1
|
Chen S, Yi L, Chen Y. Zebrafish embryos ecotoxicity traceability of pharmaceutical wastewater during simultaneous nitrification-denitrification process. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138192. [PMID: 40215933 DOI: 10.1016/j.jhazmat.2025.138192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025]
Abstract
Toxicity assessments based on transcriptomics and metabolomics at target organs are magnitude difference due to the tremendous variations in the sensitivity of receptor binding sites (subunits), which often require expensive instrumentation using quantitative whole-body autoradiography. In this study, zebrafish embryos combined with toxicity identification evaluation (TIE) and ECOSAR toxicity prediction were applied to monitor comprehensive toxicity changes of fermentation pharmaceutical wastewater (FPW) in the expanded granular sludge bed (EGSB) and the modified simultaneous nitrification-denitrification (SND) process. FPW with high toxicity (30.93 TU) was predominately detoxified (to 4.04 TU) in anaerobic EGSB process, in which chlortetracycline (CTC) was degraded via demethylation, dechlorination and ring-cleaving. TIE results showed that non-polar pollutants contributed to the major toxicity and existed in the whole process. The pH adjustment significantly influenced the toxicities of CTC and its mixture with NH4+-N (MCTC+NH4+) or NO2--N (MCTC+NO2-) due to the hydrolysis and chelation. Noticeably, nearly no nitrite/nitrate were accumulated in SND treatment process, which greatly alleviated the toxicities of MCTC+NH4+ and MCTC+NO2- due to no generation of free ammonia and free nitrous acid. MCTC+NH4+ exhibited antagonistic toxicity in all test pH, but MCTC+NO2- converted from synergistic (pH i) to antagonistic (pH 7.5). This study deepened the detoxification mechanistic interpretations of FPW in the modified EGSB-SND process as well as related toxicity variation information.
Collapse
Affiliation(s)
- Shuyan Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Linya Yi
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Kumar A, Batley GE, Adams M, Nguyen TV, Nidumolu B, Nguyen H, Gregg A, Cassidy M, Besley CH. Ecotoxicological assessment of sanitary sewer overflows and rainfall dynamics offers insights into conditions for potential adverse ecological outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175924. [PMID: 39233086 DOI: 10.1016/j.scitotenv.2024.175924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Sewer overflows are an environmental concern due to their potential to introduce contaminants that can adversely affect downstream aquatic ecosystems. As these overflows can occur during rainfall events, the influence of rainwater ingress from inflow and infiltration on raw untreated wastewater (influent) within the sewer is a critical factor influencing the dilution and toxicity of the contaminants. The Vineyard sewer carrier in the greater city of Sydney, Australia, was selected for an ecotoxicological investigation of a sanitary (separate from stormwater) sewerage system and a wet-weather overflow (WWO). Three influent samples were collected representing dry-weather (DW), intermediate wet-weather (IWW) and wet-weather (WW). In addition, a receiving water sample was also collected downstream in Vineyard Creek (WW-DS) coinciding with a WWO. We employed direct toxicity assessment (DTA) and toxicity identification evaluation (TIE) approaches to gain comprehensive insights into the nature and magnitude of the impact on influent from rainwater ingress into the sewer. Three standard ecotoxicological model species, a microalga, Chlorella vulgaris, the water flea, Ceriodaphnia dubia and the midge larva, Chironomus tepperi were used for both acute and chronic tests. The study revealed variable toxicity responses, with the sample of influent collected in wet-weather displaying lower toxicity compared to the dry-weather sample of influent. Ammonia, and metals, were identified in dry weather as contributors to the observed toxicity, however, this risk was alleviated through rainwater ingress in wet-weather with further dilution within the receiving water. Based on toxicity data, dilutions of influent to minimise effects on C. vulgaris and C. dubia ranged from 1 in 12 in DW to 1 in 2.8 in WW, and further diminished in the receiving water to 1 in 1.8. The successful application of ecotoxicological approaches enabled the assessment of cumulative effects of contaminants in influent, offering valuable insights into the sanitary sewer system under rainwater ingress.
Collapse
Affiliation(s)
- Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Waite Campus, South Australia, Australia.
| | | | - Merrin Adams
- CSIRO, Environment, Lucas Heights, NSW 2234, Australia
| | - Thao V Nguyen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Waite Campus, South Australia, Australia
| | - Bhanu Nidumolu
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Waite Campus, South Australia, Australia
| | - Huong Nguyen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Waite Campus, South Australia, Australia
| | - Adrienne Gregg
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Waite Campus, South Australia, Australia
| | - Michele Cassidy
- Wastewater Product, Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin H Besley
- Laboratory Services, Sydney Water, 51 Hermitage Road, West Ryde, NSW 2114, Australia.
