Pb2+ and ciprofloxacin (CIP) removal at the single or binary system due to the role of N,S as metal ion anchoring compared to the N,S-free sample (CoFe2O4/BC). N,S co-doped BC not only participates in adsorption reaction but also effectively inhibites the agglomeration of CoFe2O4 nanoparticles and increases the active sites as a carrier at the same time. In the single system, CoFe2O4/N,S-BC demonstrates a fast adsorption rate (equilibrium time: 30 min) and high adsorption capacity (224.77 mg g-1 for Pb2+, 400.11 mg g-1 for CIP) towards Pb2+ and CIP. The adsorption process is befitted pseudo-second-order model, and the equilibrium data are in great pertinence with Langmuir model. In the binary system, the maximum adsorption capacity of CoFe2O4/N,S-BC for Pb2+ and CIP is 244.80 mg g-1 (CIP: 10.00 mg L-1) and 418.42 mg g-1 (Pb2+: 10.00 mg L-1), respectively. The adsorption mechanism is discussed based on the experimental results. Moreover, C-CoFe2O4/N,S-BC shows good practical water treatment capacity, anti-interference ability and stable reusability (the removal efficiency>80% after eight cycles). The rapid, multifunctional, reusable, and easily separable adsorption properties make C-CoFe2O4/N,S-BC promising for efficient environmental remediation. This study also offers a viable method for the construction of adsorption material for complex wastewater treatment.
Collapse
Affiliation(s)
- Yang Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China; School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Shuang Yu
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Hongwei Yuan
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
12
|
Wang M, Huang Q, Ma R, Wang S, Li X, Hu Y, Zhu S, Zhang M, Huang Q. Construction of Mn doped Cu 7S 4 nanozymes for synergistic tumor therapy in NIR-I/II bio-windows. Colloids Surf B Biointerfaces 2024; 234:113689. [PMID: 38103429 DOI: 10.1016/j.colsurfb.2023.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
In photothermal therapy (PTT) and chemodynamic therapy (CDT) of cancer, poor performance of nanoagents severely impaired the therapeutic effect of cancer. To solve the problem, we proposed and constructed a novel Mn doped Cu7S4 phothermal nanoagent both in the first near-infrared (NIR-I) and the second near- infrared (NIR-II) windows in this work, which exhibited high photothermal conversion efficiency of 40.3% at 808 nm (NIR-I window) and 33.4% at 1064 nm (NIR-II window), as well as outstanding pH-sensitive catalytic performance (peroxidase-like catalytic activity and Fenton-like catalytic activities). The as-prepared Mn doped Cu7S4 could be used to load chemotherapy drug doxorubicin (DOX) after modified by folic acid. Both in vitro and in vivo studies indicated that it could be used as nanoagent for chemodynamic therapy (CDT)/photothermal therapy (PTT)/ chemotherapy of cervical carcinoma. This study thus provided an NIR-I/NIR-II/pH responsive nanoagent for potential synergistic therapy of deep-seated tumors.
Collapse
Affiliation(s)
- Meng Wang
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China
| | - Qi Huang
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China; School of Life Sciences, Nursing, Medical Imaging and Pharmacy of Xuzhou Medical University, Xuzhou city, Jiangsu 221000, China
| | - Ruixin Ma
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China
| | - Shuozhe Wang
- School of Life Sciences, Nursing, Medical Imaging and Pharmacy of Xuzhou Medical University, Xuzhou city, Jiangsu 221000, China
| | - Xinxiu Li
- School of Life Sciences, Nursing, Medical Imaging and Pharmacy of Xuzhou Medical University, Xuzhou city, Jiangsu 221000, China
| | - Youhui Hu
- School of Life Sciences, Nursing, Medical Imaging and Pharmacy of Xuzhou Medical University, Xuzhou city, Jiangsu 221000, China
| | - Shunhua Zhu
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China
| | - Min Zhang
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China
| | - Qingli Huang
- Public Experimental Research Center, the Second Clinical Medical College, Medical Technology School of Xuzhou Medical University, Xuzhou city, Jiangsu 221004, China.
