1
|
Dicataldo G, Desmond P, Al-Maas M, Adham S. Feasibility and application of membrane aerated biofilm reactors for industrial wastewater treatment. WATER RESEARCH 2025; 280:123523. [PMID: 40147306 DOI: 10.1016/j.watres.2025.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Membrane aerated biofilm reactors (MABRs) have emerged as a promising technology for wastewater treatment, offering significant advantages over conventional activated sludge (CAS) systems. Over the past decades, membrane processes have revolutionized municipal water treatment with membrane bioreactors (MBRs) becoming a widely accepted process for municipal and then industrial wastewater (IW) treatment. By the same token, MABR technologies were initially applied to municipal wastewater; however, their application in industrial settings is still emerging. Despite the promise of MABRs due to the biofilm's tolerance to IW toxins, there is a lack of information on their industrial applications. Therefore, this paper critically reviews the feasibility and application of MABRs for IW treatment, including pharmaceutical, chemical, refinery, petrochemical, oilfield, landfill leachate and other complex industrial waters. Three existing technology vendors with full-scale experience were compared; however, additional providers with innovative designs may provide step-changes in performance. Key outcomes highlight the effectiveness of MABRs in reducing carbon, nitrogen, and xenobiotics from high-strength IWs at bench and pilot scales. Critical factors influencing MABR performance, such as biofilm thickness (BT) were correlated to organics and nitrogen removal efficiency in industrial applications. Review of advances in MABR modeling techniques showed that current models lack the needed resolution for large and dynamic industrial systems. Additionally, the review compares municipal and industrial applications of MABRs, emphasizing the unique challenges and innovations required for their adoption in IW treatment. Overall, the MABR process was found to be feasible for industrial applications with pilot and/or demonstration-scale testing being necessary to further optimize process performance.
Collapse
Affiliation(s)
- Gennaro Dicataldo
- ConocoPhillips Global Water Sustainability Center, Qatar Science and Technology Park. P.O. Box 24750, Doha, Qatar
| | - Peter Desmond
- Hamad Bin Khalifa University, College of Science and Engineering, Doha, Qatar
| | - Mashael Al-Maas
- ConocoPhillips Global Water Sustainability Center, Qatar Science and Technology Park. P.O. Box 24750, Doha, Qatar
| | - Samer Adham
- ConocoPhillips Global Water Sustainability Center, Qatar Science and Technology Park. P.O. Box 24750, Doha, Qatar; Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Zou X, Lu Y, Liu Y. Divergences of granules and flocs microbial communities and contributions to nitrogen removal under varied carbon to nitrogen ratios. BIORESOURCE TECHNOLOGY 2025; 425:132226. [PMID: 40015524 DOI: 10.1016/j.biortech.2025.132226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Aerobic granular sludge (AGS) reactors are promising for treating high ammonia wastewaters, yet the roles of granules and flocs in nitrogen removal under varying carbon to nitrogen (COD/N) ratios remain unclear. This study investigated microbial communities and their contributions to N removal as the COD/N ratio shifted from 6 to 4, and to 2. Results showed granules contributed 53-64 % nitrification capacity at higher COD/N ratios (6 and 4), but flocs contributed more (50-63 %) at a ratio of 2. Granules consistently exhibited higher denitrification capacity (>50 %). Heterotrophic bacteria dominated in both granules and flocs across all ratios. As the COD/N ratio reduced, the relative abundance of anaerobic ammonia oxidation microorganisms (Candidatus Anammoximicrobium) and filamentous bacteria increased in granules, while ammonia oxidizing bacteria (Nitrosomonas) and complex organic degraders increased in flocs. These findings highlight the importance of selectively retaining granules or flocs under varying COD/N ratios to optimize nitrogen removal efficiency.
