1
|
Miao X, Jiang Y, Liu W, Lu C, Tan W, Li F, Zhang M. Ultrafast Ratiometric Fluorescent Probe and Deep Learning-Assisted On-Site Detection Platform for BAs and Meat Freshness Based on Molecular Engineering. ACS Sens 2025. [PMID: 40279659 DOI: 10.1021/acssensors.5c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
As metabolic byproducts and representative indicators of food spoilage, the monitoring and detection for biogenic amines (BAs) are crucial but challenging for food quality assessment. Here, a strategy is proposed by combining fluorescent probe molecular engineering with a portable detection platform integrating a smartphone and a deep convolutional neural network (DCNN). Four ratiometric fluorescent probes with tunable intramolecular charge transfer (ICT) properties are designed by introducing different electron-withdrawing substituents (-F, -OCH3, -Py, and -CN) to the carbazole. Notably, CNCz exhibits the strongest ICT property and superior sensing performance, with a satisfying detection limit (11 ppb), rapid response (<5 s), and discriminative bathochromic shift (110 nm). Then, a smartphone-based detection platform is fabricated, which enables rapid, visual, and on-site quantitative evaluation of BAs. Furthermore, by integrating DCNN, this platform achieves an impressive 98.5% accuracy in predicting meat freshness. Hereby, this study not only provides a molecular engineering strategy to fine-tune the intrinsic ICT properties to gain high-performance ratiometric fluorescent probes but also presents an intelligent detection platform for BAs and meat freshness with high practical applicability.
Collapse
Affiliation(s)
- Xin Miao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yilin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenjing Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chen Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenjia Tan
- China-Japan Union Hospital of Jilin University, Changchun 130041, P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Xu W, Zhen K, Bao W, Shi Z, Jiang X, Qi K, Xu W, Shen Z, Li C, Zhu Z, Liu H, Wang B, He Q, Li H, Cheng J, Ma X, Fu Y. A-D-A Molecular Design Strategy Enabling Ultrasensitive NIR Vapor Sensing. Anal Chem 2025; 97:818-827. [PMID: 39700418 DOI: 10.1021/acs.analchem.4c05394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Thin-film fluorescent chemosensors, characterized by their tunable design, high selectivity, and exceptional sensitivity, hold significant promise for gas detection applications. However, the simultaneous realization of the 3S attributes (sensitivity, selectivity, and stability) remains a formidable challenge, particularly in the underexplored field of near-infrared (NIR) gas detection. In this work, we employ an acceptor-donor-acceptor (A-D-A) molecular design strategy to drive the development of an organic semiconductor fluorescent material with a progressive red shift in the emission wavelength. As a result, we synthesized C8-IDTT-IC, a NIR fluorescent thin film with a peak emission at 790 nm. In contrast to conventional visible fluorescent materials, this NIR material demonstrates excellent resistance to background light interference and optical damage, particularly in the detection of biogenic amines. Systematic evaluations reveal that the material achieves remarkable selectivity, with a detection limit as low as 116 ppb, a rapid response time of less than 30 s, and an optical damage rate of only 3% over 1800 s. The practical utility of this material is further exemplified by its integration into a hand-held detector, enabling real-time monitoring of spoilage in beef and fish samples, showcasing its potential for real-world applications.