| |
Collapse
|
13
|
Kumar N, Vach M, Saini VK, Zitkova A. Co-pyrolysis of orange peel and eggshell for oxygenated rich composite: Process optimization with response surface methodology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119786. [PMID: 38109824 DOI: 10.1016/j.jenvman.2023.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/06/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
Co-pyrolysis of orange peel and chicken eggshell was performed for the synthesis of the composite, a co-pyrolysis technique used to promote natural fabrication and to allow the raw material elemental combination effect and the preparatory conditions such as pyrolysis temperature, residence time, and eggshell/orange peel mixing ratio, to be optimized with the response surface methodology through Box-Behnken Design(BBD). BBD involved a randomized series of 17 experimental runs, and the best optimal conditions were found with a pyrolysis temperature of 300 °C, a residence time of 1 h, and 0.5 as the mixing ratio. These conditions gave a maximum adsorption capacity of 167 mg/g for removal of the modal pollutant methylene blue. FTIR spectra of the composite showed new functional peaks of oxygenated groups, at two different bands. XRD confirmed an amorphous surface with inorganic component peaks, while SEM-EDS revealed rich defects sites along with an enhanced percentage of oxygen elements on the surface; the surface area was enhanced from 1 m2 with unmodified peel to 64 m2 with composite. The adsorption behavior of the composite was studied for dye removal and the adsorption behavior was well explained by the Langmuir isotherm model.
Collapse
Affiliation(s)
- Nayan Kumar
- Department of Water Resources and Environmental Modelling, Czech University of Life Sciences, Prague, Czech Republic.
| | - Marek Vach
- Department of Water Resources and Environmental Modelling, Czech University of Life Sciences, Prague, Czech Republic
| | - Vipin Kumar Saini
- School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India
| | - Andrea Zitkova
- Departmental of Environmental Geoscience, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Liu J, Sun S, Zhang H, Kong Q, Li Q, Yao X. Remediation materials for the immobilization of hexavalent chromium in contaminated soil: Preparation, applications, and mechanisms. ENVIRONMENTAL RESEARCH 2023; 237:116918. [PMID: 37611786 DOI: 10.1016/j.envres.2023.116918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Hexavalent chromium is a toxic metal that can induce severe chromium contamination of soil, posing a potential risk to human health and ecosystems. In recent years, the immobilization of Cr(VI) using remediation materials including inorganic materials, organic materials, microbial agents, and composites has exhibited great potential in remediating Cr(VI)-contaminated soil owing to the environmental-friendliness, short period, simple operation, low cost, applicability on an industrial scale, and high efficiency of these materials. Therefore, a systematical summary of the current progress on various remediation materials is essential. This work introduces the production (sources) of remediation materials and examines their characteristics in detail. Additionally, a critical summary of recent research on the utilization of remediation materials for the stabilization of Cr(VI) in the soil is provided, together with an evaluation of their remediation efficiencies toward Cr(VI). The influences of remediation material applications on soil physicochemical properties, microbial community structure, and plant growth are summarized. The immobilization mechanisms of remediation materials toward Cr(VI) in the soil are illuminated. Importantly, this study evaluates the feasibility of each remediation material application for Cr(VI) remediation. The latest knowledge on the development of remediation materials for the immobilization of Cr(VI) in the soil is also presented. Overall, this review will provide a reference for the development of remediation materials and their application in remediating Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Jiwei Liu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Shuyu Sun
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China; Dongying Institute, Shandong Normal University, Dongying, Shandong, 257092, China
| | - Qian Li
- School of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, Shandong, 261000, China
| | - Xudong Yao
- Project Department, Shandong Luqiao Detection Technology Co., Ltd., Rizhao, Shandong, 276800, China
| |
Collapse
|
15
|
Chen Y, Zhao M, Li Y, Liu Y, Chen L, Jiang H, Li H, Chen Y, Yan H, Hou S, Jiang L. Regulation of tourmaline-mediated Fenton-like system by biochar: Free radical pathway to non-free radical pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118497. [PMID: 37413726 DOI: 10.1016/j.jenvman.2023.118497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
