1
|
Wang G, Li B, Zhang Y. Ammonia-mediated iron cycle for oxidizing agent activation in advanced oxidation process. WATER RESEARCH 2023; 242:120295. [PMID: 37429134 DOI: 10.1016/j.watres.2023.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Removing ammonia (NH4+-N) and recalcitrant organics from low carbon/nitrogen wastewater requires a large amount of chemical reagents and energy. This work reports a new advanced oxidation process to remove recalcitrant organics with the assistant of NH4+-N in low carbon/nitrogen wastewater. Specifically, NH4+-N in wastewater mediated Fe(II)/Fe(III) cycle for the activation of oxidation reagent (e.g., H2O2) (ammonia-mediated AOP) to improve the removal of recalcitrant organics. In ammonia-mediated AOP, NH4+-N, recalcitrant organics, and PO4-P in wastewater were removed by 88.2%, 80.5% and 84%, respectively, with a low H2O2 consuming of only 5 mg/L. The removal efficiency of recalcitrant organics in the ammonia-mediated AOP increased as the concentration of NH4+-N in wastewater increased. Recalcitrant organics can be removed with an efficiency of 74∼82%, when the influent pH was 6∼6.8. This work provides a new and cost-effective approach to drive the iron cycle in Fenton treatment using NH4+-N from wastewater as mediator.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Biao Li
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.
| |
Collapse
|
2
|
Chen Z, Yan Y, Lu C, Lin X, Fu Z, Shi W, Guo F. Photocatalytic Self-Fenton System of g-C 3N 4-Based for Degradation of Emerging Contaminants: A Review of Advances and Prospects. Molecules 2023; 28:5916. [PMID: 37570886 PMCID: PMC10421113 DOI: 10.3390/molecules28155916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The discharge of emerging pollutants in the industrial process poses a severe threat to the ecological environment and human health. Photocatalytic self-Fenton technology combines the advantages of photocatalysis and Fenton oxidation technology through the in situ generation of hydrogen peroxide (H2O2) and interaction with iron (Fe) ions to generate a large number of strong reactive oxygen species (ROS) to effectively degrade pollutants in the environment. Graphite carbon nitride (g-C3N4) is considered as the most potential photocatalytic oxygen reduction reaction (ORR) photocatalyst for H2O2 production due to its excellent chemical/thermal stability, unique electronic structure, easy manufacturing, and moderate band gap (2.70 eV). Hence, in this review, we briefly introduce the advantages of the photocatalytic self-Fenton and its degradation mechanisms. In addition, the modification strategy of the g-C3N4-based photocatalytic self-Fenton system and related applications in environmental remediation are fully discussed and summarized in detail. Finally, the prospects and challenges of the g-C3N4-based photocatalytic self-Fenton system are discussed. We believe that this review can promote the construction of novel and efficient photocatalytic self-Fenton systems as well as further application in environmental remediation and other research fields.
Collapse
Affiliation(s)
- Zhouze Chen
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China (Y.Y.)
| | - Yujie Yan
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China (Y.Y.)
| | - Changyu Lu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, Hebei Geo University, Shijiazhuang 050031, China
| | - Xue Lin
- School of Material Science and Engineering, Beihua University, Jilin 132013, China
| | - Zhijing Fu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, Hebei Geo University, Shijiazhuang 050031, China
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China (Y.Y.)
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
3
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Wang G, Tang K, Hambly AC, Zhang Y, Andersen HR. Sustainable and Reagentless Fenton Treatment of Complex Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:626-634. [PMID: 36511650 DOI: 10.1021/acs.est.2c06702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Conventional Fenton treatment is fundamentally impractical for large-scale applications, as the consumption of Fe(II), H2O2, and pH regulators and the accumulation of iron hydroxide sludge are very costly. This paper describes a new method for Fenton treatment of complex wastewater without additional dosing of Fe(II) and H2O2, without iron-sludge accumulation, and with less consumption of pH regulators, using a novel bioelectrode system. Our new system includes a novel three-chamber microbial electrolysis unit and Fenton reaction unit, where Fenton reagents are generated by biotic and abiotic cathodes, while the bioanode simultaneously degrades biodegradable organics from the wastewater. The system's self-alkalinity buffering also waives the need for pH regulators. Dissolved organic carbon and 22 specific recalcitrant organics were removed by 99% and between 78 and 100%, respectively. The bioelectrode system generated 13 ± 3 mg/L dissolved Fe(II) and 5 ± 0.4 mg/L H2O2 for the Fenton reaction unit. The closed iron cycle avoided iron loss and iron sludge accumulation during operation. The pH regulator dosage and operating costs were just 9.7 and 1.4%, respectively, of what is required by classic Fenton. The low operating cost and reduction in chemical usage make it an efficient, sustainable alternative to the conventional treatment processes currently used for complex wastewater.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800Lyngby, Denmark
| | - Kai Tang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800Lyngby, Denmark
| |
Collapse
|
5
|
Fu C, Yan M, Wang Z, Li J, Zhang X, Song W, Xu Z, Bhatt K, Wang Z, Zhu S. New insights into the degradation and detoxification of methylene blue using heterogeneous-Fenton catalyzed by sustainable siderite. ENVIRONMENTAL RESEARCH 2023; 216:114819. [PMID: 36395859 DOI: 10.1016/j.envres.2022.114819] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The huge application of synthetic dyes caused a severe impact in the environment. In the present study, a physico-chemical strategy of heterogeneous-Fenton catalyzed by the natural ferrous ore has been established for toxic chemical degradation, of which the complex and high-expense repetitive pH adjustment procedures were escaping. And this natural heterogeneous catalyst also could be recycled and sustainable for toxic substances treatment involved in synergetic adsorption and oxidation. The siderite, served as an adsorbent and catalyst for the degradation of methylene blue (MB). Siderite exhibited a better adsorption capacity with a saturated adsorption capacity of ∼11.08 mg/g. Batch adsorption experiments have verified that adsorption rate and adsorption equilibrium followed pseudo-second-order rate model and Langmuir isotherm equation, respectively. The combination with H2O2, showed significant enhancement of MB degradation without any pH adjustment. The effect of siderite dosage, H2O2 dosage, MB concentration, initial pH, and reaction temperature on MB degradation was investigated, which also has indicated the excellent catalytic performance of siderite. About 99.71% of MB was degraded in 480 min with initial pH of 7.0, reaction temperature of 25 °C, siderite, and H2O2 dosage of 2.5 g/L and 122.38 mM, respectively. It was found that siderite could be reused and remained high degradation efficiency on MB after 5 times reutilization, which also could demonstrate the sustainable and effective process to degrade organic pollution. The generation of reactive species including ·OH and O2·- have been confirmed based on scavenger test and electron spin resonance (ESR) analysis, which was dominated by heterogeneous reaction. The possible degradation mechanisms of MB have been predicted based on spectrum scanning and GC-MS analysis. Moreover, acute toxicity assessment with marine photobacterium Vibrio fisheri was conducted to investigate the toxicity change in the adsorption/oxidation coupled process. This sustainable heterogeneous-Fenton technology has been verified as a promising and applicable process for toxic organic chemicals removal due to effective mineralization and detoxification assisted with the natural ore mineral through the simple operation and mild condtions.
Collapse
Affiliation(s)
- Caixia Fu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Miao Yan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhuoyue Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China; School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Zhiliang Xu
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|