Collapse
Affiliation(s)
- Wenxing Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Kangbo Zhen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Wancheng Bao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
| | - Zezong Shi
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyun Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
| | - Kai Qi
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengqi Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhui Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohui Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
| | - Huan Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingguo He
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangong Cheng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Ma
- College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanyan Fu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yumnam M, Gopalakrishnan K, Dhua S, Srivastava Y, Mishra P. A Comprehensive Review on Smartphone-Based Sensor for Fish Spoilage Analysis: Applications and Limitations. FOOD BIOPROCESS TECH 2024; 17:4575-4597. [DOI: 10.1007/s11947-024-03391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 01/06/2025]
|
4
|
Borah J, Chetry A, Kakoti A, Khakhlary P. An indolium ion-based colorimetric sensor for naked-eye detection of cyanide and ammonia: on-site detection technique for cyanide in natural sources and day-to-day monitoring of food spoilage. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7947-7954. [PMID: 39440666 DOI: 10.1039/d4ay01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we developed an easy-to-synthesize, simple colorimetric probe and demonstrated its potential for the detection of anions and amines. The probe was capable of detecting CN- selectively among other anions and could detect the presence of all tested amines. It exhibited obvious colour and spectroscopic changes in the presence of the said analytes. The probe was highly sensitive to CN- ions, which enabled the detection of trace amounts of the aforementioned anion. The detection limit for CN- was found to be 3.98 × 10-8 M, which is below most of the LOD values reported thus far. The sensing was further extended to the solid state by effectively immobilizing the probe in a hydrogel matrix. Moreover, upon exposure to ammonia vapour, noticeable colour changes were observed in a probe-coated paper chip within few minutes. Moreover, the practical application of the probe was demonstrated for both CN- and amines. The probe can serve as a promising alternative for detection of CN- content in food and monitoring of biogenic amines and food freshness.
Collapse
Affiliation(s)
- Jhorna Borah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| | - Arati Chetry
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| | - Arobinda Kakoti
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| | | |
Collapse
|
5
|
Wang A, Tang F, Zang T, Liu X, Cheng G, Chen W, Shu W, Li D, Tang Y, Sun X, Xiao H. Ingenious fluorescent probes for biogenic amine and their applications in bioimaging and food spoilage detection. Food Chem 2024; 454:139714. [PMID: 38797105 DOI: 10.1016/j.foodchem.2024.139714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Food safety issues have received much attention. Biogenic amines are considered important markers of food spoilage. Accurate detection of biogenic amines is important for food quality monitoring. Herein, we developed two coumarin-difluoroboron β-diketonate hybrid probes, 1 and 2, for detection of amines. Both probes possess large conjugated structures and donor-acceptor-donor configuration, exhibiting solvatochromic effects due to intramolecular charge transfer mechanism. Upon reaction with amines, the boron atom in difluoroboron unit can interact with lone pair electrons of nitrogen atom, thus resulting in significant changes in absorption and fluorescence properties. These probes were successfully utilized to image amine in live cells and liver tissues. Moreover, by photographing probe-loaded food extract supernatant, we establish the relationship between color parameters and food storage time, which can easily indicate food spoilage process. This work and its findings hold promise for providing potential strategies for real-time and convenient detection of food freshness.
Collapse
Affiliation(s)
- Anyang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Fuyan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Tao Zang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xueli Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Guolin Cheng
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Wei Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Dongpeng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yonghe Tang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
6
|
Heo W, Lim S. A Review on Gas Indicators and Sensors for Smart Food Packaging. Foods 2024; 13:3047. [PMID: 39410082 PMCID: PMC11475838 DOI: 10.3390/foods13193047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Real-time monitoring of changes in packaged food is crucial to ensure safety and alleviate environmental issues. Accordingly, the development of indicators and sensors for smart packaging has long been anticipated, especially for gases related to food deterioration and microbial growth. However, the characteristics of indicators and sensors used in food packaging cannot be adjusted according to the specific food type, making it essential to select and apply suitable indicators and sensors for each type of food. In this review, the principles and characteristics of gas indicators and sensors for oxygen, carbon dioxide, and ammonia that are commercialized or in the development phase were summarized, and their application status and prospects were assessed. Indicators and sensors for smart packaging are applied in forms such as films, labels, sachets, and devices. Their detection methods include redox reactions, analyte binding, enzyme reactions, pH changes, electron transfer, conformational changes, and electrode reactions. In this work, 9 types of indicators and sensors for oxygen, carbon dioxide, and ammonia were evaluated based on their detection and indication methods, materials, sensitivity, detection range, limit of detection, and advantages and disadvantages in food applications. We anticipate our review will propose criteria for selecting the optimal indicators and sensors for specific foods. Furthermore, this review examines the current application status and future prospects of these indicators and sensors.
