1
|
Li H, Wang B, Wang L, Liu Y, Jiang F. Two-dimensional Prussian blue analog-based catalytic membrane for effective decontamination of micropollutants. WATER RESEARCH 2025; 283:123855. [PMID: 40412034 DOI: 10.1016/j.watres.2025.123855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/25/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Cost-effective, stable, and highly efficient catalytic technology is the key challenge for wastewater treatment based on advanced oxidation processes. Catalytic membranes, functioning as heterogeneous advanced oxidation microreactors, offer substantial advantages in the removal of organic pollutants. However, creating catalytic membranes with a high density of active sites for efficient and rapid degradation of pollutants in continuously flowing solutions poses challenges for practical applications. In this study, a two-dimensional Co/Fe-PBA catalytic membrane was developed and fixed onto a hydrophilic polytetrafluoroethylene (PTFE) membrane modified with polydopamine (PDA) through vacuum filtration. This membrane was used to activate peracetic acid (PAA) for the degradation of 17α-ethinylestradiol (EE2), an emerging environmental endocrine disruptor. The interaction between PAA and Co/Fe-PBA induces the continuous and rapid generation of free radicals and singlet oxygen (1O2). Furthermore, the hydrophilic catalytic membrane, containing nano-confined channels, facilitates the efficient transfer of aqueous solutions. The introduction of a PDA layer acts as an in-situ metal ion chelator, dynamically capturing leached metal ion during catalysis and thereby mitigating efficiency loss while reducing metal ion leaching. The Co/Fe-PBA/PDA catalytic membrane shows excellent efficiency in activating PAA to degrade EE2, with a catalytic efficiency close to 100 % in a single-pass filtration mode. In continuous flow mode, it maintains a 95 % degradation rate after 5 h of continuous filtration. The CH3C(O)OO• radical and non-radical 1O2 are the primary reactive oxygen species (ROS) responsible for the oxidation of EE2. The degradation products of EE2 were identified through LC-MS analysis, and computational predictions indicate that, compared to EE2, the overall ecotoxicity of the degradation products is lower. The catalytic membrane also exhibits high degradation efficiencies for various organic pollutants. The activation of PAA by the catalytic membrane for EE2 degradation demonstrates excellent catalytic performance and mass transfer efficiency, overcoming the challenge of recycling powdery catalysts and providing new insights for the removal of emerging contaminants.
Collapse
Affiliation(s)
- Huiying Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
| | - Bingyu Wang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Luyao Wang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Yanbiao Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China.
| | - Fengzhi Jiang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
2
|
Pei Y, Liu R, Chen J, Chen Y, Chen J, Jiang Z. Efficient activation of persulfate by copper-coated nano zero-valent iron for degradation of nitrogenous disinfection by-products: The key role of Cu. J Colloid Interface Sci 2025; 684:213-225. [PMID: 39793429 DOI: 10.1016/j.jcis.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
The essential shortcoming of rapid passivation deactivation limits the efficient application of nano zero-valent iron (nZVI) in eliminating disinfection byproducts from drinking water. Copper-coated nano zero-valent iron (Cu-nZVI) bimetallic composites were synthesized to efficiently activate persulfate (PS) to remove nitrosopyrrolidine (NPYR). By introducing Cu-coated coatings, nZVI is protected from direct contact with PS; thus, Cu-nZVI appears to activate PS efficiently and stably without rapid deactivation. Compared with plain nZVI, the constructed Cu-nZVI/PS system significantly increased the removal efficiency for NPYR from 76.3 % to 94.3 % at a pH of 7.0. The Cu-nZVI composites achieved a synergetic effect on the degradation of NPYR by regulating PS activation and reactive oxygen species (ROS) formation, promoting Fe2+/Fe3+ cycling with the Cu-nZVI surface and accelerating the electron transport capacity. The bursting tests and electron paramagnetic resonance (EPR) tests confirmed that multiple types of ROS coexisted in the Cu-nZVI/PS system. Furthermore, vulnerable sites and degradation pathways on the NPYR molecule were predicted by density functional theory (DFT) calculations. Toxicity predictions revealed decreased biotoxicity of NPYR and its intermediates. The NPYR removal efficiency decreased slightly to 81.1 % after 30 days of ageing, which demonstrates the excellent potential of the composites for realistic applications.