| |
Collapse
|
3
|
Tong Y, Li H, Pei Y, Cheng F, You J. Evidence from In Situ Bioassays and Suspect Analysis Revealed the Region-Specific Aquatic Risk across Socioeconomic Gradients in China. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:827-837. [PMID: 39568696 PMCID: PMC11574627 DOI: 10.1021/envhealth.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/22/2024]
Abstract
Various contaminants are present in aquatic environment and pose potential threats to pelagic and benthic organisms, calling for effective risk assessment. Traditional risk assessments based on target analysis are useful when the principal contaminants responsible for ecological risk are known; however, these approaches become challenging when dealing with chemical mixtures. In addition, the compositions of chemical mixtures often differ in regions with different levels of socioeconomic development, requiring risk assessment methods that are applicable under different pollution scenarios. Herein, in situ bioassays were conducted with two native species, Chinese rare minnows (Gobiocypris rarus) and Asian clams (Corbicula fluminea), in economically developed watersheds in China (Pearl River Basin (PRB) and Taihu Lake Basin (THB)) and agriculture-dominated Poyang Lake Basin (PYB). Significant lethal and sublethal effects (e.g., neurotoxicity, reproductive toxicity, and metabolic and oxidative stress) were observed in fish and clams irrespective of economic gradients. Notably, ecological effects differed significantly between water and sediment phases within the same region. Target (98 contaminants) and suspect screening (942 contaminants) revealed regional-specific characteristics. Ecological risk assessments using a weight of evidence approach demonstrated that both water and sediment in the PRB were at moderate to high risk, as was the sediment in the less developed PYB. However, the characteristics of mixture pollution varied greatly among regions. Suspect screening identified many pollutants that are not regularly monitored but are present at high environmental concentrations and are linked to local industrial production. These distinct mixture risk characteristics across different basins suggest that mitigating aquatic pollution requires region-specific management measures.
Collapse
Affiliation(s)
- Yujun Tong
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Huizhen Li
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Yuanyuan Pei
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Development and Reform Institute, Guangzhou 510045, China
| | - Fei Cheng
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Jing You
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Huang J, Cheng F, He L, Lou X, Li H, You J. Effect driven prioritization of contaminants in wastewater treatment plants across China: A data mining-based toxicity screening approach. WATER RESEARCH 2024; 264:122223. [PMID: 39116614 DOI: 10.1016/j.watres.2024.122223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
A diversity of contaminants of emerging concern (CECs) are present in wastewater effluent, posing potential threats to receiving waters. It is urgent for a holistic assessment of the occurrence and risk of CECs related to wastewater treatment plants (WWTP) on national and regional scales. A data mining-based risk prioritization method was developed to collect the reported contaminants and their respective concentrations in municipal and industrial WWTPs and their receiving waters across China over the past 20 years. A total of 10,781 chemicals were reported in 8336 publications, of which 1037 contaminants were reported with environmental concentrations. While contaminant categories varied across WWTP types (municipal vs. industrial) and regions, pharmaceuticals and cyclic hydrocarbons were the most studied CECs. Contaminant composition in receiving water was closer to that in municipal than industrial WWTPs. Publications on legacy pesticides and polycyclic aromatic hydrocarbons in WWTP decreased recently compared to the past, while pharmaceuticals and perfluorochemicals have received increasing attention, showing a changing concern over time. Detection frequency, concentration, removal efficiency, and toxicity data were integrated for assessing potential risks and prioritizing CECs on national and regional scales using an environmental health prioritization index (EHPi) approach. Among 666 contaminants in municipal WWTP effluent, trichlorfon and perfluorooctanesulfonic acid were with the highest EHPi scores, while 17ɑ-ethinylestradiol and bisphenol A had the highest EHPi scores among 304 contaminants in industrial WWTPs. The prioritized contaminants varied across regions, suggesting a need for tailoring regional measures of wastewater treatment and control.
Collapse
Affiliation(s)
- Jiehui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Fei Cheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Liwei He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiaohan Lou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
5
|
Cheng H, You J, Ma S, Liao K, Hu H, Ren H. 2-Hydroxy-1,4-Naphthoquinone: A Promising Redox Mediator for Minimizing Dissolved Organic Nitrogen and Eutrophication Effects of Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2870-2880. [PMID: 38181504 DOI: 10.1021/acs.est.3c07261] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Researchers and engineers are committed to finding effective approaches to reduce dissolved organic nitrogen (DON) to meet more stringent effluent total nitrogen limits and minimize effluent eutrophication potential. Here, we provided a promising approach by adding specific doses of 2-hydroxy-1,4-naphthoquinone (HNQ) to postdenitrification bioreactors. This approach of adding a small dosage of 0.03-0.1 mM HNQ effectively reduced the concentrations of DON in the effluent (ANOVA, p < 0.05) by up to 63% reduction of effluent DON with a dosing of 0.1 mM HNQ when compared to the control bioreactors. Notably, an algal bioassay indicated that DON played a dominant role in stimulating phytoplankton growth, thus effluent eutrophication potential in bioreactors using 0.1 mM HNQ dramatically decreased compared to that in control bioreactors. The microbe-DON correlation analysis showed that HNQ dosing modified the microbial community composition to both weaken the production and promote the uptake of labile DON, thus minimizing the effluent DON concentration. The toxic assessment demonstrated the ecological safety of the effluent from the bioreactors using the strategy of HNQ addition. Overall, HNQ is a promising redox mediator to reduce the effluent DON concentration with the purpose of meeting low effluent total nitrogen levels and remarkably minimizing effluent eutrophication effects.