Collapse
Affiliation(s)
| | - Seokwon Lim
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
7
|
Du A, Lu Z, Hua L. Decentralized food safety and authentication on cellulose paper-based analytical platform: A review. Compr Rev Food Sci Food Saf 2024; 23:e13421. [PMID: 39136976 DOI: 10.1111/1541-4337.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Food safety and authenticity analysis play a pivotal role in guaranteeing food quality, safeguarding public health, and upholding consumer trust. In recent years, significant social progress has presented fresh challenges in the realm of food analysis, underscoring the imperative requirement to devise innovative and expedient approaches for conducting on-site assessments. Consequently, cellulose paper-based devices (PADs) have come into the spotlight due to their characteristics of microchannels and inherent capillary action. This review summarizes the recent advances in cellulose PADs in various food products, comprising various fabrication strategies, detection methods such as mass spectrometry and multi-mode detection, sampling and processing considerations, as well as applications in screening food safety factors and assessing food authenticity developed in the past 3 years. According to the above studies, cellulose PADs face challenges such as limited sample processing, inadequate multiplexing capabilities, and the requirement for workflow integration, while emerging innovations, comprising the use of simplified sample pretreatment techniques, the integration of advanced nanomaterials, and advanced instruments such as portable mass spectrometer and the innovation of multimodal detection methods, offer potential solutions and are highlighted as promising directions. This review underscores the significant potential of cellulose PADs in facilitating decentralized, cost-effective, and simplified testing methodologies to maintain food safety standards. With the progression of interdisciplinary research, cellulose PADs are expected to become essential platforms for on-site food safety and authentication analysis, thereby significantly enhancing global food safety for consumers.
Collapse
Affiliation(s)
- An Du
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an, P. R. China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an, P. R. China
| | - Li Hua
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, P. R. China
| |
Collapse
|
8
|
Fan J, Zheng Z, Liu Y, Wang Y, Wu W, Ji B, Xu H, Zhong Y, Zhang L, Mao Z. Construction of "ant-like tentacle" structure for ultra-sensitive detection of low-concentration ammonia through colorimetric fluorescent dual-signal gas-sensitive cotton fabric. Int J Biol Macromol 2024; 277:134249. [PMID: 39209589 DOI: 10.1016/j.ijbiomac.2024.134249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Detection and monitoring of ammonia (NH3) are crucial in various industries, including plant safety management, food freshness testing, and water pollution control. Nevertheless, creating portable, low-cost, highly sensitive, and easily regenerated ppm-level NH3 sensors poses a significant challenge. In this investigation, an innovative "ant-like tentacle" fabrication strategy was proposed, and a colorimetric fluorescent dual-signal gas-sensitive cotton fabric (PAH-fabric) for NH3 detection was successfully prepared by conventional dyeing using suitable molecular-level photoacid (PAH) sensitive units. The visual recognition lower detection limit of the ultra-low is 1.09 ppm-level. PAH-fabric is not only straightforward, convenient, and cost-effective to prepare, but it can also be efficiently regenerated and recycled multiple times (maintaining excellent gas-sensitive performance even after 100 cycles) by strategically leveraging volatile acid fumigation. Detailed molecular reaction mechanisms involved in the NH3 response and PAH-fabric regeneration are elucidated. PAH-fabric, available either as a portable kit or an alarm system, offers a promising approach for ultra-low NH3 detection. The demonstrated "ant-like tentacle" fabrication strategy introduces numerous possibilities for designing and developing sensors with adjustable response thresholds, particularly those requiring high sensitivity.
