1
|
Qiao C, Jia W, Tang J, Chen C, Wu Y, Liang Y, Du J, Wu Q, Feng X, Wang H, Guo WQ. Advances of carbon-based materials for activating peracetic acid in advanced oxidation processes: A review. ENVIRONMENTAL RESEARCH 2024; 263:120058. [PMID: 39326650 DOI: 10.1016/j.envres.2024.120058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
In recent years, the peracetic acid (PAA)-based advanced oxidation process (AOPs) has garnered significant attention in the field of water treatment due to rapid response time and environmentally-friendliness. The activation of PAA systems by diverse carbon-based materials plays a crucial role in addressing emerging environmental contaminants, including various types, structures, and modified forms of carbon materials. However, the structural characteristics and structure-activity relationship of carbon-based materials in the activation of PAA are intricate, while the degradation pathways and dominant active species exhibit diversity. Therefore, it is imperative to elucidate the developmental process of the carbon-based materials/PAA system through resource integration and logical categorization, thereby indicating potential avenues for future research. The present paper comprehensively reviews the structural characteristics and action mechanism of carbon-based materials in PAA system, while also analyzing the development, properties, and activation mechanism of heteroatom-doped carbon-based materials in this system. In conclusion, this study has effectively organized the resources pertaining to prominent research direction of comprehensive remediation of environmental water pollution, thereby elucidating the underlying logic and thought process. Consequently, it establishes robust theoretical foundation for future investigations and applications involving carbon-based materials/PAA system.
Collapse
Affiliation(s)
- Chenghuan Qiao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jingrui Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chuchu Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Juanshan Du
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330, South Korea
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaochi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Di M, Liu W, Shan D, Zhao Y, Zhang C, Wang Y, Yi R, Wu Y, Zheng J, Wang B. Harnessing natural light: Novel nanoheterojunction photocatalyst NaGdF 4:Yb,Tm@TiO 2/Cu 2(OH) 2CO 3 for actual wastewater remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123210. [PMID: 39531778 DOI: 10.1016/j.jenvman.2024.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
This study introduces NaGdF4:Yb,Tm@TiO2/Cu2(OH)2CO3 (UTCu), an innovative nanophotocatalyst designed to address global energy crises and water contamination issues. Our developed photocatalyst, NaGdF4:Yb,Tm@TiO2/0.5mol%Cu2(OH)2CO3 (UTCu0.5), demonstrated exceptional efficiency, degrading 96.3% of malachite green (MG) within 2 h under Xenon lamp irradiation. The photocatalytic degradation rate of UTCu0.5 surpassed those of UT, Cu2(OH)2CO3, and P25 (Commercial TiO2) by 3.3, 9, and 2.8 times, respectively. The process effectively mineralized MG into less harmful compounds, marking its potential for eco-friendly wastewater treatment. Furthermore, UTCu0.5 exhibited robust degradation capabilities across various organic dyes and maintained its efficacy in mixed dye systems. Detailed mechanistic analysis revealed that the ·OH and ·O2- radicals play pivotal roles in the degradation process, facilitated by the formation of heterojunctions that enhance carrier separation and photocatalytic performance. Theoretical studies supported the significance of S-scheme heterojunctions in boosting the photocatalytic activity of UTCu0.5. Additionally, the catalyst was effective in degrading organic pollutants in different water matrices under both Xenon lamp irradiation and direct sunlight. Remarkably, it achieved a 77.4% removal rate of NH4⁺-N in real municipal wastewater under natural sunlight, with a selective conversion rate of 95.3% to N2, underscoring its practical applicability in environmental remediation. This research not only progresses photocatalysis technology but also provides vital insights for enhancing natural condition wastewater treatment strategies.
Collapse
Affiliation(s)
- Mengyu Di
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wenqi Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Changyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yankun Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, 050011, China
| | - Ran Yi
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Zheng
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin, 300070, China.