Collapse
Affiliation(s)
- Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Lu
- School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Liu Z, Xu Z, Li K, Xie L, Han B, Wang Q, Song H, Zhang J. Enhancement of Partial Nitrification-Anaerobic Ammonia Oxidation in SBR Reactors via Surface-Modified Polyurethane Sponge Biofilm Carrier. Polymers (Basel) 2025; 17:1145. [PMID: 40362929 PMCID: PMC12073427 DOI: 10.3390/polym17091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
The partial nitrification-anammox process offers a cost-effective, energy-efficient, and environmentally sustainable approach for nitrogen removal in wastewater treatment. However, its application under low ammonia nitrogen conditions faces operational challenges including prolonged start-up periods and excessive nitrite oxidation. This study employed a strategy combining polyurethane surface positive charge enhancement and zeolite loading to develop a carrier capable of microbial enrichment and inhibition of nitrate generation, aiming to initiate the partial nitrification-anammox process in a sequencing batch reactor. Operational results demonstrate that the modified carrier enabled the reactor to achieve a total nitrogen removal efficiency of 78%, with the effluent nitrate nitrogen reduced to 6.03 mg-N/L, successfully initiating the partial nitrification-anammox process. The modified carrier also exhibited accelerated biofilm proliferation (both suspended and attached biomass increased). Additionally, 16S rRNA revealed a higher relative abundance of typical anammox bacteria Candidatus Brocadia in the biofilm of the modified carrier compared to the original carrier, alongside a decline in nitrifying genera, such as Nitrolancea. These microbial shifts effectively suppressed excessive nitrite oxidation, limited nitrate accumulation, and sustained efficient nitrogen removal throughout the reactor's operation.
Collapse
Affiliation(s)
- Zexiang Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhihong Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kelin Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Li Xie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Biao Han
- Scientific Research Academy of GuangXi Environmental Protection, Nanning 530022, China
| | - Qiming Wang
- Scientific Research Academy of GuangXi Environmental Protection, Nanning 530022, China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Jian Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| |
Collapse
|
4
|
Xia L, Wu B, Cui X, Ran T, Li Q, Zhou Y. Machine learning-based prediction of non-aeration linear alkylbenzene sulfonate mineralization in an oxygenic microalgal-bacteria biofilm. BIORESOURCE TECHNOLOGY 2025; 419:132028. [PMID: 39736338 DOI: 10.1016/j.biortech.2024.132028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Microalgal-bacteria biofilm shows great potential in low-cost greywater treatment. Accurately predicting treated greywater quality is of great significance for water reuse. In this work, machine learning models were developed for simulating and predicting linear alkylbenzene sulfonate (LAS) removal using 152-days collected data from a battled oxygenic microalgal-bacteria biofilm reactor (MBBfR). By using nine variables including influent LAS, hydraulic retention time (HRT), biofilm density and thickness, specific oxygen production and consumption rates, microalgae and bacteria concentrations, and dissolved oxygen (DO), the support vector machine (SVM) model enabled the accurate LAS removal prediction (training set: R2 = 0.995, (root mean square error, RMSE) = 0.076, (mean absolute error, MAE) = 0.069; testing set: R2 = 0.961, RMSE = 0.251, MAE = 0.153). SVM can be also successfully applied for MBBfR operation optimization (HRT = 4.28 h, DO = 0.25 mg/L) that achieving accurate prediction of LAS mineralization.
Collapse
Affiliation(s)
- Libo Xia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Ran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Wang T, Han X, Cheng Y, Yang J, Bai L, Zeng W, Wang H, Cheng N, Zhang H, Li G, Liang H. Insights into the azo dye decolourisation and denitrogenation in micro-electrolysis enhanced counter-diffusion biofilm system. BIORESOURCE TECHNOLOGY 2024; 411:131333. [PMID: 39181514 DOI: 10.1016/j.biortech.2024.131333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
In this study, electron transport pathways were activated and diversified by coupling counter-diffusion biofilms with micro-electrolysis for Alizarin yellow R (AYR) denitrogenation. Due to the binding of AYR to two residues of EC 4.1.3.36 with higher binding energy, the expression of EC 4.1.3.36 was down-regulated, causing the EC 3.1.2.28 and EC 2.5.1.74 for menaquinone synthesis (redox mediator) undetectable in Membrane aerated biofilm reactors (MABR). Spontaneous electron generation in the micro electrolysis-coupled MABR (ME-MABR) significantly activated two enzymes. Activated menaquinone up-regulated decolourisation related genes expression in ME-MABR, including azoR (2.12 log2), NQO1 (2.97 log2), wrbA (0.45 log2), and ndh (0.47 log2). The diversified electron flow pathways also promoted the nitrogen metabolism coding genes up-regulation, accelerating further inorganic nitrogen denitrogenation after AYR mineralisation. Compared to MABR, the decolourisation, mineralisation, and denitrogenation in ME-MABR increased by 25.80 %, 16.53 %, and 13.32 %, respectively. This study provides new insights into micro-electrolysis enhanced removal of AYR.