Collapse
Affiliation(s)
- Huazai Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 Jiangsu, China
| | - Jiaqian You
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 Jiangsu, China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 Jiangsu, China
| | - Kewei Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 Jiangsu, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 Jiangsu, China
| |
Collapse
|
6
|
Wu F, Zhou Z, Zhang S, Cheng F, Tong Y, Li L, Zhang B, Zeng X, Li H, Wang D, Yu Z, You J. Toxicity identification evaluation for hydraulic fracturing flowback and produced water during shale gas exploitation in China: Evidence from tissue residues and gene expression. WATER RESEARCH 2023; 241:120170. [PMID: 37290192 DOI: 10.1016/j.watres.2023.120170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Hydraulic fracturing flowback and produced water (HF-FPW) from shale gas extraction processes is a highly complex medium with potential threats to the environment. Current research on ecological risks of FPW in China is limited, and the link between major components of FPW and their toxicological effects on freshwater organisms is largely unknown. By integrating chemical and biological analyses, toxicity identification evaluation (TIE) was used to reveal causality between toxicity and contaminants, potentially disentangling the complex toxicological nature of FPW. Here, FPW from different shale gas wells, treated FPW effluent, and a leachate from HF sludge were collected from southwest China, and TIE was applied to obtain a comprehensive toxicity evaluation in freshwater organisms. Our results showed that FPW from the same geographic zone could cause significantly different toxicity. Salinity, solid phase particulates, and organic contaminants were identified as the main contributors to the toxicity of FPW. In addition to water chemistry, internal alkanes, PAHs, and HF additives (e.g., biocides and surfactants) were quantified in exposed embryonic fish by target and non-target tissue analyses. The treated FPW failed to mitigate the toxicity associated with organic contaminants. Transcriptomic results illustrated that organic compounds induced toxicity pathways in FPW-exposed embryonic zebrafish. Similar zebrafish gene ontologies were affected between treated and untreated FPW, again confirming that sewage treatment did not effectively remove organic chemicals from FPW. Thus, zebrafish transcriptome analyses revealed organic toxicant-induced adverse outcome pathways and served as evidence for TIE confirmation in complex mixtures under data-poor scenarios.
Collapse
Affiliation(s)
- Fan Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhimin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Shaoqiong Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Fei Cheng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yujun Tong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Liang Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Biao Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Dali Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
7
|
Antibacterial and Antibiofilm Potential of Microbial Polysaccharide Overlaid Zinc Oxide Nanoparticles and Selenium Nanowire. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here, we report on the synthesis of zinc oxide nanoparticles (ZnO NPs) and selenium nanowires (Se NWs) using microbial exopolysaccharides (EPS) as a mediator and then examine their antibacterial and ecotoxicity effects in vitro and in vivo, respectively. At 100 µg/mL, EPS, EPS-ZnO NPs, and EPS-Se NWs all exhibited potent in vitro antibacterial properties, drastically inhibiting the development of aquatic Gram(-) pathogens. In addition, antibiofilm studies using a microscope revealed that EPS, EPS-ZnO NPs, and EPS-Se NWs at 75 µg/mL prevented biofilm development. Furthermore, the in vivo toxicity was carried out via Danio rerio embryos and Ceriodaphnia cornuta. Danio rerio embryos were determined at different time intervals (6 hpf, 12 hpf, 24 hpf and 48 hpf). The maximum survival rate (100%) was obtained in a control group. Correspondingly, EPS, EPS-ZnO NPs and EPS-Se NWs treated embryos showed a considerable survival rate with 93.3%, 86.7% and 77.2%, respectively, at 100 µg/mL for 48 hpf. The total mortality of C. cornuta was seen at 100 µg/mL, with 56.7% in EPS, 60.0% in EPS-ZnO NPs, and 70.0% in EPS-Se NWs. For C. cornuta, the LC50 values for EPS, EPS-ZnO NPs, and EPS-Se NWs were 90.32, 81.99, and 62.99 µg/mL, respectively. Under a microscope, morphological alterations in C. cornuta were analyzed. After 24 h, an amount of dark substance was seen in the guts of C. cornuta exposed to 100 µg/mL, but in the control group, all of the living C. cornuta were swimming as usual. Our results show that EPS and EPS-ZnO NPs were less harmful than EPS-Se NWs, and that they were successfully employed to shield freshwater crustaceans from the toxins in aquatic environments.
Collapse
|