Collapse
Affiliation(s)
- Ji Fan
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Zhaofeng Zheng
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yitong Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yu Wang
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Wei Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Bolin Ji
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Hong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yi Zhong
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Linping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiping Mao
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology of Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China.
| |
Collapse
|
9
|
Li XS, Zhao J, Jiao ZH, Zhao XY, Hou SL, Zhao B. Portably and Visually Sensing Cytisine through Smartphone Scanning Based on a Post-Modified Luminescence Center Strategy in Zinc-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202401880. [PMID: 38407419 DOI: 10.1002/anie.202401880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Cytisine (CTS) is a useful medicine for treating nervous disorders and smoking addiction, and exploring a convenient method to detect CTS is of great significance for long-term/home medication to avoid the risk of poisoning, but it is full of challenges. Here, a modified metal-organic framework sensor Tb@Zn-TDA-80 with dual emission centers was prepared using a post-modified luminescence center strategy. The obtained Tb@Zn-TDA-80 can serve as a CTS sensor with high sensitivity and selectivity. To achieve portable detection, Tb@Zn-TDA-80 was further fabricated as a membrane sensor, M-Tb@Zn-TDA-80, which displayed an obvious CTS-responsive color change by simply dropping a CTS solution onto its surface. Benefiting from this unique functionality, M-Tb@Zn-TDA-80 successfully realized the visual detection and quantitative monitoring of CTS in the range of 5.26-52.6 mM by simply scanning the color with a smartphone. The results of nuclear magnetic resonance spectroscopy and theoretical computation illustrated that the high sensing efficiency of Tb@Zn-TDA-80 for CTS was attributed to the N-H⋅⋅⋅π and π⋅⋅⋅π interactions between the ligand and CTS. And luminescence quenching may result from the intramolecular charge transfer. This study provides a convenient method for ensuring long-term medication safety at home.
Collapse
Affiliation(s)
- Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Zhuo-Hao Jiao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
10
|
Jiang H, Zhang Q, Li N, Li Z, Chen L, Yang F, Zhao S, Liu X. All-in-one strategy for the nano-engineering of paper-based bifunctional fluorescent platform for robustly-integrated real-time monitoring of food and drinking-water safety. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133735. [PMID: 38335620 DOI: 10.1016/j.jhazmat.2024.133735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Cu2+ contamination and food spoilage raise food and drinking water safety issues, posing a serious threat to human health. Besides, Cu2+ and H2S levels indicate excess Cu2+-caused diseases and protein-containing food spoilage. Herein, a coumarin-containing bifunctional paper-based fluorescent platform integrated with a straightforward smartphone color recognition app is developed by an all-in-one strategy. The proposed fluorescent materials can simultaneously detect Cu2+ and H2S for on-demand food and drinking water safety monitoring at home. Specifically, a coumarin-derived fluorescence sensor (referred to as CMIA) with a low detection limit (0.430 μM) and high-selectivity/-sensitivity for Cu2+ is synthesized through a simple one-step route and then loaded onto commercially used cellulose fiber filter paper to engineer a biomass-based fluorescent material (CMIA-FP). The CMIA-FP offers user-friendly, high-precision, fast-responsive, and real-time visual monitoring of Cu2+. Moreover, CMIA forms a chemically stable complex with Cu2+, loaded onto filter paper to prepare another biomass-based fluorescent platform (CMIA-CU-FP) for visual real-time monitoring of H2S. Based on the exquisite composition design, the proposed dual-function paper-based fluorescent materials equipped with a smartphone color recognition program concurrently realize fast, accurate, and easy real-time monitoring of Cu2+ in drinking water and H2S in chicken breast-/shrimp-spoilage, demonstrating an effective detection strategy for the Cu2+ and H2S monitoring and presenting the new type of biomass-based platforms for concentrated reflection of drinking water and food safety.