| |
Collapse
|
3
|
Taghilou S, Nakhjirgan P, Esrafili A, Dehghanifard E, Kermani M, Kakavandi B, Pelalak R. Performance, progress, and mechanism of g-C 3N 4-based photocatalysts in the degradation of pesticides: A systematic review. CHEMOSPHERE 2024; 368:143667. [PMID: 39515531 DOI: 10.1016/j.chemosphere.2024.143667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
In the modern world, humans are exposed to an enormous number of pesticides discharged into the environment. Exposure to pesticides causes many health disorders, such as cancer, mental retardation, and endocrine disruption. Therefore, it is a priority to eliminate pesticides from contaminated water before discharge into aquatic environments. Conventional treatment systems do not efficiently accomplish pesticide remediation. Applying graphitic carbon nitride (g-C3N4; GCN)-based materials as highly efficient and low-cost catalysts can be one of the best methods for adequately removing pesticides. This study aims to review the most relevant studies on the use of GCN-based photocatalytic processes for degrading well-known pesticides in aqueous solutions. Thus, in the current state-of-the-art review, an overview is focused not only on how to use GCN-based photocatalysts towards the degradation of pesticides, but also discusses the impact of important operational factors like solution pH, mixture temperature, catalyst dosage, pesticide concentration, photocatalyst morphology, light intensity, reaction time, oxidant concentration, and coexisting anions. In this context, four common pesticides were reviewed, namely 2,4-dichlorophenoxyacetic acid (2,4-D), malathion (MTN), diazinon (DZN), and atrazine (ATZ). Following the screening procedure, 55 full-text papers were chosen, of which the most were published in 2023 (n = 10), and the most publications focused on the elimination of ATZ (n = 33). Among the GCN modification methods, integrating GCN with other photocatalysts showed the best performance in enhancing photocatalytic activity towards the degradation of pesticides. All GCN-based photocatalysts showed a degradation efficiency of > 90% for pesticides under optimum operating conditions. This review provides a detailed summary of different GCN modification methods to select the most promising and cost-effective photocatalyst degradation of pesticides.
Collapse
Affiliation(s)
- Samaneh Taghilou
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Pegah Nakhjirgan
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Emad Dehghanifard
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran.
| | - Babak Kakavandi
- Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran.
| | - Rasool Pelalak
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
4
|
Lin J, Hu K, Wang Y, Tian W, Hall T, Duan X, Sun H, Zhang H, Cortés E, Wang S. Tandem microplastic degradation and hydrogen production by hierarchical carbon nitride-supported single-atom iron catalysts. Nat Commun 2024; 15:8769. [PMID: 39384850 PMCID: PMC11464750 DOI: 10.1038/s41467-024-53055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Microplastic pollution, an emerging environmental issue, poses significant threats to aquatic ecosystems and human health. In tackling microplastic pollution and advancing green hydrogen production, this study reveals a tandem catalytic microplastic degradation-hydrogen evolution reaction (MPD-HER) process using hierarchical porous carbon nitride-supported single-atom iron catalysts (FeSA-hCN). Through hydrothermal-assisted Fenton-like reactions, we accomplish near-total ultrahigh-molecular-weight-polyethylene degradation into C3-C20 organics with 64% selectivity of carboxylic acid under neutral pH, a leap beyond current capabilities in efficiency, selectivity, eco-friendliness, and stability over six cycles. The system demonstrates versatility by degrading various daily-use plastics across different aquatic settings. The mixture of FeSA-hCN and plastic degradation products further achieves a hydrogen evolution of 42 μmol h‒1 under illumination, outperforming most existing plastic photoreforming methods. This tandem MPD-HER process not only provides a scalable and economically feasible strategy to combat plastic pollution but also contributes to the hydrogen economy, with far-reaching implications for global sustainability initiatives.
Collapse
Affiliation(s)
- Jingkai Lin
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Kunsheng Hu
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Yantao Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
- Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Tony Hall
- Mawson Analytical Spectrometry Services, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
- Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Emiliano Cortés
- Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| |
Collapse
|
5
|
Diez-Cabanes V, Granados-Tavera K, Shere I, Cárdenas-Jirón G, Maurin G. Engineering MOF/carbon nitride heterojunctions for effective dual photocatalytic CO 2 conversion and oxygen evolution reactions. Chem Sci 2024:d4sc03630a. [PMID: 39246361 PMCID: PMC11376056 DOI: 10.1039/d4sc03630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Photocatalysis appears as one of the most promising avenues to shift towards sustainable sources of energy, owing to its ability to transform solar light into chemical energy, e.g. production of chemical fuels via oxygen evolution (OER) and CO2 reduction (CO2RR) reactions. Ti metal-organic frameworks (MOFs) and graphitic carbon nitride derivatives, i.e. poly-heptazine imides (PHI) are appealing CO2RR and OER photo-catalysts respectively. Engineering of an innovative Z-scheme heterojunction by assembling a Ti-MOF and PHI offers an unparalleled opportunity to mimick an artificial photosynthesis device for dual CO2RR/OER catalysis. Along this path, understanding of the photophysical processes controlling the MOF/PHI interfacial charge recombination is vital to fine tune the electronic and chemical features of the two components and devise the optimum heterojunction. To address this challenge, we developed a modelling approach integrating force field Molecular Dynamics (MD), Time-Dependent Density Functional Theory (TD-DFT) and Non-Equilibrium Green Function DFT (NEGF-DFT) tools with the aim of systematically exploring the structuring, the opto-electronic and transport properties of MOF/PHI heterojunctions. We revealed that the nature of the MOF/PHI interactions, the interfacial charge transfer directionality and the absorption energy windows of the resulting heterojunctions can be fine tuned by incorporating Cu species in the MOF and/or doping PHI with mono- or divalent cations. Interestingly, we demonstrated that the interfacial charge transfer can be further boosted by engineering MOF/PHI device junctions and application of negative bias. Overall, our generalizable computational methodology unravelled that the performance of CO2RR/OER photoreactors can be optimized by chemical and electronic tuning of the components but also by device design based on reliable structure-property rules, paving the way towards practical exploitation.
