1
|
Gao H, Zhu L, Zhang G, Xu X, Yang F. Defects-rich Ru-doped black TiO 2 nanotube arrays for photoelectrochemical levofloxacin degradation coupled with simultaneous cathodic H 2 production. J Colloid Interface Sci 2025; 688:677-687. [PMID: 40022788 DOI: 10.1016/j.jcis.2025.02.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
As an emerging and promising technology, the bifunctional photoelectrocatalytic (PEC) systems have shown remarkable potential in treating wastewater and producing energy. A central critical challenge in this field is the development of high-performance electrode materials that exhibit superior PEC properties. In this work, the defect-rich Ru-doped black TiO2 nanotube arrays (Ru-BTNAs) bifunctional electrodes were engineered and utilized in a PEC system, aiming to achieve efficient antibiotics levofloxacin degradation and hydrogen production simultaneously. In-depth characterization characterizations and the Density functional theory (DFT) calculations reveal that the synergistic effect between Ti3+-oxygen vacancies (Ovs) defects and Ru doping significantly improves light absorption, accelerates the separation and transmission of photoexcited e--h+ pairs, and optimizes PEC performance. The coupled photocatalytic and electrocatalytic processes enhance the generation of h+, 1O2, HO•, and SO4•- radicals, which effectively degrade levofloxacin. The abundant Ovs facilitate electron transfer from BTNAs to Ru, accelerating hydrogen evolution reaction (HER) on electron-rich Ru at a low overpotential. This work provides a theoretical framework for designing bifunctional electrode to achieve the energy-efficient hydrogen production from antibiotics-contaminated wastewater.
Collapse
Affiliation(s)
- Hui Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2#, Dalian 116024, China
| | - Lebing Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2#, Dalian 116024, China
| | - Guoquan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2#, Dalian 116024, China.
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2#, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2#, Dalian 116024, China
| |
Collapse
|
2
|
Wang J, Dong W, Song Q, Zhang S, Li M, Chen J, Zhang S, Lu J. Unveiling heterointerface activation effects with different titanium dioxide crystal phases for electrocatalytic nitrate-to-ammonia reduction. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137174. [PMID: 39879777 DOI: 10.1016/j.jhazmat.2025.137174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025]
Abstract
Nitrate pollution poses severe risks to aquatic ecosystems and human health. The electrocatalytic nitrate reduction reaction (NITRR) offers a promising environmental and economic solution for nitrate pollution treatment and nitrogen source recovery; however, it continues to experience limited efficiency in neutral electrolytes. This study explores the heterointerface activation effects of TiO2/Cu2O heterogeneous catalysts with rutile (R-TiO2) and anatase (A-TiO2) phases and reveals that R-TiO2 is an active crystal phase with high nitrate reduction performance. The R-TiO2/Cu2O catalyst removed 99.8 % of nitrate in 180 min and achieved an ammonia yield of 0.23 mmol h-1 cm-2 with a Faraday efficiency of 85.7 % in a neutral electrolyte. In situ characterisation and theoretical calculations revealed that heterointerface reconstruction and oxygen vacancy (OV) formation overcome the poor electrical conductivity of R-TiO2, enhance electron transfer, and optimize the active sites. Furthermore, the Cu-O-Ti bond at the interface significantly weakens the adsorption energy of the critical intermediate *NO3, thereby facilitating NITRR. This study provides new insights into crystal phase modulation in catalyst design and offers innovative strategies for developing highly efficient NITRR electrocatalysts, paving the way for sustainable nitrate pollution treatment and nitrogen source recovery.