The heterogeneous Fenton-like systems induced by Fe-containing minerals have been largely applied for the degradation of organic pollutants. However, few studies have been conducted on biochar (BC) as an additive to Fenton-like systems mediated by iron-containing minerals. In this study, the addition of BC prepared at different temperatures was found to significantly enhance the degradation of contaminants in the tourmaline-mediated Fenton-like system (TM/H2O2) using Rhodamine B (RhB) as the target contaminant. Furthermore, the hydrochloric acid-modified BC prepared at 700 °C (BC700(HCl)) could achieve complete degradation of high concentrations of RhB in the BC700(HCl)/TM/H2O2 system. Free radical quenching experiments showed that TM/H2O2 system removed contaminants mainly mediated by the free radical pathway. After adding BC, the removal of contaminants is mainly mediated by the non-free radical pathway in BC700(HCl)/TM/H2O2 system which was confirmed by the Electron paramagnetic resonance (EPR) experiments and electrochemical impedance spectroscopy (EIS). In addition, BC700(HCl) had broad feasibility in the degradation of other organic pollutants (Methylene Blue (MB) 100%, Methyl Orange (MO) 100%, and tetracycline (TC) 91.47%) in the tourmaline-mediated Fenton-like system. Possible pathways for the degradation of RhB by the BC700(HCl)/TM/H2O2 system were also proposed.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha, 410205, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
16
|
Liu Y, Chen Y, Li Y, Chen L, Jiang H, Jiang L, Yan H, Zhao M, Hou S, Zhao C, Chen Y. Elaborating the mechanism of lead adsorption by biochar: Considering the impacts of water-washing and freeze-drying in preparing biochar. BIORESOURCE TECHNOLOGY 2023; 386:129447. [PMID: 37399959 DOI: 10.1016/j.biortech.2023.129447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This paper examined the impacts of different pretreatments on the characteristics of biochar and its adsorption behavior for Pb2+. Biochar with combined pretreatment of water-washing and freeze-drying (W-FD-PB) performed a maximum adsorption capacity for Pb2+ of 406.99 mg/g, higher than that of 266.02 mg/g on water-washing pretreated biochar (W-PB) and 188.21 mg/g on directly pyrolyzed biochar (PB). This is because the water-washing process partially removed the K and Na, resulting in the relatively enriched Ca and Mg on W-FD-PB. And the freeze-drying pretreatment broke the fiber structure of pomelo peel, favoring the development of a fluffy surface and large specific surface area during pyrolysis. Quantitative mechanism analysis implied that cation ion exchange and precipitation were the driving forces in Pb2+ adsorption on biochar, and both mechanisms were enhanced during Pb2+ adsorption on W-FD-PB. Furthermore, adding W-FD-PB to Pb-contaminated soil increased the soil pH and significantly reduced the availability of Pb.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang 413000, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chen Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| |
Collapse
|
17
|
Ouyang Q, Hansen HCB, Thygesen LG, Tobler DJ. Nitrogen amended graphene catalyses fast reduction of vinyl chloride by nano zerovalent iron. WATER RESEARCH 2023; 244:120535. [PMID: 37660466 DOI: 10.1016/j.watres.2023.120535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Vinyl chloride (VC) is a dominant carcinogenic residual in many aged chlorinated solvent plumes, and it remains a huge challenge to clean it up. Zerovalent iron (ZVI) is an effective reductant for many chlorinated compounds but shows low VC removal efficiency at field scale. Amendment of ZVI with a carbonaceous material may be used to both preconcentrate VC and facilitate redox reactions. In this study, nitrogen-doped graphene (NG) produced by a simple co-pyrolysis method using urea as nitrogen (N) source, was tested as a catalyst for VC reduction by nanoscale ZVI (nZVI). The extent of VC reduction to ethylene in the presence of 2 g/L of nZVI was less than 1% after 3 days, and barely improved with the addition of 4 g/L of graphene. In contrast, with amendment of nZVI with NG produced at pyrolysis temperature (PT) of 950 °C, the VC reduction extent increased more than 10-fold to 69%. The reactivity increased with NG PT increasing from 400 °C to an optimum at 950 °C, and it increased linearly with NG loadings. Interestingly, N dosage had little effect on reactivity if NG was produced at PT of 950 °C, while a positive correlation was observed for NG produced at PT of 600 °C. XPS and Raman analyses revealed that for NG produced at lower PT (<800 °C) mainly the content of pyridine-N-oxide (PNO) groups correlates with reactivity, while for NG produced at higher PT up to 950 °C, reactivity correlates mainly with N induced structural defects in graphene. The results of quenching and hydrogen yield experiments indicated that NG promote reduction of VC by storage of atomic hydrogen, thus increasing its availability for VC reduction, while likely also enabling electron transfer from nZVI to VC. Overall, these findings demonstrate effective chemical reduction of VC by a nZVI-NG composite, and they give insights into the effects of N doping on redox reactivity and hydrogen storage potential of carbonaceous materials.