Collapse
Affiliation(s)
- Huie Jiang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Qian Zhang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nihao Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhijian Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lijuan Chen
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fengqian Yang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Suqiu Zhao
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinhua Liu
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
11
|
Oh BM, Cho NY, Lee EH, Park SY, Eun HJ, Kim JH. Colorimetric and fluorometric bimodal amine chemosensor based on deprotonation-induced intramolecular charge transfer: Application to food spoilage detection. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133150. [PMID: 38128228 DOI: 10.1016/j.jhazmat.2023.133150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Amine derivatives are signature organic compounds generated from rotten protein food. Thus, sensitive detection of the presence of amines in protein foods can be a critical technique for monitoring their quality. In this study, we develop an organic chemosensor probe, 4-(2-(3-(dicyanomethylene)- 5,5-dimethylcyclohex-1-en-1-yl)vinyl)-N,N-diethylbenzenaminium chloride (DEAH), to effectively detect amines through discernible bimodal (colorimetric and fluorometric) changes. By exploiting the amine-triggered intramolecular charge transfer behavior, DEAH exhibits rapid color changes (<1 s) with an excellent detection limit (36.9 nM) and also fluorescence turn-on in response to amine gas. Moreover, it possesses detection capabilities in versatile conditions, including solutions, solids, and coated films, suggesting its practical applicability. In particular, DEAH shows dramatic color change from yellow to violet with exceptional color difference (△Eab) over 98, repeatable usability, and excellent selectivity to amines. Based on these compelling advantages, we successfully demonstrate real-time monitoring of amine gas generated from spoiled protein foods using DEAH-coated films.
Collapse
Affiliation(s)
- Byeong M Oh
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Na Young Cho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Eun Hye Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seon Young Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyeong Ju Eun
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
12
|
Jafarzadeh S, Yildiz Z, Yildiz P, Strachowski P, Forough M, Esmaeili Y, Naebe M, Abdollahi M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int J Biol Macromol 2024; 261:129647. [PMID: 38281527 DOI: 10.1016/j.ijbiomac.2024.129647] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The limitation of conventional packaging in demonstrating accurate and real-time food expiration dates leads to food waste and foodborne diseases. Real-time food quality monitoring via intelligent packaging could be an effective solution to reduce food waste and foodborne illnesses. This review focuses on recent technological advances incorporated into food packaging for monitoring food spoilage, with a major focus on paper-based sensors and their combination with smartphone. This review paper offers a comprehensive exploration of advanced macromolecular technologies in biodegradable packaging, a general overview of paper-based probes and their incorporation into food packaging coupled with intelligent sensing mechanisms for monitoring food freshness. Given the escalating global concerns surrounding food waste, our manuscript serves as a pivotal resource, consolidating current research findings and highlighting the transformative potential of these innovative packaging solutions. We also highlight the current intelligent paper-based food freshness sensors and their various advantages and limitations. Examples of implementation of paper-based sensors/probes for food storage and their accuracy are presented. Finally, we examined how intelligent packaging can be an alternative to reduce food waste. Several technologies discussed here have good potential to be used in food packaging for real-time food monitoring, especially when combined with smartphone diagnosis.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3217, Australia.
| | - Zeynep Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Przemyslaw Strachowski
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
13
|
Yang S, Ding Q, Li Y, Han W. Bacterial cellulose/gelatin-based pH-responsive functional film for food freshness monitoring. Int J Biol Macromol 2024; 259:129203. [PMID: 38184031 DOI: 10.1016/j.ijbiomac.2024.129203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Food safety is related to public health and environmental safety. Therefore, it is necessary to develop accurate and effective detection methods to assess food quality and safety. In this study, a pH-responsive functional film (BC/GA/FITC/PCA) was generated for the real-time and visual monitoring of shrimp freshness. Bacterial cellulose /Gelatin (BC/GA) was used as a film-forming matrix, and fluorescein isothiocyanate (FITC) and red cabbage (PCA) were used as the response signals. The addition of FITC and PCA increased the shading capacity (< 30 %) and antioxidant properties (22.8 %) of the films. WCA (82.73 ± 0.95°), WVP (1.48 × 10-11 g·cm/cm2·s·Pa) and OTR (2.42 × 10-15 cm3·cm/cm2·s·Pa) indicated that the film possessed water resistance and oxygen barrier properties. When exposed to daylight, the film underwent a color transition from purple to green as the ammonia concentration increased. In addition, the blue-green fluorescence of the films gradually increased and the detection limit was low (170 ppb). In particular, the change in film color caused by shrimp spoilage corresponded to the TVBN value. This study work provides a new strategy for controlling and monitoring food safety and has a wide range of applications in the fields of food-active packaging and smart packaging.