Collapse
Affiliation(s)
- Junxiao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenxin Dong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qinan Song
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuo Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junchun Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shihao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
3
|
Zhang B, Zhao J, Qiu H, Chen M, Ren X, Wang H, Wei Q. Boosting Electrochemical Nitrate Reduction to Ammonia by Fe Doped CuO/Co 3O 4 Nanosheet/Nanowire Heterostructures. Chemphyschem 2024; 25:e202400738. [PMID: 39258742 DOI: 10.1002/cphc.202400738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3 -RR) is a novel green method for ammonia synthesis. The development of outstanding NO3 -RR performance is based on reasonable catalyst. Metal oxides have garnered significant attention due to their exceptional electrical conductivity and catalytic properties. Doping serves as an effective strategy for enhancing catalyst performance due to its ability to change the electron cloud distribution and energy levels. In this study, we develop a heterojunction catalyst Fe doped copper oxide nanosheet and cobalt tetroxide nanowire growing on carbon cloth simultaneously (Fe-CuO@Co3O4/CC) via hydrothermal method. The well-designed Fe-CuO@Co3O4/CC has excellent NH3 yield (470.9 μmol h-1 cm-2) and Faraday efficiency (FE: 84.4 %) at -1.2 V versus reversible hydrogen electrode (vs. RHE). The heterostructure increases the specific surface area of the catalyst, and the possibility of contact between the catalyst and NO3 - ions, enhances the catalytic efficiency. In addition, the catalyst has excellent stability and can stably carry out the electrocatalytic nitrate reduction reaction (NO3 -RR), which provides a way for further research on the high-efficiency reduction of nitrate.
Collapse
Affiliation(s)
- Baojian Zhang
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jinxiu Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Huancheng Qiu
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Mingliang Chen
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiang Ren
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Huan Wang
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
4
|
Li D, Jiang SC, Xie JF, Zhang J, Zheng YL, Zhao QB, Yu HQ. Boosting seawater denitrification in an electrochemical flow cell. WATER RESEARCH 2024; 266:122384. [PMID: 39243459 DOI: 10.1016/j.watres.2024.122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Nitrogen compounds in current seawater treatment processes typically are converted to nitrate, threatening seawater quality and marine ecology. Electrochemical denitrification is a promising technique, but its efficiency is severely limited by the presence of excess chloride ions. In this work, a flow-through cell went through an on-demand chlorine-mediated electrochemical-chemical tandem reaction process was designed for efficient seawater denitrification. Equipped with ultrathin cobalt-based nanosheets as the cathode catalyst and commercial IrO2-RuO2/Ti as the anode, the newly designed flow-through cell achieved nitrate removal efficiency that was about 50 times greater than the batch cell and nearly 100 % N2 selectivity. Moreover, nitrite and ammonia can also be removed with over 93 % efficiency in total nitrogen (TN) removal. Furthermore, the concentration of active chlorine in the effluent could be adjusted within two orders of magnitude, enabling on-demand release of active chlorine. Finally, this flow-through cell reduced the TN of actual mariculture tailwater (40.1 mg N L-1 nitrate) to only 5.7 mg N L-1, meeting the discharge standard for aquaculture tailwater of Fujian, China. This work demonstrates the paradigm of deep denitrification from ultra-concentrated chlorine ion wastewater using an on-demand active chlorine-mediated electrochemical-chemical tandem reaction process.
Collapse
Affiliation(s)
- Ding Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jia-Fang Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Lian Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan-Bao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Ji Y, Dong H, Shao Q, Wen T, Wang L, Zhang J, Long C. Ethylene Glycol (EG)-Derived Chlorine-Resistant Cu 0/TiO 2-x for Efficient Photocatalytic Degradation of Nitrate to N 2 without Sacrificial Agents at Near-Neutral pH Conditions: The Synergistic Effects of Cu 0 and EG Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19555-19566. [PMID: 39421922 DOI: 10.1021/acs.est.4c09037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The selective photoreduction of nitrate to nontoxic nitrogen gas has emerged as an energy-efficient and environmentally friendly route for nitrate removal. However, the coexisting high-concentration chloride ions in wastewater can exert a significant influence on nitrate reduction due to the competitive adsorption and corrosion of Cl- on photocatalysts. Herein, we prepared ethylene glycol-Cu/TiO2-x (EG-Cu/TiO2-x) through a solvothermal reaction of Cu-doped TiO2 in an EG solution. The photodegradation of nitrate using EG-Cu/TiO2-x without adding sacrificial agents can efficiently occur in near-neutral pH solutions containing 50 mM Cl- with 95.26% of NO3- removal and 76.52% of N2 selectivity. Moreover, the photocatalyst performance remained at a high level after 8 cycles. In this work, NO3- was first converted to NH4+ by Cu0 and Ti3+, followed by the NH4+-to-N2 conversion by photogenerated chlorine free radicals. Compared to HO•, Cl•, and Cl2•-, ClO• is proved to play the predominant role in transforming NH4+ to N2. The EG radicals produced by UV light impede Cl- adsorption on Cu, protecting Cu0 from being corroded. What's more, photoelectrons can reduce Ti4+ to Ti3+ and protect Cu0 from being oxidized, enabling the stability of reactive sites. This work provides novel insights and understanding on designing photocatalysts for NO3- removal in solutions containing chloride ions, highlighting the significance of eliminating Cl- by EG radicals and adjusting the conversion process of NO3- for the efficient removal of NO3-.