Collapse
Affiliation(s)
- Qiong Ouyang
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark.
| | - Hans Christian Bruun Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| | - Lisbeth Garbrecht Thygesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, Frederiksberg C DK-1958, Denmark
| | - Dominique J Tobler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| |
Collapse
|
18
|
Kuang Y, Xie X, Zhou S, Chen L, Zheng J, Ouyang G. Customized oxygen-rich biochar with ultrahigh microporosity for ideal solid phase microextraction of substituted benzenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161840. [PMID: 36716883 DOI: 10.1016/j.scitotenv.2023.161840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The synergistic effect of high microporosity and abundant heteroatoms is important for improving the performance of biochar in various fields. However, it is still challenging to create enough micropores for biochar, while simultaneously retaining the heteroatoms from biomass. A series of biochar with variable microstructures was successfully prepared by carbonization and following ball milling on lotus pedicel (LP), watermelon rind (WR), and litchi rind (LR). The pore structures and heteroatoms of biochar were characterized in detail. Notably, high microporosity could be realized by the carbonization of LR, and further ball milling resulted in a higher microporous surface area (1323.4 m2·g-1) and richer oxygen. Furthermore, the obtained biochar was fabricated as solid phase microextraction (SPME) coatings with uniform morphologies and similar thicknesses to deeply investigate the relationships between the microstructures and extraction performance. The best performance was demonstrated by the LR800BM, with enrichment factors from 1780 to 155,217. Finally, it was coupled with gas chromatography-mass spectrometry (GC-MS) to develop an analytical method with a wide linear range (1-50,000 ng·L-1), low limits of detection (0.10-1.4 ng·L-1), good repeatability (0.83 %-7.5 %) and reproducibility (4.2 %-8.9 %). This work provides valuable insights into the structure-performance relationship of biochar, which is important for the design of high-performance biochar-based adsorbents and their applications in the environment.
Collapse
Affiliation(s)
- Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xintong Xie
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Luyi Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006, China.
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University Kexue Avenue 100, Zhengzhou 450001, China
| |
Collapse
|
19
|
Wang J, Yuan M, Cao N, Zhu J, Ji J, Liu D, Gao R, Pang S, Ma Y. In situ boron-doped cellulose-based biochar for effective removal of neonicotinoids: Adsorption mechanism and safety evaluation. Int J Biol Macromol 2023; 237:124186. [PMID: 36990401 DOI: 10.1016/j.ijbiomac.2023.124186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Biochar materials have been widely employed for adsorption of pollutants, which necessitates further consideration of their efficiency and safety in environmental remediation. In this study, a porous biochar (AC) was prepared through the combination of hydrothermal carbonization and in situ boron doping activation to effectively adsorb neonicotinoids. The adsorption process was shown to be a spontaneous endothermic physical adsorption process, where the predominant interaction forces between the acetamiprid and AC were electrostatic and hydrophobic interactions. The maximum adsorption capacity was 227.8 mg g-1for acetamiprid and the safety of AC was verified by simulating the situation where the aquatic organism (D. magna) was exposed to the combined system (AC & neonicotinoids). Interestingly, AC was observed to reduce the acute toxicity of neonicotinoids owing to the reduced bioavailability of acetamiprid in D. magna and the newly generated expression of cytochrome p450. Thus, it enhanced the metabolism and detoxification response in D. magna, which reducing the biological toxicity of acetamiprid. This study not only demonstrates the potential application of AC from a safety perspective, but also provides insight into the combined toxicity caused by biochar after adsorption of pollutants at the genomic level, which fills the gap in related research.