Collapse
Affiliation(s)
- Shuo Yang
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qijun Ding
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - You Li
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenjia Han
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
14
|
Chen X, He Z, Huang X, Sun Z, Cao H, Wu L, Zhang S, Hammock BD, Liu X. Illuminating the path: aggregation-induced emission for food contaminants detection. Crit Rev Food Sci Nutr 2023; 65:856-883. [PMID: 37983139 DOI: 10.1080/10408398.2023.2282677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Food safety is a global concern that deeply affects human health. To ensure the profitability of the food industry and consumer safety, there is an urgent need to develop rapid, sensitive, accurate, and cost-effective detection methods for food contaminants. Recently, the Aggregation-Induced Emission (AIE) has been successfully used to detect food contaminants. AIEgens, fluorescent dyes that cause AIE, have several valuable properties including high quantum yields, photostability, and large Stokes shifts. This review provides a detailed introduction to the principles and advantages of AIE-triggered detection, followed by a focus on the past five years' applications of AIE in detecting various food contaminants including pesticides, veterinary drugs, mycotoxins, food additives, ions, pathogens, and biogenic amines. Each detection principle and component is comprehensively covered and explained. Moreover, the similarities and differences among different types of food contaminants are summarized, aiming to inspire future researchers. Finally, this review concludes with a discussion of the prospects for incorporating AIEgens more effectively into the detection of food contaminants.
Collapse
Affiliation(s)
- Xincheng Chen
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Zhenyun He
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhichang Sun
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Hongmei Cao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Sihang Zhang
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California, USA
| | - Xing Liu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| |
Collapse
|
15
|
Liu Z, Ma W, Lin L, Wang Q, Yang J, Cheng Q, Xu M, Yang X, Tang F, Wang C, Zhang X. Mussel- and nacre-inspired dual-bionic alginate-based hydrogel coating with multi-matrix applicability, high separation stability and antifouling performance for oil/water separation. Int J Biol Macromol 2023; 246:125686. [PMID: 37406913 DOI: 10.1016/j.ijbiomac.2023.125686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Natural hydrogel-modified porous matrices with superwetting interfaces are ideal for oil/water separation. In this study, inspired by two marine organisms, a novel hydrogel coating with multi-matrix suitability, high oil/water separation capability and antifouling properties was developed. Specifically, inspired by mussel byssus, hydrogel coating was successfully deposited on porous matrix surface based on the introduction of tannic acid (TA). Moreover, inspired by the "brick and mortar" microstructure of Pinctada nacre, silica particles were in-situ synthesized in the sodium alginate (SA)/Ca2+ hydrogel to provide the filling effect and to increase strength. Furthermore, Sodium alginate-tannic acid-tetraethyl orthosilicate (SA-TA-TEOS) hydrogel coating-modified membrane exhibited super-hydrophilic and underwater super-oleophobic performance (underwater oil contact angle >150°), and achieved efficient oil/water separation for four oil/water emulsions (flux = 493-584 L·m-2·h-1 and rejection = 97.3-99.5 %). The modified membrane also demonstrated good anti-fouling performance and flux recovery. Notably, hydrogel coating-modified non-woven fabric also had high oil/water separation capacity (rejection >98 %) and cyclic stability, which proved the universal applicability of this hydrogel coating. In short, this work provides new insights into the fabrication of hydrogel coating-modified porous materials based upon a marine organism biomimetic strategy, which has potential applications in separating oil/water emulsions in industrial scenarios.
Collapse
Affiliation(s)
- Zitian Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Wensong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Qiying Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jing Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Qi Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Meina Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xu Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Fengling Tang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Chunhong Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xiaolan Zhang
- Institute of Defense Engineering, AMS, PLA, Beijing 100036, China.