Collapse
Affiliation(s)
- Yanyan Pei
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Renyu Liu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Junlan Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yewei Chen
- China Construction Fourth Engineering Bureau Construction Development Co, Ltd, Xiamen 361006, China
| | - Jinfeng Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| |
Collapse
|
3
|
Wu J, Zou J, Lin J, Li S, He L, Wu Z, Li Q, Gong C, Ma J. Overlooked Role of Coexistent Hydrogen Peroxide in Activated Peracetic Acid by Cu(II) for Enhanced Oxidation of Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15741-15754. [PMID: 38359405 DOI: 10.1021/acs.est.3c09753] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cu(II)-catalyzed peracetic acid (PAA) processes have shown significant potential to remove contaminants in water treatment. Nevertheless, the role of coexistent H2O2 in the transformation from Cu(II) to Cu(I) remained contentious. Herein, with the Cu(II)/PAA process as an example, the respective roles of PAA and H2O2 on the Cu(II)/Cu(I) cycling were comprehensively investigated over the pH range of 7.0-10.5. Contrary to previous studies, it was surprisingly found that the coexistent deprotonated H2O2 (HO2-), instead of PAA, was crucial for accelerating the transformation from Cu(II) to Cu(I) (kHO2-/Cu(II) = (0.17-1) × 106 M-1 s-1, kPAA/Cu(II) < 2.33 ± 0.3 M-1 s-1). Subsequently, the formed Cu(I) preferentially reacted with PAA (kPAA/Cu(I) = (5.84 ± 0.17) × 102 M-1 s-1), rather than H2O2 (kH2O2/Cu(I) = (5.00 ± 0.2) × 101 M-1 s-1), generating reactive species to oxidize organic contaminants. With naproxen as the target pollutant, the proposed synergistic role of H2O2 and PAA was found to be highly dependent on the solution pH with weakly alkaline conditions being more conducive to naproxen degradation. Overall, this study systematically investigated the overlooked but crucial role of coexistent H2O2 in the Cu(II)/PAA process, which might provide valuable insights for better understanding the underlying mechanism in Cu-catalyzed PAA processes.
Collapse
Affiliation(s)
- Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Environment, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Linfeng He
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Zhijie Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, Fujian 361005, P. R. China
| | - Chunming Gong
- Xiamen Institute of Environmental Science, Xiamen, Fujian 361005, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| |
Collapse
|
4
|
Sukhatskiy Y, Shepida M, Lysak D, Znak Z, Gogate PR. Modified sono-Fenton process for oxidative degradation of chloramphenicol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54559-54573. [PMID: 39210221 DOI: 10.1007/s11356-024-34827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Oxidative degradation of chloramphenicol (CAP) using a hybrid approach (US/HA+/n-Fe2O3/SPC) involving sodium percarbonate (SPC; "solid H2O2" carrier), Fe2O3 nanoparticles (n-Fe2O3; H2O2 decomposition catalyst), hydroxylamine in its protonated form (HA+; Fe (III) to Fe (II) reducer), and ultrasonic cavitation (to increase the generation of hydroxyl radicals) has been studied for the first time. The average size of n-Fe2O3 synthesized by the sonochemical method, as calculated according to the Debye-Scherrer equation, was ~ 18 nm. The maximum degradation degree of CAP (83.1%) and first-order oxidative degradation rate constant of CAP as 1.253 × 10-3 s-1 were achieved using the modified sono-Fenton process under the optimized conditions as the initial concentration of CAP - 50 mg/L, the molar ratio of CAP:HA+:n-Fe2O3:SPC of 1:100:100:100, pH as 3, the temperature as 318 K, the specific ultrasonic power as 53.3 W/L, and the treatment duration of 7200 s. In general, the efficiency and intensity of CAP degradation increased with a decrease in the pH value, an increase in the molar ratio of CAP:HA+:n-Fe2O3:SPC, a decrease in the initial concentration of CAP, an increase in temperature, and showed a minor change with the specific power of US. The synergistic coefficient for the combination of the US and the heterogeneous Fenton process was 17.9. The active participation of hydroxyl radicals in the oxidative degradation of CAP using the modified sono-Fenton process was confirmed by scavenging experiments performed using tert-butyl alcohol. The proposed process can be a promising direction in the remediation of pharmaceutical effluents with significant potential for commercial exploitation.