Collapse
Affiliation(s)
- Yekun Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hao Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qi Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tiancheng Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lisha Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 224000, China
| |
Collapse
|
6
|
Li H, Li J, Zu B, Du Y, Su Y, Dou X. Precise counter anion modulation of the self-assembly behavior-endowed ultrasensitive and specific dual-mode visualization of nitrate. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135014. [PMID: 38941839 DOI: 10.1016/j.jhazmat.2024.135014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
Pt(II) polypyridine complex-based probe exhibits promising performance in anion detection by the change of the absorption and emission properties based on supramolecular self-assembly. However, whether one can develop a modulation strategy of the counter anion to boost the detection sensitivity and anti-interference capability of the Pt(II) complex-based probe remains a big challenge. Here, an effective modulation strategy was proposed by precisely regulating the interaction energy through adjusting the type of the counter anions, and a series of probes have been synthesized by counter anion (X = Cl-, ClO4-, PF6-) exchange in [Pt(tpy)Cl]·X (tpy=2,2':6',2''-terpyridine), and thus the colorimetric-luminescence dual-mode detection toward nitrate was achieved. The optimal [Pt(tpy)Cl]·Cl probe shows superior nitrate detection performance including a limit of detection (LOD) (8.68 nM), rapid response (<0.5 s), an excellent selectivity and anti-interference capability even facing 14 common anions. Moreover, a polyvinyl alcohol (PVA) sponge-based sensing chip loaded with the probe enables the ultra-sensitive detection of nitrate particles with an ultralow detection limit of 7.6 pg, and it was further integrated into a detection pen for the accurate recognition of nitrate particles in real scenarios. The proposed counter-anion modulation strategy is expected to start a new frontier for the exploration of novel Pt(II) complex-based probes.
Collapse
Affiliation(s)
- Honghong Li
- College of Chemical Engineering, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiguang Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| | - Yuwan Du
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuhong Su
- College of Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wei J, Li Y, Lin H, Lu X, Zhou C, Li YY. Copper-based electro-catalytic nitrate reduction to ammonia from water: Mechanism, preparation, and research directions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100383. [PMID: 38304117 PMCID: PMC10830547 DOI: 10.1016/j.ese.2023.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
Global water bodies are increasingly imperiled by nitrate pollution, primarily originating from industrial waste, agricultural runoffs, and urban sewage. This escalating environmental crisis challenges traditional water treatment paradigms and necessitates innovative solutions. Electro-catalysis, especially utilizing copper-based catalysts, known for their efficiency, cost-effectiveness, and eco-friendliness, offer a promising avenue for the electro-catalytic reduction of nitrate to ammonia. In this review, we systematically consolidate current research on diverse copper-based catalysts, including pure Cu, Cu alloys, oxides, single-atom entities, and composites. Furthermore, we assess their catalytic performance, operational mechanisms, and future research directions to find effective, long-term solutions to water purification and ammonia synthesis. Electro-catalysis technology shows the potential in mitigating nitrate pollution and has strategic importance in sustainable environmental management. As to the application, challenges regarding complexity of the real water, the scale-up of the commerical catalysts, and the efficient collection of produced NH3 are still exist. Following reseraches of catalyst specially on long term stability and in situ mechanisms are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Chucheng Zhou
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ya-yun Li
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
8
|