Collapse
Affiliation(s)
| | - Kevin Granados-Tavera
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34293 France
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH) 9170022 Santiago Chile
| | - Inderdip Shere
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34293 France
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH) 9170022 Santiago Chile
| | | |
Collapse
|
6
|
Lin J, Tian W, Zhang H, Sun H, Wang S. Electronic Structure and Functions of Carbon Nitride in Frontier Green Catalysis. Acc Chem Res 2024; 57:2303-2315. [PMID: 39107898 DOI: 10.1021/acs.accounts.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
ConspectusGraphitic carbon nitride-based materials have emerged as promising photocatalysts for a variety of energy and environmental applications owing to their "earth-abundant" nature, structural versatility, tunable electronic and optical properties, and chemical stability. Optimizing carbon nitride's physicochemical properties encompasses a variety of approaches, including the regulation of inherent structural defects, morphology control, heterostructure construction, and heteroatom and metal-atom doping. These strategies are pivotal in ultimately enhancing their photocatalytic activities. Previous reviews with extensive examples have mainly focused on the synthesis, modification, and application of carbon nitride-based materials in photocatalysis. However, there has been a lack of straightforward and in-depth discussion to understand the electronic characteristics and functions of various engineered carbon nitrides as well as their precise tailoring strategies and ultimately to explain the regularity and specificity of their improved performance in targeted photocatalytic systems. In the past ten years, our group has conducted extensive investigations on carbon nitride-based materials and their application in photocatalysis. These studies demonstrate the close yet intricate relationship between the electronic structure of carbon nitride materials and their photocatalytic reactivity. Understanding the electronic structure and functions of carbon nitride, as well as different engineering strategies, is essential for the improvement of photocatalytic processes from fundamental study to practical applications.To this end, in this Account, we first delve into the nature of the electronic properties of carbon nitride, highlighting the electronic structures, including band structure, density of states, molecular orbitals, and band center, as well as its electronic functions, such as the charge distribution, internal electric field, and external electric force. Subsequently, based on recent research in our group, we present a detailed discussion of the strategic modifications of carbon nitride and the consequential impacts on the physicochemical properties, particularly the optical properties and intrinsic electronic characteristics, for enhancing the photocatalytic performance. These modifications are categorized as follows: (i) component changing, which involves intralayer and interface heterojunctions as well as homojunctions, to modulate the band-edge potentials and reactivity of photoinduced electrons and holes toward surface redox reactions; (ii) dimensional tuning, which engineers the dimensional structure of carbon nitride, to influence the electron transfer direction; (iii) defect and heteroatom modification, which introduces a symmetry break in the carbon nitride framework, to promote charge redistribution for altering the charge density and electronic structure; and (iv) anchoring of single-atom metals to facilitate orbital hybridization and charge transfer enhancement through the unique metal-N coordination configurations. Finally, we propose an appraisal of the prospects and challenges in the precise manipulation and characterization of the electronic structure and functions of carbon nitride. The integration of in situ electronic structure analysis, theoretical calculation based on machine learning, and precise mechanism study may propel its substantial development in the light-driven circular economy. We hope this Account aspires to offer novel insights and perspectives into the operational mechanisms and tailored structure of carbon nitride-based materials in photocatalysis.