Collapse
Affiliation(s)
- Tianyi Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xiaohang Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yufei Cheng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Weichen Zeng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Nuo Cheng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
6
|
Ren H, Wang R, Ying L, Iyobosa E, Chen G, Zang D, Tong M, Li E, Nerenberg R. Removal of sulfamethoxazole in an algal-bacterial membrane aerated biofilm reactor: Microbial responses and antibiotic resistance genes. WATER RESEARCH 2024; 268:122595. [PMID: 39423786 DOI: 10.1016/j.watres.2024.122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Antibiotics are frequently detected in wastewater, but often are poorly removed in conventional wastewater treatment processes. Combining microalgal and nitrifying bacterial processes may provide synergistic removal of antibiotics and ammonium. In this research, we studied the removal of the antibiotic sulfamethoxazole (SMX) in two different reactors: a conventional nitrifying bacterial membrane aerated biofilm reactor (bMABR) and algal-bacterial membrane aerated biofilm reactor (abMABR) systems. We investigated the synergistic removal of antibiotics and ammonium, antioxidant activity, microbial communities, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and their potential hosts. Our findings show that the abMABR maintained a high sulfamethoxazole (SMX) removal efficiency, with a minimum of 44.6 % and a maximum of 75.8 %, despite SMX inhibition, it maintained a consistent 25.0 % ammonium removal efficiency compared to the bMABR. Through a production of extracellular polymeric substances (EPS) with increased proteins/polysaccharides (PN/PS), the abMABR possibly allowed the microalgae-bacteria consortium to protect the bacteria from SMX inactivation. The activity of antioxidant enzymes caused by SMX was reduced by 62.1-98.5 % in the abMABR compared to the bMABR. Metagenomic analysis revealed that the relative abundance of Methylophilus, Pseudoxanthomonas, and Acidovorax in the abMABR exhibited a significant positive correlation with SMX exposure and reduced nitrate concentrations and SMX removal. Sulfonamide ARGs (sul1 and sul2) appeared to be primarily responsible for defense against SMX stress, and Hyphomicrobium and Nitrosomonas were the key carriers of ARGs. This study demonstrated that the abMABR system has great potential for removing SMX and reducing the environmental risks of ARGs.
Collapse
Affiliation(s)
- Haijing Ren
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rongchang Wang
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Luyao Ying
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Eheneden Iyobosa
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gaoxiang Chen
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Di Zang
- The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Computer Science and Technology, College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China
| | - Min Tong
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Enchao Li
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
7
|
Abdelfattah A, Eltawab R, Iqbal Hossain M, Zhou X, Cheng L. Membrane aerated biofilm reactor system driven by pure oxygen for wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 393:130130. [PMID: 38040304 DOI: 10.1016/j.biortech.2023.130130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Pure oxygen is proposed for wastewater treatment due to its advantages over conventional air aeration. This study investigates a Pure Oxygen-based Membrane Aerated Biofilm Reactor (PO-MABR) for the first time under various operating conditions. The PO-MABR employs a gas-permeable membrane for direct diffusion of low-pressurized pure oxygen to the biofilm, ensuring exceptional carbon and nitrogen removal. The effectiveness of PO-MABR was investigated by varying operational conditions, including temperature, carbon-to-nitrogen ratio, gas pressure, and flow rate. Results indicate superior performance, with a 97% chemical oxygen demand removal and 19% higher total nitrogen removal than Air-Ventilated MABR (A-MABR) due to thicker biofilm and unique microbial structures in PO-MABR. Also, PO-MABR demonstrated resilience to low temperatures and effectively treated both high and low-strength wastewater. The findings emphasize the efficiency of PO-MABR in wastewater treatment, advocating for its adoption due to superior carbon and nitrogen removal across diverse operational conditions.