Xiong Y, Wang Y, Tsang CC, Zhou J, Hao F, Liu F, Wang J, Xi S, Zhao J, Fan Z. Metal Doped Unconventional Phase IrNi Nanobranches: Tunable Electrochemical Nitrate Reduction Performance and Pollutants Upcycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10863-10873. [PMID: 38842426 DOI: 10.1021/acs.est.4c04014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Electrochemical nitrate reduction (NO3RR) provides a new option to abate nitrate contamination with a low carbon footprint. Restricted by competitive hydrogen evolution, achieving satisfied nitrate reduction performance in neutral media is still a challenge, especially for the regulation of this multielectron multiproton reaction. Herein, facile element doping is adopted to tune the catalytic behavior of IrNi alloy nanobranches with an unconventional hexagonal close-packed (hcp) phase toward NO3RR. In particular, the obtained hcp IrNiCu nanobranches favor the ammonia production and suppress byproduct formation in a neutral electrolyte indicated by in situ differential electrochemical mass spectrometry, with a high Faradaic efficiency (FE) of 85.6% and a large yield rate of 1253 μg cm-2 h-1 at -0.4 and -0.6 V (vs reversible hydrogen electrode (RHE)), respectively. In contrast, the resultant hcp IrNiCo nanobranches promote the formation of nitrite, with a peak FE of 33.1% at -0.1 V (vs RHE). Furthermore, a hybrid electrolysis cell consisting of NO3RR and formaldehyde oxidation is constructed, which are both catalyzed by hcp IrNiCu nanobranches. This electrolyzer exhibits lower overpotential and holds the potential to treat polluted air and wastewater simultaneously, shedding light on green chemical production based on contaminate degradation.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Chi Ching Tsang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833, Singapore
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
9
|
Cai W, Chen C, Bao C, Gu JN, Li K, Jia J. Nitrate reduction to nitrogen in wastewater using mesoporous carbon encapsulated Pd-Cu nanoparticles combined with in-situ electrochemical hydrogen evolution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121346. [PMID: 38824884 DOI: 10.1016/j.jenvman.2024.121346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The conversion of NO3--N to N2 is of great significance for zero discharge of industrial wastewater. Pd-Cu hydrogenation catalysis has high application prospects for the reduction of NO3--N to N2, but the existing form of Pd-Cu, the Pd-Cu mass ratio and the H2 evolution rate can affect the coverage of active hydrogen (*H) on the surface of Pd, thereby affecting N2 selectivity. In this work, mesoporous carbon (MC) is used as support to disperse Pd-Cu catalyst and is applied in an in-situ electrocatalytic H2 evolution system for NO3--N removal. The Pd-Cu particles with the average size of 6 nm are uniformly encapsulated in the mesopores of MC. Electrochemical in-situ H2 evolution can not only reduce the amount of H2 used, but the H2 bubbles can also be efficiently dispersed when PPy coated nickel foam (PPy/NF) is used as cathode. Moreover, the mesoporous structure of MC can further split H2 bubbles, reducing the coverage of *H on Pd. The highest 77% N2 selectivity and a relatively faster NO3--N removal rate constant (0.10362 min-1) can be achieved under the optimal conditions, which is superior to most reported Pd-Cu catalytic systems. The prepared catalyst is further applied to the denitrification of actual deplating wastewater. NO3--N with the initial concentration of 650 mg L-1 can be completely removed after 180 min of treatment, and the TN removal can be maintained at 72%.
Collapse
Affiliation(s)
- Wenlue Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chen Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chenyu Bao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jia-Nan Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
10
|
Bayode AA, Ore OT, Nnamani EA, Sotunde B, Koko DT, Unuabonah EI, Helmreich B, Omorogie MO. Perovskite Oxides: Syntheses and Perspectives on Their Application for Nitrate Reduction. ACS OMEGA 2024; 9:19770-19785. [PMID: 38737083 PMCID: PMC11080040 DOI: 10.1021/acsomega.4c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Over the decades, the rise in nitrate levels in the ecosystem has posed a serious threat to the continuous existence of humans, fauna, and flora. The deleterious effects of increasing levels of nitrates in the ecosystem have led to adverse health and environmental implications in the form of methemoglobinemia and eutrophication, respectively. Different pathways/routes for the syntheses of perovskites and their oxides were presented in this review. In recent times, electrocatalytic reduction has emerged as the most utilized technique for the conversion of nitrates into ammonia, an industrial feedstock. According to published papers, the efficiency of various perovskites and their oxides used for the electrocatalytic reduction of nitrate achieved a high Faradaic efficiency of 98%. Furthermore, studies published have shown that there is a need to improve the chemical stability of perovskites and their oxides during scale-up applications, as well as their scalability for industrial applications.