Collapse
Affiliation(s)
- Jingkai Lin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Hongqi Sun
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Narita Y, Nishi K, Matsuyama T, Ida J. Reusable isotype heterojunction g-C 3N 4/alginate hydrogel spheres for photocatalytic wastewater treatment. RSC Adv 2024; 14:20898-20907. [PMID: 38957583 PMCID: PMC11217724 DOI: 10.1039/d4ra02876g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Various visible-light-driven photocatalysts have been studied for practical applications in photocatalytic wastewater treatment via solar irradiation. Among them, g-C3N4 has attractive features, including its metal-free and environmentally friendly nature; however, it is prone to charge recombination and has low photocatalytic activity. To solve these problems, isotype heterojunction g-C3N4 was recently developed; however, the methods employed for synthesis suffered from limited reproducibility and efficiency. In this study, isotype heterojunction g-C3N4 was synthesized from various combinations of precursor materials using a planetary ball mill. The isotype heterojunction g-C3N4 synthesized from urea and thiourea showed the highest photocatalytic activity and completely decolorized Rhodamine B (RhB; 10 ppm) in 15 min under visible-light irradiation. Furthermore, to improve recyclability, isotype heterojunction g-C3N4 was immobilized in alginate hydrogel spheres. The isotype heterojunction g-C3N4/alginate hydrogel beads were used in 10 repeated RhB degradation experiments and were able to maintain their initial photocatalytic activity and mechanical strength. These achievements represent an advance towards practical, sustainable photocatalytic wastewater treatment.
Collapse
Affiliation(s)
- Yuito Narita
- Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University 1-236 Tangi-cho Hachioji-shi Tokyo 192-8577 Japan
| | - Kento Nishi
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University 1-236 Tangi-cho Hachioji-shi Tokyo 192-8577 Japan
| | - Tatsushi Matsuyama
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University 1-236 Tangi-cho Hachioji-shi Tokyo 192-8577 Japan
| | - Junichi Ida
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University 1-236 Tangi-cho Hachioji-shi Tokyo 192-8577 Japan
| |
Collapse
|
8
|
Xia J, Mark G, Tong Y, Hu T, Volokh M, Han F, Chen H, Shalom M. Enhancing the Activity of a Carbon Nitride Photocatalyst by Constructing a Triazine-Heptazine Homojunction. Inorg Chem 2024; 63:10050-10056. [PMID: 38745389 DOI: 10.1021/acs.inorgchem.4c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Establishing homojunctions at the molecular level between different but physicochemically similar phases belonging to the same family of materials is an effective approach to promoting the photocatalytic activity of polymeric carbon nitride (CN) materials. Here, we prepared a CN material with a uniform distribution of homojunctions by combining two synthetic strategies: supramolecular assemblies as the precursor and molten salt as the medium. We designed porous CN rods with triazine-heptazine homojunctions (THCNs) using a melem supramolecular aggregate (Me) and melamine as the precursors and a KCl/LiBr salt mixture as the liquid reaction medium. The triazine/heptazine ratio is controlled by varying the relative amounts of the chosen precursors, and the molten salt treatment enhances the structural order of the interplanar packing units for the THCN skeleton, leading to rapid charge migration. The resulting built-in electric field induced by the triazine-heptazine homojunction enhances photogenerated charge separation; the optimal THCN catalyst exhibits an excellent H2 evolution rate via photocatalytic water splitting, which is ∼24 times as high as that of reference bulk CN, with long-term stability.
Collapse
Affiliation(s)
- Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Gabriel Mark
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yuxuan Tong
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Ting Hu
- Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Michael Volokh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Fengyan Han
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
9
|
Chu S, Zhai W, Ding L, Wang L, Li J, Jiao Z. Synergistic effect of Ag@CN with BiVO 4 in a unique Z-type heterojunction for enhancing photoelectrochemical water splitting performance. Phys Chem Chem Phys 2024; 26:12379-12385. [PMID: 38606541 DOI: 10.1039/d4cp00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In the realm of photoelectrochemical technology, the enhancement of photogenerated charge carrier separation is pivotal for the advancement of energy conversion performance. Carbon nitride (CN) is established as a photocatalytic material with significant potential and exhibits unique advantages in addressing the issue of rapid recombination of photogenerated carriers. This study utilized an efficient in situ doping method that combined Mo,W-doped BiVO4 (Mo,W:BVO) with silver-loaded CN (Ag@CN), yielding an all-solid-state Mo,W:BVO/Ag@CN heterostructure that effectively augments the separation efficiency of electron-hole pairs. Through the annealing process, Ag@CN was uniformly coated within the Mo,W:BVO thin film, significantly enlarging the interface contact area to enhance visible light absorption and photogenerated carrier movement. The results of the photoelectrochemical tests showed that the Mo,W:BVO/Ag@CN heterostructure had the highest photocurrent and charge transfer efficiency, which were 6.4 times and 3.6 times higher respectively than those of the unmodified Mo,W:BVO. Our research elucidates the interactions within all-solid-state Z-scheme heterojunctions, outlining strategic approaches for crafting innovative and superior photocatalytic systems.