Collapse
Affiliation(s)
- Abdallah Abdelfattah
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta 31511, Egypt.
| | - Reham Eltawab
- Institute of Environmental Health and Ecological Safety, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Md Iqbal Hossain
- School of Engineering and Information Technology, Murdoch University, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, 147 Underwood Avenue, Floreat, WA 6014, Australia
| | - Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liang Cheng
- Institute of Environmental Health and Ecological Safety, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Materials Engineering, Nanjing University, Nantong 226000, China.
| |
Collapse
|
8
|
Tao H, Cao X, Song R, Zhou Z, Cheng F. Preparation of PDMS and PDMS-UiO-66 oxygen-rich membranes and modules for membrane-aerated biofilm reactors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:873-886. [PMID: 38423606 PMCID: wst_2024_043 DOI: 10.2166/wst.2024.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A membrane-aerated biofilm reactor (MABR) combines membrane technology with biofilm processes and has unique advantages in the treatment of organic wastewater and volatile wastewater. The common membranes for MABR systems usually have relatively uneven pore structures and low bubble point pressure, resulting in unsatisfactory O2 utilization and wastewater treatment efficiency. In this work, polydimethylsiloxane (PDMS) and UiO-66 (a Zr-based metal organic framework) were coated on the surface of a commercial polypropylene (PP) hollow fiber membrane to prepare oxygen-rich MABR membranes and modules, which showed an attractive O2 utilization rate and wastewater treatment efficiency. The bubble points of the PDMS and PDMS-UiO-66 membranes were significantly higher than those of the PP membranes, and the PDMS-UiO-66 membranes had better oxygen enrichment capacity and biological affinity. The optimal PDMS-UiO-66 membrane modules had an O2 permeance of 31.65 GPU (1 GPU = 3.35 × 10-10 mol m-2 s-1 Pa-1), with O2/N2 selectivity of 2.21. The membrane hanging effect and processing capacity for domestic sewage were greatly improved. This study may provide insights and guidelines to fabricate porous mixed matrix membranes and modules in the industry for MABR. The developed products are expected to be applied in the actual separation process.
Collapse
Affiliation(s)
- Haiyan Tao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Xiaochang Cao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Rujie Song
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Zebin Zhou
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Fang Cheng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
9
|
Espinosa-Ortiz EJ, Gerlach R, Peyton BM, Roberson L, Yeh DH. Biofilm reactors for the treatment of used water in space:potential, challenges, and future perspectives. Biofilm 2023; 6:100140. [PMID: 38078057 PMCID: PMC10704334 DOI: 10.1016/j.bioflm.2023.100140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 02/29/2024] Open
Abstract
Water is not only essential to sustain life on Earth, but also is a crucial resource for long-duration deep space exploration and habitation. Current systems in space rely on the resupply of water from Earth, however, as missions get longer and move farther away from Earth, resupply will no longer be a sustainable option. Thus, the development of regenerative reclamation water systems through which useable water can be recovered from "waste streams" (i.e., used waters) is sorely needed to further close the loop in space life support systems. This review presents the origin and characteristics of different used waters generated in space and discusses the intrinsic challenges of developing suitable technologies to treat such streams given the unique constrains of space exploration and habitation (e.g., different gravity conditions, size and weight limitations, compatibility with other systems, etc.). In this review, we discuss the potential use of biological systems, particularly biofilms, as possible alternatives or additions to current technologies for water reclamation and waste treatment in space. The fundamentals of biofilm reactors, their advantages and disadvantages, as well as different reactor configurations and their potential for use and challenges to be incorporated in self-sustaining and regenerative life support systems in long-duration space missions are also discussed. Furthermore, we discuss the possibility to recover value-added products (e.g., biomass, nutrients, water) from used waters and the opportunity to recycle and reuse such products as resources in other life support subsystems (e.g., habitation, waste, air, etc.).