Collapse
Affiliation(s)
- Ajibola A. Bayode
- College
of Chemical Engineering, Sichuan University
of Science and Engineering, Zigong 643000, P. R. China
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
| | - Odunayo T. Ore
- Department
of Chemical Sciences, Achiever’s
University, P.M.B. 1030, 341101 Owo, Nigeria
| | - Esther A. Nnamani
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Babajide Sotunde
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Daniel T. Koko
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Emmanuel I. Unuabonah
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Brigitte Helmreich
- Chair
of Urban Water Systems Engineering, School
of Engineering and Design, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Martins O. Omorogie
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
- Chair
of Urban Water Systems Engineering, School
of Engineering and Design, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
11
|
Yang Z, Zhou H, Zhang X, Ma X, Zang X, Ding Y, Zhang J, He D. Simultaneous chelated heavy metals removal and sludge recovery through titanium coagulation: From waste to resource. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168821. [PMID: 38016569 DOI: 10.1016/j.scitotenv.2023.168821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Green methods for chelated heavy metals treatment and recovery are essential for coordinated development of resources and environment. Herein, a simple and competent method, titanium salt (TiCl4) coagulation was developed to remove and recycle chelated heavy metals. Our results revealed that this method proved to be effective for metals-citrate [Cu(II), Ni(II), Zn(II) and Cr(VI)], achieving removal efficiencies of 95 %, 92 %, 99 %, and 99 % within 30 min, surpassing direct alkaline precipitation and well-used Fe(III) coagulation. Whereafter, the copper-containing sludge was successfully transformed into copper-doped titanium dioxide (TiO2) photocatalysts by facile calcination. Through comprehensively investigating physicochemical properties by a suite of characterization techniques, we confirmed that doping of Cu induced bandgap narrowing, high specific surface area as well as the formation of oxygen vacancy. Accordingly, the recycling photocatalysts showed remarkable enhanced photocatalytic performance than the pristine TiO2, achieving improvement in the degradation efficiency of 82 %, 61 % and 67 % for carbamazepine(CBZ), bisphenol A (BPA) and methyl orange (MO). In addition, both radical (OH and O2-) and non-radical (1O2 and h+) pathways synergistically contributed to the removal of organic pollutants during photocatalysis. Ultimately, based on economic feasibility assessment and life cycle assessment (LCA), the copper-containing titanium coagulation sludge reuse for photocatalyst could bring lower carbon emissions, reduced environmental risks and higher economic benefits. The elucidation of this study provides new insights into the removal and recycle of chelated heavy metals from wastewater by using an environment-friendly and cost-effective method.
Collapse
Affiliation(s)
- Zhengheng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Hongbo Zhou
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen 518055, PR China
| | - Xinfei Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaoming Ma
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen 518055, PR China
| | - Xi Zang
- Guangdong Kaitian Environmental Governance Co. Ltd, Zhuhai 519000, PR China
| | - Yuxin Ding
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiafeng Zhang
- National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Hu Y, Liu J, Lee C, Luo W, Dong J, Liang Z, Chen M, Hu E, Zhang M, Debbie Soo XY, Zhu Q, Li F, Rawat RS, Ng MF, Zhong L, Han B, Geng D, Yan Q. Balanced NO x- and Proton Adsorption for Efficient Electrocatalytic NO x- to NH 3 Conversion. ACS NANO 2023. [PMID: 37979042 DOI: 10.1021/acsnano.3c06798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Electrocatalytic nitrate (NO3-)/nitrite (NO2-) reduction reaction (eNOx-RR) to ammonia under ambient conditions presents a green and promising alternative to the Haber-Bosch process. Practically available NOx- sources, such as wastewater or plasma-enabled nitrogen oxidation reaction (p-NOR), typically have low NOx- concentrations. Hence, electrocatalyst engineering is important for practical eNOx-RR to obtain both high NH3 Faradaic efficiency (FE) and high yield rate. Herein, we designed balanced NOx- and proton adsorption by properly introducing Cu sites into the Fe/Fe2O3 electrocatalyst. During the eNOx-RR process, the H adsorption is balanced, and the good NOx- affinity is maintained. As a consequence, the designed Cu-Fe/Fe2O3 catalyst exhibits promising performance, with an average NH3 FE of ∼98% and an average NH3 yield rate of 15.66 mg h-1 cm-2 under the low NO3- concentration (32.3 mM) of typical industrial wastewater at an applied potential of -0.6 V versus reversible hydrogen electrode (RHE). With low-power direct current p-NOR generated NOx- (23.5 mM) in KOH electrolyte, the Cu-Fe/Fe2O3 catalyst achieves an FE of ∼99% and a yield rate of 15.1 mg h-1 cm-2 for NH3 production at -0.5 V (vs RHE). The performance achieved in this study exceeds industrialization targets for NH3 production by exploiting two available low-concentration NOx- sources.