Collapse
Affiliation(s)
- Yurii Sukhatskiy
- Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine
| | - Mariana Shepida
- Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine
| | - Dmytro Lysak
- Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine
| | - Zenovii Znak
- Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine
| | - Parag Ratnakar Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 40019, India.
| |
Collapse
|
5
|
Li L, Niu X, Zhang D, Ye X, Zhang Z, Liu Q, Ding L, Chen K, Chen Y, Chen K, Shi Z, Lin Z. A systematic review on percarbonate-based advanced oxidation processes in wastewater remediation: From theoretical understandings to practical applications. WATER RESEARCH 2024; 259:121842. [PMID: 38820735 DOI: 10.1016/j.watres.2024.121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Percarbonate encompasses sodium percarbonate (SPC) and composite in-situ generated peroxymonocarbonate (PMC). SPC emerges as a promising alternative to hydrogen peroxide (H2O2), hailed for its superior transportation safety, stability, cost-effectiveness, and eco-friendliness, thereby becoming a staple in advanced oxidation processes for mitigating water pollution. Yet, scholarly literature scarcely explores the deployment of percarbonate-AOPs in eradicating organic contaminants from aquatic systems. Consequently, this review endeavors to demystify the formation mechanisms and challenges associated with reactive oxygen species (ROS) in percarbonate-AOPs, alongside highlighting directions for future inquiry and development. The genesis of ROS encompasses the in situ chemical oxidation of activated SPC (including iron-based activation, discharge plasma, ozone activation, photon activation, and metal-free materials activation) and composite in situ chemical oxidation via PMC (namely, H2O2/NaHCO3/Na2CO3, peroxymonosulfate/NaHCO3/Na2CO3 systems). Moreover, the ROS generated by percarbonate-AOPs, such as •OH, O2•-, CO3•-, HO2•-, 1O2, and HCO4-, can work individually or synergistically to disintegrate target pollutants. Concurrently, this review systematically addresses conceivable obstacles posing percarbonate-AOPs in real-world application from the angle of environmental conditions (pH, temperature, coexisting substances), and potential ecological toxicity. Considering the outlined challenges and advantages, we posit future research directions to amplify the applicability and efficacy of percarbonate-AOPs in tangible settings. It is anticipated that the insights provided in this review will catalyze the progression of percarbonate-AOPs in water purification endeavors and bridge the existing knowledge void.
Collapse
Affiliation(s)
- Ling Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Xinyao Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhilin Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Kun Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Yang Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Kunyang Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Zhaocai Shi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
6
|
Liu S, Liu S, Chen H, Xing Y, Wang W, Wang L, Liang Y, Fu J, Zhang C. Catalytic activation of percarbonate with synthesized carrollite for efficient decomposition of bisphenol S: Performance, degradation mechanism and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132719. [PMID: 37866148 DOI: 10.1016/j.jhazmat.2023.132719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
This study demonstrates the novel application of carrollite (CuCo2S4) for the activation of sodium percarbonate (SPC) towards bisphenol S (BPS) degradation. The effect of several crucial factors like BPS concentration, CuCo2S4 dosage, SPC concentration, reaction temperature, water matrices, inorganic anions, and pH value were investigated. Experimental results demonstrated that BPS could be efficiently degraded by CuCo2S4-activated SPC system (88.52% at pH = 6.9). The mechanism of BPS degradation by CuCo2S4-activated SPC system was uncovered by quenching and electron spin resonance experiments, discovering that a multiple reactive oxygen species process was involved in BPS degradation by hydroxyl radical (•OH), superoxide radical (•O2-), singlet oxygen superoxide (1O2) and carbonate radical (•CO3-). Furthermore, the S(-II) species facilitated rapid redox cycles between Cu(I)/Cu(II) and Co(II)/Co(III). •CO3- was found to not only directly react with BPS molecules, but also act as a bridge to promote •O2- and 1O2 generation, thereby accelerating BPS degradation. Finally, the combination of UHPLC/Q-TOF-MS test with density functional theory (DFT) method was employed to detect major degradation intermediates and thereby elucidate possible reaction pathways of BPS degradation. This study provides a novel strategy by integrating transition metal sulfides with percarbonate for the elimination of organic pollutants in water.