Collapse
Affiliation(s)
- Erika J. Espinosa-Ortiz
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Brent M. Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Luke Roberson
- Exploration Research and Technology Directorate, NASA, Kennedy Space Center, 32899, USA
| | - Daniel H. Yeh
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
10
|
Cao Y, Cui Z, Daigger GT. Monitoring biofilm thickness using the membrane aerated biofilm reactor (MABR) fingerprint soft sensor to optimize nitrogen removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10955. [PMID: 38095263 DOI: 10.1002/wer.10955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
The ongoing commercialization and installation of full-scale membrane aerated biofilm reactors (MABRs) stimulate the increasing need to monitor biofilm development. Biofilm thickness in MABRs can be assessed indirectly by plotting the exhaust oxygen purity versus bulk ammonia concentration, defined here as the MABR fingerprint soft sensor. Dynamic simulations with diurnal flow variations of an MABR unit model were implemented over a broad range of biofilm thicknesses and influent conditions consisting of variable C/N ratios and applied ammonia fluxes to assess the utility of the MABR fingerprint. Results show that the continuously decreasing trend of the MABR fingerprint plot slopes can be employed as a useful signal for biofilm thickness control in nitrogen removal processes. This technique is useful in a wide range of influent conditions and is helpful for MABR operators and designers to arrange biofilm thickness control events efficiently and determine where in an overall treatment process the technique can be applied to control biofilm thickness and optimize process performance. PRACTITIONER POINTS: The linear relationship between exhaust oxygen purity and bulk ammonia concentration is defined as the MABR fingerprint plot. MABR fingerprint plots are generated for a given biofilm thickness with diurnal flow or short-term loading variations implemented. Continuously decreasing trends of the MABR fingerprint plot slopes are useful signals for biofilm control in nitrogen removal. The MABR fingerprint is useful over a wide range of influent conditions regarding C/N ratios and applied ammonia fluxes. MABR practitioners can use the fingerprint plots to determine when biofilm control measures should be taken.
Collapse
Affiliation(s)
- Yi Cao
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zihao Cui
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Glen T Daigger
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Bhatt P, Bhatt K, Huang Y, Li J, Wu S, Chen S. Biofilm formation in xenobiotic-degrading microorganisms. Crit Rev Biotechnol 2023; 43:1129-1149. [PMID: 36170978 DOI: 10.1080/07388551.2022.2106417] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
The increased presence of xenobiotics affects living organisms and the environment at large on a global scale. Microbial degradation is effective for the removal of xenobiotics from the ecosystem. In natural habitats, biofilms are formed by single or multiple populations attached to biotic/abiotic surfaces and interfaces. The attachment of microbial cells to these surfaces is possible via the matrix of extracellular polymeric substances (EPSs). However, the molecular machinery underlying the development of biofilms differs depending on the microbial species. Biofilms act as biocatalysts and degrade xenobiotic compounds, thereby removing them from the environment. Quorum sensing (QS) helps with biofilm formation and is linked to the development of biofilms in natural contaminated sites. To date, scant information is available about the biofilm-mediated degradation of toxic chemicals from the environment. Therefore, we review novel insights into the impact of microbial biofilms in xenobiotic contamination remediation, the regulation of biofilms in contaminated sites, and the implications for large-scale xenobiotic compound treatment.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
12
|
Sanchez-Huerta C, Medina JS, Wang C, Fortunato L, Hong PY. Understanding the role of sorption and biodegradation in the removal of organic micropollutants by membrane aerated biofilm reactor (MABR) with different biofilm thickness. WATER RESEARCH 2023; 236:119935. [PMID: 37030196 DOI: 10.1016/j.watres.2023.119935] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/17/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
The role of sorption and biodegradation in a membrane aerated biofilm reactor (MABR) were investigated for the removal of 10 organic micropollutants (OMPs) including endocrine disruptors and pharmaceutical active compounds. The influence of the biofilm thickness on the mechanisms of removal was analyzed via kinetic test at three different stages. At all biofilm stages, biodegradation was demonstrated to dominate the removal of selected OMPs. Higher OMPs rates of removal via biodegradation (Kbiol) were achieved when biofilm increased its thickness from (stage T1) 0.26 mm, to (stage T2) 0.58 mm and (stage T3) 1.03 mm. At stage T1 of biofilm, heterotrophs contribute predominantly to OMPs degradation. Hydrophilic compounds removal (i.e., acetaminophen) continue to be driven by heterotrophic bacteria at the next stages of biofilm thickness. However, for medium hydrophobic neutral and charged OMPs, the combined action of heterotrophic and enriched nitrifying activity at stages T2 and T3 enhanced the overall removal. A degradation pathway based on heterotrophic activity for acetaminophen and combined action of nitrifiers-heterotrophs for estrone was proposed based on identified metabolites. Although biodegradation dominated the removal of most OMPs, sorption was also observed to be essential in the removal of biologically recalcitrant and lipophilic compounds like triclosan. Furthermore, sorption capacity of apolar compound was enhanced as the biofilm thickness grew and increased in EPS protein fraction. Microbial analysis confirmed the higher abundance of nitrifying and denitrifying activity at stage T3 of biofilm, which not only facilitated near complete ammonium removal but also enhanced degradation of OMPs.