Collapse
|
20
|
Chen L, Chen Y, Li Y, Liu Y, Jiang H, Li H, Yuan Y, Chen Y, Zou B. Improving the humification by additives during composting: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:93-106. [PMID: 36641825 DOI: 10.1016/j.wasman.2022.12.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Humic substances (HSs) are key indicators of compost maturity and are important for the composting process. The application of additives is generally considered to be an efficient and easy-to-master strategy to promote the humification of composting and quickly caught the interest of researchers. This review summarizes the recent literature on humification promotion by additives in the composting process. Firstly, the organic, inorganic, biological, and compound additives are introduced emphatically, and the effects and mechanisms of various additives on composting humification are systematically discussed. Inorganic, organic, biological, and compound additives can promote 5.58-82.19%, 30.61-50.92%, 2.3-40%, and 28.09-104.51% of humification during composting, respectively. Subsequently, the advantages and disadvantages of various additives in promoting composting humification are discussed and indicated that compound additives are the most promising method in promoting composting humification. Finally, future research on humification promotion is also proposed such as long-term stability, environmental impact, and economic feasibility of additive in the large-scale application of composting. It is aiming to provide a reference for future research and the application of additives in composting.
Collapse
Affiliation(s)
- Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Bin Zou
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| |
Collapse
|
21
|
Jiang T, Wang B, Gao B, Cheng N, Feng Q, Chen M, Wang S. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130075. [PMID: 36209607 DOI: 10.1016/j.jhazmat.2022.130075] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Biochar has shown large potential in environmental remediation because of its low cost, large specific surface area, porosity, and high conductivity. Biochar-assisted advanced oxidation processes (BC-AOPs) have recently attracted increasing attention to the remediation of organic pollutants from water. However, the effects of biochar properties on catalytic performance need to be further explored. There are still controversial and knowledge gaps in the reaction mechanisms of BC-AOPs, and regeneration methods of biochar catalysts are lacking. Therefore, it is necessary to systematically review the latest research progress of BC-AOPs in the treatment of organic pollutants in water. In this review, first of all, the effects of biochar properties on catalytic activity are summarized. The biochar properties can be optimized by changing the feedstocks, preparation conditions, and modification methods. Secondly, the catalytic active sites and degradation mechanisms are explored in different BC-AOPs. Different influencing factors on the degradation process are analyzed. Then, the applications of BC-AOPs in environmental remediation and regeneration methods of different biochar catalysts are summarized. Finally, the development prospects and challenges of biochar catalysts in environmental remediation are put forward, and some suggestions for future development are proposed.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Ning Cheng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
22
|
Ahuja R, Kalia A, Sikka R, P C. Nano Modifications of Biochar to Enhance Heavy Metal Adsorption from Wastewaters: A Review. ACS OMEGA 2022; 7:45825-45836. [PMID: 36570198 PMCID: PMC9774412 DOI: 10.1021/acsomega.2c05117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) is a carbon-rich material that can be obtained by thermal decomposition of agricultural solid waste under oxygen-limited conditions. It has received increasing attention as a cost-effective sorbent to treat metal-contaminated water due to attributes such as high porosity and the presence of various functional groups. The heavy metal (HM) sorption and removal capacity of BC can be enhanced by developing novel biochar nanohybrids (BNHs) that can be produced via surface modification of BC with nanomaterials. Loading of nanomaterials on the biochar surface can improve its physicochemical properties through alterations in the functional group profile, porosity, and availability of active sites on the BC surface which can enhance the HM adsorption ability. This manuscript provides information on preparation of nano-based biochar hybrids emanating from the type of modifying agent for the removal of different HM ions from wastewaters, and the underlying mechanisms have been discussed. Further, this compilation discusses published literature depicting the influence of different processes of preparation on the physicochemical properties and adsorption capacity of nanobiochar hybrids. The potential risks of BNHs have been reviewed to effectively avoid the possible harmful impacts on the environment, and future research directions have been proposed.