Collapse
Affiliation(s)
- Shuai Chu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Wei Zhai
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Lei Ding
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Lin Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Jie Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Zhengbo Jiao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
10
|
Ali S, Ismail PM, Khan M, Dang A, Ali S, Zada A, Raziq F, Khan I, Khan MS, Ateeq M, Khan W, Bakhtiar SH, Ali H, Wu X, Shah MIA, Vinu A, Yi J, Xia P, Qiao L. Charge transfer in TiO 2-based photocatalysis: fundamental mechanisms to material strategies. NANOSCALE 2024; 16:4352-4377. [PMID: 38275275 DOI: 10.1039/d3nr04534j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Semiconductor-based photocatalysis has attracted significant interest due to its capacity to directly exploit solar energy and generate solar fuels, including water splitting, CO2 reduction, pollutant degradation, and bacterial inactivation. However, achieving the maximum efficiency in photocatalytic processes remains a challenge owing to the speedy recombination of electron-hole pairs and the limited use of light. Therefore, significant endeavours have been devoted to addressing these issues. Specifically, well-designed heterojunction photocatalysts have been demonstrated to exhibit enhanced photocatalytic activity through the physical distancing of electron-hole pairs generated during the photocatalytic process. In this review, we provide a systematic discussion ranging from fundamental mechanisms to material strategies, focusing on TiO2-based heterojunction photocatalysts. Current efforts are focused on developing heterojunction photocatalysts based on TiO2 for a variety of photocatalytic applications, and these projects are explained and assessed. Finally, we offer a concise summary of the main insights and challenges in the utilization of TiO2-based heterojunction photocatalysts for photocatalysis. We expect that this review will serve as a valuable resource to improve the efficiency of TiO2-based heterojunctions for energy generation and environmental remediation.
Collapse
Affiliation(s)
- Sharafat Ali
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Pir Muhammad Ismail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Muhammad Khan
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Alei Dang
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Sajjad Ali
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Imran Khan
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, Changsha, 410083, People's Republic of China
| | - Muhammad Shakeel Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Syedul Hasnain Bakhtiar
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haider Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Xiaoqiang Wu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Muhammad Ishaq Ali Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Pengfei Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Liang Qiao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
11
|
Zhang X, Matras-Postolek K, Yang P, Ping Jiang S. Z-scheme WOx/Cu-g-C 3N 4 heterojunction nanoarchitectonics with promoted charge separation and transfer towards efficient full solar-spectrum photocatalysis. J Colloid Interface Sci 2023; 636:646-656. [PMID: 36680955 DOI: 10.1016/j.jcis.2023.01.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Construction of Z-scheme heterojunctions has been considered one superb method in promoting solar-assisted charge carrier separation of carbon-based materials to achieve efficient utilization of solar energy in hydrogen production and CO2 reduction. One interesting concept in nanofabrication that has become trend recent years is nanoarchitectonics. A heterostructure photocatalyst constructed based on the idea of nanoarchitectonics using the combination of g-C3N4, metal and an additional semiconducting nanocomposite is investigated in this paper. Z-scheme tungsten oxide incorporated copper modified graphitic carbon nitride (WOx/Cu-g-C3N4) heterostructures are fabricated via immobilization of WOx on Cu nanoparticles modified superior thin g-C3N4 nanosheets. Mechano-chemical pre-reaction and a two-step high-temperature thermal polymerization process are the keys in attaining homogeneous distribution of Cu nanoparticles in g-C3N4 nanosheets. The horizontal growth of homogeneously distributed WOx nanobelts on Cu modified g-C3N4 (Cu-g-C3N4) base via solvothermal synthesis is achieved. The photocatalytic performances of the heterostructures are evaluated through water splitting and CO2 photoreduction measurements in full solar spectrum irradiation condition. The presence of Cu nanoparticles in the composite system improves charge transport between g-C3N4 and WOx and thus enhances the photocatalytic performances (H2 generation and CO2 photoreduction) of the composite material, while the presence of WOx nanocomposites enhances light absorption of the composite material in the near infrared range. The synthesized heterostructure with optimized WOx to Cu-g-C3N4 ratio and in case of no co-catalyst addition exhibits enhanced photocatalytic H2 evolution (4560 μmolg-1h-1) as well as excellent CO2 reduction rate (5.89 μmolg-1h-1 for CO generation).