| |
Collapse
|
16
|
Miao X, Wu C, Li F, Zhang M. Fast and Visual Detection of Biogenic Amines and Food Freshness Based on ICT‐Induced Ratiometric Fluorescent Probes. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202212980] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 01/06/2025]
Abstract
AbstractBiogenic amines (BAs) are important indicators for the evaluation of food spoilage and disease diagnosis. Thus, the detection of BAs with high practical potential is of great importance. In this work, a new BAs fluorescent probe design strategy is proposed by the intramolecular charge transfer (ICT) enhancement of the fluorescent probes, which is induced by the hydrogen bond interaction between probes and analyte. The probes T1 and T2 with donor–acceptor structure not only present a 140 nm bathochromic‐shifted emission, ultrafast responses (15 s for T1 and 25 s for T2), and high sensitivity (detection limit of 1.3 ppm for T1 and 2.6 ppm for T2) to cadaverine (the typical representative of BAs) but also discriminate a series of BAs and simply reused at least 30 times after air blowing. Further, a quantitative evaluation system is obtained based on T1 and T2 films. Through the Red/Green/Blue analysis with a smartphone, the total volatile basic nitrogen (an international standard to assess food spoilage) value can be output to quantitatively evaluate the freshness of food. The system is fast, visual, accurate, and non‐destructive, enabling consumers and all stakeholders in the food supply chain to monitor food freshness.
Collapse
Affiliation(s)
- Xin Miao
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Chunxiao Wu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
17
|
Tong C, Fan L, Cai G, Shi S, Yang Y, Guo Y. Design of a sustainable light-up flavonol probe for dual-ratiometric fluorescent sensing and visual differentiating ammonia and hydrazine. Food Chem 2023; 421:136216. [PMID: 37121017 DOI: 10.1016/j.foodchem.2023.136216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
Ammonia (NH3) and hydrazine (N2H4) present potential risks to human health, food and environmental safety. A sustainable flavonol-based probe, quercetin pentaacetate (QPA, weak blue emission 417 nm), was fabricated for dual-ratiometric fluorescent sensing and visual differentiating NH3 and N2H4. Excited state intramolecular proton transfer-on products with green (487 nm) and yellow (543 nm) emissions occurred as meeting with NH3 and N2H4, respectively, for their different nucleophilicities. Such a promising response offered a great opportunity of QPA to discriminatively detect NH3 and N2H4 with large Stokes shifts (>122 nm), high sensitivity (limit of detection: 35.4 μM and 0.70 ppm for NH3 solution and gas; 0.26 μM for N2H4 solution), excellent accuracy (spiked recoveries from 98.6 % to 105 %), and superior selectivity. Importantly, QPA was utilized for monitoring NH3 vapor in fish spoilage procedures and detecting N2H4 in water samples for food and environmental safety evaluation.
Collapse
Affiliation(s)
- Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Li Fan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China.
| | - Yangyu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
18
|
Novel ammonia-responsive carboxymethyl cellulose/Co-MOF multifunctional films for real-time visual monitoring of seafood freshness. Int J Biol Macromol 2023; 230:123129. [PMID: 36610564 DOI: 10.1016/j.ijbiomac.2022.123129] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Nowadays, ammonia-responsive biopolymer-based intelligent active films are of great interest for their huge potential in maintaining and monitoring the freshness of seafood. However, it is still a challenge to create biopolymer-based intelligent active films with favorable color stability, antibacterial and visual freshness indication functions. Herein, cobalt-based metal-organic framework (Co-MOF) nanosheets with ammonia-sensitive and antibacterial functions were successfully synthesized and then embedded into carboxymethyl cellulose (CMC) matrix to develop high performance and multifunctional CMC-based intelligent active films. The influence of Co-MOF addition on the structure, physical and functional characters of CMC film was comprehensively studied. The results showed that the Co-MOF nanofillers were homogeneously embedded within the CMC matrix, bringing about remarkable promotion on tensile strength (from 45.3 to 62.2 MPa), toughness (from 0.7 to 2.3 MJ/m3), water barrier and UV-blocking performance of CMC film. Notably, the obtained CMC/Co-MOF nanocomposite films also presented excellent long-term color stability, antibacterial activity (with the bacteriostatic efficiency of 99.6 % and 99.3 % against Escherichia coli and Staphylococcus aureus), and ammonia-sensitive discoloration performance. Finally, the CMC/Co-MOF nanocomposite films were successfully applied for real-time visual monitoring of shrimp freshness. The above results demonstrate that the CMC/Co-MOF nanocomposite films possess huge potential applications in intelligent active packaging.