Collapse
Affiliation(s)
- Claudia Sanchez-Huerta
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Julie Sanchez Medina
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Changzhi Wang
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Bioengineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Luca Fortunato
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pei-Ying Hong
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Bioengineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
13
|
Siagian UWR, Friatnasary DL, Khoiruddin K, Reynard R, Qiu G, Ting YP, Wenten IG. Membrane-aerated biofilm reactor (MABR): recent advances and challenges. REV CHEM ENG 2023. [DOI: 10.1515/revce-2021-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Membrane-aerated biofilm reactor (MABR) has been considered as an innovative technology to solve aeration issues in conventional bioreactors. MABR uses a membrane to supply oxygen to biofilm grown on the membrane surface. MABR can perform bubbleless aeration with high oxygen transfer rates, which can reduce energy requirements and expenses. In addition, a unique feature of counter-diffusion creates a stratified biofilm structure, allowing the simultaneous nitrification–denitrification process to take place in a single MABR. Controlling the biofilm is crucial in MABR operation, since its thickness significantly affects MABR performance. Several approaches have been proposed to control biofilm growth, such as increasing shear stress, adding chemical agents (e.g., surfactant), using biological predators to suppress microorganism growth, and introducing ultrasound cavitation to detach biofilm. Several studies also showed the important role of membrane properties and configuration in biofilm development. In addition, MABR demonstrates high removal rates of pollutants in various wastewater treatments, including in full-scale plants. This review presents the basic principles of MABR and the effect of operational conditions on its performance. Biofilm formation, methods to control its thickness, and membrane materials are also discussed. In addition, MABR performance in various applications, full-scale MBRs, and challenges is summarized.
Collapse
Affiliation(s)
- Utjok W. R. Siagian
- Department of Petroleum Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Dwi L. Friatnasary
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Khoiruddin Khoiruddin
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Reynard Reynard
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology , B4-405, Daxuecheng, 510006 Guangzhou , China
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4, 117576 Singapore , Singapore
| | - I Gede Wenten
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
- Research Center for Bioscience and Biotechnology, Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| |
Collapse
|
14
|
Wang JH, Zhao XL, Hu Q, Gao X, Qu B, Cheng Y, Feng D, Shi LF, Chen WH, Shen Y, Chen YP. Effects mechanism of bio-carrier filling rate on rotating biofilms and the reactor performance optimization method. CHEMOSPHERE 2022; 308:136176. [PMID: 36030945 DOI: 10.1016/j.chemosphere.2022.136176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Benefited from the massive filling bio-carriers, the packed cage rotating biological contactors (RBCs) have better performance and application potentiality in wastewater treatment. Investigating the effects mechanism of bio-carrier filling rate is crucial for such reactors management. In this study, the pollutants removal performance, biofilms physical characteristics, and microbial communities of the biofilms under a series of bio-carrier filling rates were analyzed. The results shown, the pollutant removal rate and amount were quite different under different filling rates, and biofilms structure and microbial composition were the main factors affecting the pollutants removal performance. With the increasing filling rates, the biofilms were more mass increased (dry weight from 0.066 to 0.148 g/per carrier), thicker (from 340.30 to 850.84 μm) and lower dense (from 0.068 to 0.060 g/cm3). The microbial community composition of those biofilms was also quite different at the genus level. The effects mechanism of bio-carrier filling rate can be summarized: the filling rates affect the physical and biological characteristics of biofilms, which will further affect the microenvironment and microbial distribution in biofilms, and then determines the pollutant metabolic rate and metabolic pathway. This study will contribute to design better bio-carrier filling rate according to different wastewater treatment scenario, and promote the performance optimization of packed cage RBCs.