Collapse
Affiliation(s)
- Xiao Zhang
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Krakow, Poland
| | | | - Ping Yang
- School of Material Science & Engineering, University of Jinan, Jinan 250022, PR China.
| | - San Ping Jiang
- WA School of Mines: Mineral, Energy and Chemical Engineering, Curtin University, Perth, WA 6845, Australia.
| |
Collapse
|
12
|
Wang S, Wu X, Fang J, Zhang F, Liu Y, Liu H, He Y, Luo M, Li R. Direct Z-Scheme Polymer/Polymer Double-Shell Hollow Nanostructures for Efficient NADH Regeneration and Biocatalytic Artificial Photosynthesis under Visible Light. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Song Wang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xiewen Wu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Jing Fang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Feng Zhang
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Yanli Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yu He
- Zigong Advanced Carbon Materials Industrial Technology Research Institute, Zigong, Sichuan 643000, P. R. China
| | - Min Luo
- Zigong Advanced Carbon Materials Industrial Technology Research Institute, Zigong, Sichuan 643000, P. R. China
| | - Run Li
- College of Material Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
13
|
Yang X, Duan J, Qi J, Li X, Gao J, Liang Y, Li S, Duan T, Liu W. Modulating the electron structure of Co-3d in Co 3O 4-x/WO 2.72 for boosting peroxymonosulfate activation and degradation of sulfamerazine: Roles of high-valence W and rich oxygen vacancies. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130576. [PMID: 37055981 DOI: 10.1016/j.jhazmat.2022.130576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Sulfate radical (SO4•-)-based heterogonous advanced oxidation processes (AOPs) show promising potential to degrade emerging contaminants, however, regulating the electron structure of a catalyst to promote its catalytic activity is challenging. Herein, a hybrid that consists of Co3O4-x nanocrystals decorated on urchin-like WO2.72 (Co3O4-x/WO2.72) with high-valence W and rich oxygen vacancies (OVs) used to modulate the electronic structure of Co-3d was prepared. The Co3O4-x/WO2.72 that developed exhibited high catalytic activity, activating peroxymonosulfate (PMS), and degrading sulfamerazine (SMR). With the use of Co3O4-x/WO2.72, 100 % degradation of SMR was achieved within 2 min, at a pH of 7, with the reaction rate constant k1 = 3.09 min-1. Both characterizations and density functional theory (DFT) calculations confirmed the formation of OVs and the promotion of catalytic activity. The introduction of WO2.72 greatly regulated the electronic structure of Co3O4-x. Specifically, the introduction of high-valence W enabled the Co-3d band centre to be closer to the Fermi level and enhanced electrons (e-) transfer ability, while the introduction of OVs-Co in Co3O4-x promoted the activity of electrons in the Co-3d orbital and the subsequent catalytic reaction. The reactive oxygen species (ROS) were identified as •OH, SO4•-, and singlet oxygen (1O2) by quenching experiments and electron spin resonance (EPR) analysis. The DFT calculation using the Fukui index indicated the reactive sites in SMR were available for an electrophilic attack, and three degradation pathways were proposed.
Collapse
Affiliation(s)
- Xudong Yang
- The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jun Duan
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Juanjuan Qi
- The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xiuze Li
- The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Gao
- The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yifei Liang
- The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Wen Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Song T, Xie C, Che Q, Yang P. Enhanced carrier separation in g-C3N4/MoO3-x heterostructures towards efficient phenol removal. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Wu D, Chu M, Xu Y, Liu X, Duan X, Fan X, Li Y, Zhang G, Zhang F, Peng W. Facilely achieved enhancement of Fenton-like reactions by constructing electric microfields. J Colloid Interface Sci 2023; 633:967-978. [PMID: 36509039 DOI: 10.1016/j.jcis.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
In this work, we found that the presence of non-active ZnO crystals greatly accelerated the degradation of Bisphenol A (BPA) by 3.7 folds in the peroxymonosulfate (PMS, HSO5-)/Co3O4 system. Our mechanistic study revealed that the ZnO particles would create negative electric microfields around them, which are closely related with the zeta potentials (ζ) of ZnO and affected by solution pH. According to COMSOL simulation, the electrostatic repulsion between ZnO and PMS would drive HSO5- toward active Co3O4 surface, leading to the concentration increasing of HSO5- around active Co3O4 particles, which will then improve the degradation performance. The particle size of ZnO will also affect the promoting effect greatly by COMSOL simulation. Therefore, this study for the first time reveals synergy of electric microfields for enhanced heterogeneous Fenton-like reactions, providing a low-cost and effective strategy for enhanced persulfate catalysis.