Collapse
|
19
|
Yang S, Lou J, Jing L, Ding Q, Li X, Jiang Y, Liu Z, Han W. Blue/red dual emission based ratiometric fluorescent intelligent labels for real-time food freshness monitoring. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
20
|
Ma T, Zhang J, Zhang L, Zhang Q, Xu X, Xiong Y, Ying Y, Fu Y. Recent advances in determination applications of emerging films based on nanomaterials. Adv Colloid Interface Sci 2023; 311:102828. [PMID: 36587470 DOI: 10.1016/j.cis.2022.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and facile detection of analytes is crucial in various fields such as agriculture production, food safety, clinical diagnosis and therapy, and environmental monitoring. However, the synergy of complicated sample pretreatment and detection is an urgent challenge. By integrating the inherent porosity, processability and flexibility of films and the diversified merits of nanomaterials, nanomaterial-based films have evolved as preferred candidates to meet the above challenge. Recent years have witnessed the flourishment of films-based detection technologies due to their unique porous structures and integrated physical/chemical merits, which favors the separation/collection and detection of analytes in a rapid, efficient and facile way. In particular, films based on nanomaterials consisting of 0D metal-organic framework particles, 1D nanofibers and carbon nanotubes, and 2D graphene and analogs have drawn increasing attention due to incorporating new properties from nanomaterials. This paper summarizes the progress of the fabrication of emerging films based on nanomaterials and their detection applications in recent five years, focusing on typical electrochemical and optical methods. Some new interesting applications, such as point-of-care testing, wearable devices and detection chips, are proposed and emphasized. This review will provide insights into the integration and processability of films based on nanomaterials, thus stimulate further contributions towards films based on nanomaterials for high-performance analytical-chemistry-related applications.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Zhang Y, Chen L, Huang J, Yang A, Wang J, Xie M, Liu Y, Liu Z, Xiao H, Min H, Hu C, Xiong R, Huang C. Biomass-based indole derived composited with cotton cellulose fiber integrated as sensitive fluorescence platform for NH 3 detection and monitoring of seafood spoilage. Int J Biol Macromol 2022; 221:994-1001. [PMID: 36113596 DOI: 10.1016/j.ijbiomac.2022.09.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 01/13/2023]
Abstract
Herein, an indole-derived water-soluble fluorescence nanomaterial and biomass-based cellulose filter paper integrated as solid-state fluorescence platform (H2-FP) for seafood spoilage detection was prepared. H2 exhibits high fluorescence stability and good biocompatibility with green beans, onion tissues, blood and zebrafish, which proving that H2 has a wide range of application scenarios. Further, H2-FP with effective, solid-state fluorescence, portable, and reusable characteristics is nanoengineered for NH3 quantitative and qualitative detection (DOL = 2.6 ppm). Then, H2-FP has been successfully used to monitor NH3 release in the seafood spoilage process at various storage time (4 °C and 25 °C). More importantly, fluorescence color of H2-FP is integrated smartphone are converted to digital values through RGB channels and successfully used to visualize semi-quantitative recognition of NH3. This sensing fluorescence platform integrated with smartphone furnishes an effective fabrication strategy and broad prospects for explore various biomass-based materials for sensing NH3 change in biological and environmental samples.
Collapse
Affiliation(s)
- Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Long Chen
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Jianhua Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd., Huzhou 313000, China
| | - Jing Wang
- Zhejiang OSM Group Co., Ltd., Huzhou 313000, China
| | - Min Xie
- Zhejiang OSM Group Co., Ltd., Huzhou 313000, China
| | - Yuqian Liu
- College of Light Industry and Food Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Zhulan Liu
- College of Light Industry and Food Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| | - Huihua Min
- Electron Microscope Laboratory, Nanjing Forestry University, Nanjing 210037, China
| | - Chenyao Hu
- Electron Microscope Laboratory, Nanjing Forestry University, Nanjing 210037, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|