Collapse
Affiliation(s)
- Jian-Hui Wang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Xiao-Long Zhao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Qing Hu
- Chongqing Water Group Co., Ltd., Chongqing, 400015, China
| | - Xu Gao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Water Group Co., Ltd., Chongqing, 400015, China; Chongqing Sino French Environmental Excellence R&D Centre, Chongqing, 400010, China
| | - Bin Qu
- Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Yin Cheng
- Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Dong Feng
- Chongqing Sino French Environmental Excellence R&D Centre, Chongqing, 400010, China
| | - Long-Fei Shi
- Chongqing Endurance Automation Solutions Co., Ltd, 401120, China
| | - Wen-Hao Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
15
|
Li C, Zhu B, Zhao X, Wang Y, Weng J, Liu F, Zhao R, Lu J, Shang Y. Enhanced treatment effect and universality of novel ARAO coupling process on municipal sewage: a pilot study. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Yang C, Houweling D, He H, Daigger GT. Available online sensors can be used to create fingerprints for MABRs that characterize biofilm limiting conditions and serve as soft sensors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2270-2287. [PMID: 36378180 DOI: 10.2166/wst.2022.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Membrane aerated biofilm reactors (MABRs) are a promising biological wastewater treatment technology, whose industrial applications have dramatically accelerated in the last five years. Increased popularity and fast industrial adaptation are coupled with increased needs to monitor, optimize, and control MABRs with available online sensors. Observations of commercial scale MABR installations have shown a distinctive and repetitive pattern relating oxygen purity in MABR exhaust gas to reactor ammonia concentrations. This provides an obvious opportunity for process monitoring and control which this paper investigates with the help of modeling. The relationship plots between the bulk ammonia concentration and the oxygen purity are defined as MABR fingerprint plots, which are described in the form of steady-state curves and dynamic trajectories. This study systematically investigated, analyzed, and explained the behaviors and connections of steady-state curves and dynamic trajectories with a MABR model in SUMO®, and proposed a hypothesis about utilizing the MABR fingerprint plots to characterize MABR system performance, identify the limiting factor of biofilms, and possibly develop a soft senor for MABR biofilm thickness monitoring and control.
Collapse
Affiliation(s)
- Cheng Yang
- Jacobs Engineering Groups, 6312 S. Fiddlers Green Circle, Suite 300N, Greenwood Village, Colorado 80111, USA E-mail:
| | - Dwight Houweling
- Dynamita Inc, 2015 Route d'Aiglun, Sigale, Provence-Alpes-Côte d'Azur 06910, French
| | - Huanqi He
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
The influence of cupuaçu extract in the production of biofilms based on babassu coconut mesocarp. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Cao L, Li Y, Li P, Zhang X, Ni L, Qi L, Wen H, Zhang X, Zhang Y. Application of moving bed biofilm reactor - nanofiltration - membrane bioreactor with loose nanofiltration hollow fiber membranes for synthetic roxithromycin-containing wastewater treatment: Long-term performance, membrane fouling and microbial community. BIORESOURCE TECHNOLOGY 2022; 360:127527. [PMID: 35764280 DOI: 10.1016/j.biortech.2022.127527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The present study operated the novel moving bed biofilm reactor-nanofiltration-membrane bioreactor (MBBR-NF-MBR) with loose polyamide NF membranes for the first time to treat roxithromycin (ROX) wastewater. Results showed that both MBBR-NF-MBRs achieved superior COD removal of 98.4% and 97.2% and excellent removal of ROX at 74.1% and 65.5%, respectively. The main membrane fouling mechanism was reversible fouling caused by the combination of abundant polysaccharides, proteins and Ca-P precipitates, which could be effectively removed by acidic cleaning. Sorption and biodegradation were the main removal routes of ROX in MBBR. Partial retention of loose NF membrane contributed to microbial metabolism and increased microbial diversity, especially the genera Hyphomicrobium in attached biofilm, which was reasonable for ROX removal. The cleavage of cladinose, demethylation, phosphorylation and β-oxidation in macrolactone ring were the main biotransformation reactions of ROX. This study provides novel insights for micropollutants wastewater treatment by using loose NF membrane in MBR.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuanling Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peining Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xueting Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Lei Ni
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Qi
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Haitao Wen
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Yufeng Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China.
| |
Collapse
|
19
|
Surface plasmon resonance and oxygen vacancy on Bi/BiO1−y ClxBr1−x synergistically boost high-efficiently photodegradation acetaminophen in waste water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|