Collapse
Affiliation(s)
- Di Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Menghan Chu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yongsheng Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaomei Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Guoliang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
16
|
G-C3N4 Dots Decorated with Hetaerolite: Visible-Light Photocatalyst for Degradation of Organic Contaminants. Catalysts 2023. [DOI: 10.3390/catal13020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
In this paper, a facile hydrothermal approach was used to integrate graphitic carbon nitride dots (CNDs) with hetaerolite (ZnMn2O4) at different weight percentages. The morphology, microstructure, texture, electronic, phase composition, and electrochemical properties were identified by field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), ultraviolet-visible diffuse reflectance (UV-vis DR), photoluminescence (PL), electrochemical impedance spectroscopy (EIS), Brunauer–Emmett–Teller (BET), Barrett–Joyner–Halenda (BJH), and photocurrent density. The results of XRD, FT-IR, EDX, and XPS analyses confirmed the synthesis of CNDs/ZnMn2O4 (20%) nanocomposite. As per PL, EIS, and photocurrent outcomes, the binary CNDs/ZnMn2O4 nanocomposite revealed superior features for interfacial transferring of charge carriers. The developed p–n heterojunction at the interface of CNDs and ZnMn2O4 nanoparticles partaken a significant role in the impressive charge segregation and migration. The binary nanocomposites were employed for the photodegradation of several dye pollutants, including rhodamine B (RhB), fuchsin, malachite green (MG), and methylene blue (MB) at visible wavelengths. Amongst the fabricated photocatalysts, the CNDs/ZnMn2O4 (20%) nanocomposite gave rise to about 98% RhB degradation efficiency within 45 min with the rate constant of 747 × 10−4 min−1, which was 66.5-, 3.44-, and 2.72-fold superior to the activities of CN, CNDs, and ZnMn2O4 photocatalysts, respectively. The impressive photodegradation performance of this nanocomposite was not only associated with the capacity for impressive visible-light absorption and boosted separation and transport of charge carriers, but also with its large surface area.
Collapse
|
17
|
Gómez Velázquez LS, Dell'Arciprete ML, Madriz L, Gonzalez MC. Carbon nitride from urea: Mechanistic study on photocatalytic hydrogen peroxide production for methyl orange removal. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
18
|
Meng F, Tian W, Tian Z, Tan X, Zhang H, Wang S. Enhanced photocatalytic organic pollutant degradation and H 2 evolution reaction over carbon nitride nanosheets: N defects abundant materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158360. [PMID: 36041623 DOI: 10.1016/j.scitotenv.2022.158360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Post thermal treatment of bulk graphitic carbon nitride (g-C3N4) by ammonia gas acts as a significant structure regulation approach, while pure ammonia-assisted g-C3N4 synthesis from precursors like melamine is rarely investigated. Here we prove the synthesis of N-defects abundant carbon nitride nanosheets (ACN) through a one-pot thermal polymerization of melamine in pure ammonia gas, for photocatalytic organic pollutant removal in water and H2 evolution applications. Compared to bulk g-C3N4 (BCN), ACN-550 (ACN prepared at 550 °C) exhibited thin-layered porous morphology with higher surface area and abundant N defects, resulting in wider distribution of active sites. Moreover, the abundant N defects in the heptazine heterocycle structure could change the electronic structure of g-C3N4, leading to more efficient transport of photogenerated charge carriers and enhanced photoreduction potential, which gives rise to notable improvement activities in photocatalytic reaction. With superoxide ion radical and photoinduced holes as the predominant reactive species, ACN-550 realized efficient photocatalytic bisphenol A (BPA) degradation, which is 1.6- and 4.7-fold high over commercial TiO2 (P25) and BCN, respectively. ACN-550 exhibited excellent reusability and stability in five consecutive photocatalytic BPA degradation tests. In photo-reductive H2 production system by ACN-550, 761.8 ± 4.3 μmol/h/g H2 was produced, which was 11.6-fold as high as that by BCN.
Collapse
Affiliation(s)
- Fanpeng Meng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China; School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Zhihao Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiaoyao Tan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China.