Collapse
Affiliation(s)
- Shicheng Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Sitong Liu
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Huabin Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Yujin Xing
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Wenzhong Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China; School of Science, Minzu University of China, Beijing 100081, PR China.
| | - Lijuan Wang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Yujie Liang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Junli Fu
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Chen Zhang
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| |
Collapse
|
7
|
Guo Y, Sui M, Liu S, Li T, Lv X, Yu M, Mo Y. Insight into cobalt substitution in LaFeO 3-based catalyst for enhanced activation of peracetic acid: Reactive species and catalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132662. [PMID: 37801973 DOI: 10.1016/j.jhazmat.2023.132662] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
In this study, a hollow sphere-like Co-modified LaFeO3 perovskite catalyst (LFC73O) was developed for peracetic acid (PAA) activation to degrade sulfamethoxazole (SMX). Results indicated that the constructed heterogeneous system achieved a 99.7% abatement of SMX within 30 min, exhibiting preferable degradation performance. Chemical quenching experiments, probe experiments, and EPR techniques were adopted to elucidate the involved mechanism. It was revealed that the superior synergistic effect of electron transfer and oxygen defects in the LFC73O/PAA system enhanced the oxidation ability of PAA. The Co atoms doped into LaFeO3 as the main active site with the original Fe atoms as an auxiliary site exhibited high activity to mediate PAA activation via the Co(III)/Co(II) cycle, generating carbon-centered radicals (RO·) including CH3C(O)O· and CH3C(O)OO·. The oxygen vacancies induced by cobalt substitution also served as reaction sites, facilitating the dissociation of PAA and production of ROS. Furthermore, the degradation pathways were postulated by DFT calculation and intermediates identification, demonstrating that the electron-rich sites of SMX molecules such as amino group, aromatic ring, and S-N bond, were more susceptible to oxidation by reactive species. This study offers a novel perspective on developing catalysts with the coexistence of multiple active units for PAA activation in environmental remediation.
Collapse
Affiliation(s)
- Yali Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Minghao Sui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Shuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xinyuan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Miao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yaojun Mo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
8
|
Feng C, Zhang H, Ren Y, Luo M, Yu S, Xiong Z, Liu Y, Zhou P, Lai B. Enhancing zerovalent iron-based Fenton-like chemistry by copper sulfide: Insight into the active sites for sustainable Fe(II) supply. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131355. [PMID: 37027922 DOI: 10.1016/j.jhazmat.2023.131355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Zerovalent iron (ZVI)-based Fenton-like processes have been widely applied in degrading organic contaminants. However, the surface oxyhydroxide passivation layer produced during the preparation and oxidation of ZVI hinders its dissolution and Fe(III)/Fe(II) cycling, and restricts the generation of reactive oxygen species (ROS). In this study, copper sulfide (CuS) was found to effectively enhance the degradation of diverse organic pollutants in the ZVI/H2O2 system. Moreover, the degradation performance for the actual industrial wastewater (i.e., dinitrodiazophenol wastewater) in the ZVI/H2O2 system was impressively improved by 41% with CuS addition, and the COD removal efficiency could reach 97% after 2 h of treatment. Mechanism investigation revealed that the introduction of CuS accelerated the sustainable supply of Fe(II) in the ZVI/H2O2 system. Specifically, Cu(I) and reductive sulfur species (i.e., S2-, S22-, Sn2- and H2S (aq)) from CuS directly induced efficient Fe(III)/Fe(II) cycling. The iron-copper synergistic effect between Cu(II) from CuS and ZVI expedited Fe(II) generation from ZVI dissolution and Fe(III) reduction by formed Cu(I). This study not only elucidates the promotion effects of CuS on ZVI dissolution and Fe(III)/Fe(II) cycling in ZVI-based Fenton-like processes, but also provides a sustainable and high-efficiency iron-based oxidation system for removal of organic contaminants.