Collapse
Affiliation(s)
- Yue Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Jiawei Liu
- Institute of Materials Research and Engineering, A*STAR, 138634, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Wenyu Luo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Jinfeng Dong
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Zhishan Liang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Mengxin Chen
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Erhai Hu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering, A*STAR, 138634, Singapore
| | | | - Qiang Zhu
- Institute of Materials Research and Engineering, A*STAR, 138634, Singapore
| | - Fengkun Li
- Natural Science and Science Education, National Institute of Education, Nanyang Technological University, 637616, Singapore
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China
| | - Rajdeep Singh Rawat
- Natural Science and Science Education, National Institute of Education, Nanyang Technological University, 637616, Singapore
| | - Man-Fai Ng
- Institute of High Performance Computing (IHPC), A*STAR, 138632, Singapore
| | - Lixiang Zhong
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Han
- SCARCE Laboratory, Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, 637459, Singapore
| | - Dongsheng Geng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, 138634, Singapore
| |
Collapse
|
13
|
Li Q, Liu GH, Qi L, Wang H, Xian G. Chlorine-mediated electrochemical advanced oxidation process for ammonia removal: Mechanisms, characteristics and expectation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165169. [PMID: 37400024 DOI: 10.1016/j.scitotenv.2023.165169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Chlorine-Mediated Electrochemical Advanced Oxidation (Cl-EAO) technology is a promising approach for ammonia removal from wastewater due to its numerous advantages, including small infrastructure, short processing time, easy operation, high security, and high nitrogen selectivity. This paper provides a review of the ammonia oxidation mechanisms, characteristics, and anticipated applications of Cl-EAO technology. The mechanisms of ammonia oxidation encompass breakpoint chlorination and chlorine radical oxidation, although the contributions of active chlorine, Cl, and ClO remain uncertain. This study critically examines the limitations of existing research and suggests that a combination of determining free radical concentration and simulating a kinetic model would help elucidate the contributions of active chlorine, Cl, and ClO to ammonia oxidation. Furthermore, this review comprehensively summarizes the characteristics of ammonia oxidation, including kinetic properties, influencing factors, products, and electrodes. The amalgamation of Cl-EAO technology with photocatalytic and concentration technologies has the potential to enhance ammonia oxidation efficiency. Future research should concentrate on clarifying the contributions of active chlorine, Cl, and ClO to ammonia oxidation, the production of chloramines and other byproducts, and the development of more efficient anodes for the Cl-EAO process. The main objective of this review is to enhance the understanding of the Cl-EAO process. The findings presented herein contribute to the advancement of Cl-EAO technology and provide a foundation for future studies in this field.