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
19
|
Gao J, Tian W, Zhang H, Wang S. Engineered inverse opal structured semiconductors for solar light-driven environmental catalysis. NANOSCALE 2022; 14:14341-14367. [PMID: 36148646 DOI: 10.1039/d2nr03924a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inverse opal (IO) macroporous semiconductor materials with unique physicochemical advantages have been widely used in solar-related environmental areas. In this minireview, we first summarize the synthetic methods of IO materials, emphasizing the two-step and three-step approaches, with the typical physicochemical properties being compared where applicable. We subsequently discuss the application of IO semiconductors (e.g., TiO2, ZnO, g-C3N4) in various photo-related environmental techniques, including photo- and photoelectro-catalytic organic pollutant degradation in water, optical sensors for environmental monitoring, and water disinfection. The engineering strategies of these hierarchical structures for optimizing the activities for different catalytic reactions are discussed, ranging from heterojunction construction, cocatalyst loading, and heteroatom doping, to surface defect construction. Structure-activity relationships are established correspondingly. With a systematic understanding of the unique properties and catalytic activities, this review is expected to orient the design and structure optimization of IO semiconductor materials for photo-related performance improvement in various environmental techniques. Finally, the challenges of emerging IO structured semiconductors and future development directions are proposed.
Collapse
Affiliation(s)
- Junxian Gao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
20
|
Abstract
Photocatalysis represents a promising technology that might alleviate the current environmental crisis. One of the most representative photocatalysts is graphitic carbon nitride (g-C3N4) due to its stability, cost-effectiveness, facile synthesis procedure, and absorption properties in visible light. Nevertheless, pristine g-C3N4 still exhibits low photoactivity due to the rapid recombination of photo-induced electron-hole (e−-h+) pairs. To solve this drawback, Z-scheme photocatalysts based on g-C3N4 are superior alternatives since these systems present the same band configuration but follow a different charge carrier recombination mechanism. To contextualize the topic, the main drawbacks of using g-C3N4 as a photocatalyst in environmental applications are mentioned in this review. Then, the basic concepts of the Z-scheme and the synthesis and characterization of the Z-scheme based on g-C3N4 are addressed to obtain novel systems with suitable photocatalytic activity in environmental applications (pollutant abatement, H2 production, and CO2 reduction). Focusing on the applications of the Z-scheme based on g-C3N4, the most representative examples of these systems are referred to, analyzed, and commented on in the main text. To conclude this review, an outlook of the future challenges and prospects of g-C3N4-based Z-scheme photocatalysts is addressed.
Collapse
|
21
|
C-dots decorated SrTiO3/NH4V4O10 Z-scheme heterojunction for sustainable antibiotics removal: Reaction kinetics, DFT calculation and mechanism insight. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Li S, Wang C, Cai M, Liu Y, Dong K, Zhang J. Designing oxygen vacancy mediated bismuth molybdate (Bi 2MoO 6)/N-rich carbon nitride (C 3N 5) S-scheme heterojunctions for boosted photocatalytic removal of tetracycline antibiotic and Cr(VI): Intermediate toxicity and mechanism insight. J Colloid Interface Sci 2022; 624:219-232. [PMID: 35660890 DOI: 10.1016/j.jcis.2022.05.151] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Polymeric N-rich carbon nitride of C3N5 is being utilized as a new visible-light-driven catalyst due to its narrower bandgap (∼2.0 eV). Building step-scheme (S-scheme) heterojunction by coupling with other semiconductors especially those own oxygen vacancies (OVs) can further upgrade the photocatalytic performance of C3N5-based photocatalysts. Herein, a novel S-scheme heterojunction of OVs mediated Bi2MoO6/C3N5 was fabricated by in-situ growing Bi2MoO6 nanoparticles with OVs on C3N5 nanosheets. Benefiting from the efficient separation and transfer of high energetic charge carriers by S-scheme charge migration, enriched structural defects, as well as the close contact by the in-situ growth, the heterojunction exhibited superior visible-light photocatalytic performance toward the removal of tetracycline (TC) and Cr(VI) than C3N5, Bi2MoO6, and their mechanical mixture under visible light. The TC degradation routes and the bio-toxicity evolution of TC were explored. Moreover, the photocatalytic mechanism for TC decomposition and Cr(VI) reduction over Bi2MoO6/C3N5 with OVs were elucidated. This work presents a newfangled vision for designing promising C3N5-based S-scheme heterojunction photocatalysts for pollution control.
Collapse
Affiliation(s)
- Shijie Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China; Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.
| | - Chunchun Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China; Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China
| | - Mingjie Cai
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China; Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China
| | - Yanping Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China; Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.
| | - Kexin Dong
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China; Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China
| | - Junlei Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|