Collapse
Affiliation(s)
- Can Feng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Siying Yu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Wang Y, Wang X, Wang D, Zhu T, Zhang Y, Horn H, Liu Y. Ferrate pretreatment-anaerobic fermentation enhances medium-chain fatty acids production from waste activated sludge: Performance and mechanisms. WATER RESEARCH 2023; 229:119457. [PMID: 36521312 DOI: 10.1016/j.watres.2022.119457] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The rupture of cytoderm and extracellular polymeric substances (EPS), and competitive inhibition of methanogens are the main bottlenecks for medium-chain fatty acids (MCFAs) production from waste activated sludge (WAS). This study proposes a promising ferrate (Fe (VI))-based technique to enhance MCFAs production from WAS through accelerating WAS disintegration and substrates transformation, and eliminating competitive inhibition of methanogens, simultaneously. Results shows that the maximal MCFAs production attains 8106.3 mg COD/L under 85 mg Fe/g TSS, being 58.6 times that of without Fe (VI) pretreatment. Mechanism exploration reveals that Fe (VI) effectively destroys EPS and cytoderm through electron transfer, reactive oxygen species generation (i.e., OH, O2- and 1O2) and elevated alkalinity, resulting in the transfer of organics from solid to soluble phase and from macromolecules to intermediates. Generation and transformation of intermediates analyses illustrate that Fe (VI) facilitates hydrolysis, acidification and chain elongation (CE) but suppresses methanogenesis, promoting the targeted conversion of intermediates to MCFAs. Also, Fe (VI) pretreatment provides potential electron shuttles for chain elongation. Microbial community and functional genes encoding key enzymes analysis indicates that Fe (VI) screens key microorganisms and up-regulates functional genes expression involved in CE pathways. Overall, this technology avoids methanogens inhibitor addition and stimulates vivianite synthesis during MCFAs production from WAS.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, Karlsruhe 76131, Germany
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Xiao J, Dong H, Li Y, Li L, Chu D, Xiang S, Hou X, Dong Q, Xiao S, Jin Z, Wang J. Graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) effectively activate peracetic acid for elimination of sulfamethazine in water under neutral condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129895. [PMID: 36087535 DOI: 10.1016/j.jhazmat.2022.129895] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, a graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) was prepared and employed for peracetic acid (PAA) activation. The characterization of G@Cu-NPs confirmed that the as-prepared material was composed of Cu0 and Cu2O inside and encapsulated by a graphene shell. Experimental results suggested that the synthesized G@Cu-NPs could activate PAA to generate free radicals for efficiently removing sulfamethazine (SMT) under neutral condition. The formation of graphene shells could strongly facilitated electron transfer from the core to the surface. Radical quenching experiments and electron spin resonance (ESR) analysis confirmed that organic radicals (R-O•) and hydroxyl radicals (•OH) were generated in the G@Cu-NPs/PAA system, and R-O• (including CH3CO3• and CH3CO2•) was the main contributor to the elimination of SMT. The possible SMT degradation pathways and mechanisms were proposed, and the toxicity of SMT and its intermediates was predicted with the quantitative structure-activity relationship (QSAR) analysis. Besides, the effects of some key parameters, common anions, and humic acid (HA) on the removal of SMT in the G@Cu-NPs/PAA system were also investigated. Finally, the applicability of G@Cu-NPs/PAA system was explored, showing that the G@Cu-NPs/PAA system possessed satisfactory adaptability to treat different water bodies with admirable reusability and stability.
Collapse
Affiliation(s)
- Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Zilan Jin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
11
|
Chu D, Dong H, Li Y, Xiao J, Hou X, Xiang S, Dong Q. Sulfur or nitrogen-doped rGO supported Fe-Mn bimetal - organic frameworks composite as an efficient heterogeneous catalyst for degradation of sulfamethazine via peroxydisulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129183. [PMID: 35739714 DOI: 10.1016/j.jhazmat.2022.129183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
In this work, sulfur/nitrogen modified reduced graphene oxide (S/N-rGO) was employed as both electron shuttle and support to fabricate Fe-Mn bimetallic organic framework@S/N-rGO hybrids (BOF@S/N-rGO) via a facile two-step solvothermal route. Compared with the transition metal ions (Fe2+/Mn2+), the classical metal oxide catalyst (Fe2O3 and Fe3O4) and nano zero-valent iron (nZVI), BOF@S/N-rGO catalyst can more effectively activate peroxydisulfate (PDS) with ultra-low concentration (0.05 mM) to degrade sulfamethazine (SMT). Quenching experiments, electron paramagnetic resonance (EPR) measurement and linear sweep voltammetry (LSV) showed that the activation pathways of PDS between the two catalysts were different. In BOF@N-rGO+PDS system, the degradation of SMT was mainly attributed to the oxidation of radicals including SO4•- and •OH, especially SO4•- . However, in BOF@S-rGO+PDS system, in addition to the radical pathway, there are also non-radical pathways, namely 1O2 and direct electron transfer. Furthermore, the applicability of BOF@S/N-rGO used in the PDS-mediated advanced oxidation processes (AOPs) was systematically investigated in terms of the effects of operating parameters and coexisting substance (anions and humic acid (HA)), the degradation of other pollutants, as well as the stability and reusability of the catalyst. This study proved that BOF@S/N-rGO was a promising activator of PDS with ultra-low concentration for the degradation of SMT.
Collapse
Affiliation(s)
- Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|