Collapse
Affiliation(s)
- Radha Ahuja
- Department
of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Anu Kalia
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Rajeev Sikka
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Chaitra P
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
23
|
Abstract
Nowadays, biochar is being studied to a great degree because of its potential for carbon sequestration, soil improvement, climate change mitigation, catalysis, wastewater treatment, energy storage, and waste management. The present review emphasizes on the utilization of biochar and biochar-based nanocomposites to play a key role in decontaminating dyes from wastewater. Numerous trials are underway to synthesize functionalized, surface engineered biochar-based nanocomposites that can sufficiently remove dye-contaminated wastewater. The removal of dyes from wastewater via natural and modified biochar follows numerous mechanisms such as precipitation, surface complexation, ion exchange, cation–π interactions, and electrostatic attraction. Further, biochar production and modification promote good adsorption capacity for dye removal owing to the properties tailored from the production stage and linked with specific adsorption mechanisms such as hydrophobic and electrostatic interactions. Meanwhile, a framework for artificial neural networking and machine learning to model the dye removal efficiency of biochar from wastewater is proposed even though such studies are still in their infancy stage. The present review article recommends that smart technologies for modelling and forecasting the potential of such modification of biochar should be included for their proper applications.
Collapse
|
24
|
Tang J, Xiang B, Li Y, Tan T, Zhu Y. Adsorption Characteristics and Charge Transfer Kinetics of Fluoride in Water by Different Adsorbents. Front Chem 2022; 10:917511. [PMID: 35783207 PMCID: PMC9243583 DOI: 10.3389/fchem.2022.917511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Water containing high concentrations of fluoride is widely distributed and seriously harmful, largely because long-term exposure to fluoride exceeding the recommended level will lead to fluorosis of teeth and bones. Therefore, it is imperative to develop cost-effective and environmentally friendly adsorbents to remove fluoride from polluted water sources. In this study, diatomite (DA), calcium bentonite (CB), bamboo charcoal (BC), and rice husk biochar (RHB) were tested as adsorbents to adsorb fluoride (F‐) from water, and this process was characterized by scanning electron microscopy (FEI-SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The effects of pH, dosage, and the initial mass concentration of each treatment solution upon adsorption of F‐ were determined. Kinetic and thermodynamic models were applied to reveal the mechanism of defluoridation, and an orthogonal experiment was designed to obtain the optimal combination of conditions. The results show that the surfaces of CB, BC, and RHB have an irregular pore structure and rough surface, whereas DA has a rich pore structure, clear pores, large specific surface area, and high silica content. With regard to the adsorption process for F‐, DA has an adsorption complex electron interaction; that of CB, BC, and RHB occur mainly via ion exchange with positive and negative charges; and CB on F‐ relies on chemical electron bonding adsorption. The maximum adsorption capacity of DA can reach 32.20 mg/g. When the mass concentration of fluoride is 100 mg/L, the pH value is 6.0 and the dosage is 4.0 g/L; the adsorption rate of F‐ by DA can reach 91.8%. Therefore, we conclude that DA soil could be used as an efficient, inexpensive, and environmentally friendly adsorbent for fluoride removal, perhaps providing an empirical basis for improving the treatment of fluorine-containing water in the future.
Collapse
Affiliation(s)
- Jiaxi Tang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
- Liaoning Academy of Agricultural Sciences, Shenyang, China
- *Correspondence: Jiaxi Tang,
| | - Biao Xiang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Yu Li
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Ting Tan
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Yongle Zhu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| |
Collapse
|