Collapse
Affiliation(s)
- Qiangang Li
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Guang Xian
- Logistics Command Department, Army Logistics Academy, Chongqing 401331, China
| |
Collapse
|
14
|
Song M, Xing Y, Li Y, Liu D, Han E, Gao Y, Yang Z, Yang X, He Y. Fe and Cu Double-Doped Co 3O 4 Nanorod with Abundant Oxygen Vacancies: A High-Rate Electrocatalyst for Tandem Electroreduction of Nitrate to Ammonia. Inorg Chem 2023; 62:16641-16651. [PMID: 37738294 DOI: 10.1021/acs.inorgchem.3c02834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) is an attractive green alternative to the conventional Haber-Bosch method for the synthesis of NH3. However, this reaction is a tandem process that involves multiple steps of electrons and protons, posing a significant challenge to the efficient synthesis of NH3. Herein, we report a high-rate NO3RR electrocatalyst of Fe and Cu double-doped Co3O4 nanorod (Fe1/Cu2-Co3O4) with abundant oxygen vacancies, where the Cu preferentially catalyzes the rapid conversion of NO3- to NO2- and the oxygen vacancy in the Co3O4 substrate can accelerate NO2- reduction to NH3. In addition, the introduction of Fe can efficiently capture atomic H* that promotes the dynamics of NO2- to NH3, improving Faradaic efficiency of the produced NH3. Controlled experimental results show that the optimal electrocatalyst of Fe1/Cu2-Co3O4 exhibits good performance with high conversion (93.39%), Faradaic efficiency (98.15%), and ammonia selectivity (98.19%), which is significantly better than other Co-based materials. This work provides guidance for the rational design of high-performance NO3RR catalysts.
Collapse
Affiliation(s)
- Maosen Song
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yuxuan Xing
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yudong Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Harbin 150040, China
| | - Dan Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Harbin 150040, China
| | - Enshan Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yang Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziyi Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaohui Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yanzhen He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
15
|
Liu Z, Shen F, Shi L, Tong Q, Tang M, Li Y, Peng M, Jiao Z, Jiang Y, Ao L, Fu W, Lv X, Jiang G, Hou L. Electronic Structure Optimization and Proton-Transfer Enhancement on Titanium Oxide-Supported Copper Nanoparticles for Enhanced Nitrogen Recycling from Nitrate-Contaminated Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37364020 DOI: 10.1021/acs.est.3c03431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Electrocatalytic reduction of nitrate to NH3 (NO3RR) on Cu offers sustainable NH3 production and nitrogen recycling from nitrate-contaminated water. However, Cu affords limited NO3RR activity owing to its unfavorable electronic state and the slow proton transfer on its surface, especially in neutral/alkaline media. Furthermore, although a synchronous "NO3RR and NH3 collection" system has been developed for nitrogen recycling from nitrate-laden water, no system is designed for natural water that generally contains low-concentration nitrate. Herein, we demonstrate that depositing Cu nanoparticles on a TiO2 support enables the formation of electron-deficient Cuδ+ species (0 < δ ≤ 2), which are more active than Cu0 in NO3RR. Furthermore, TiO2-Cu coupling induces local electric-field enhancement that intensifies water adsorption/dissociation at the interface, accelerating proton transfer for NO3RR on Cu. With the dual enhancements, TiO2-Cu delivers an NH3-N selectivity of 90.5%, mass activity of 41.4 mg-N h gCu-1, specific activity of 377.8 mg-N h-1 m-2, and minimal Cu leaching (<25.4 μg L-1) when treating 22.5 mg L-1 of NO3--N at -0.40 V, outperforming most of the reported Cu-based catalysts. A sequential NO3RR and NH3 collection system based on TiO2-Cu was then proposed, which could recycle nitrogen from nitrate-contaminated water under a wide concentration window of 22.5-112.5 mg L-1 at a rate of 209-630 mgN m-2 h-1. We also demonstrated this system could collect 83.9% of nitrogen from NO3--N (19.3 mg L-1) in natural lake water.
Collapse
Affiliation(s)
- Zixun Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fei Shen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Li Shi
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qiuwen Tong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Mu'e Tang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yiming Li
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Min Peng
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zhaojie Jiao
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yan Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Liang Ao
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China
- Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Wenyang Fu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China
- Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Li'an Hou
- High Tech Inst Beijing, Beijing 100000, China
| |
Collapse
|
16
|
Wang H, Huang J, Cai J, Wei Y, Cao A, Liu B, Lu S. In Situ/Operando Methods for Understanding Electrocatalytic Nitrate Reduction Reaction. SMALL METHODS 2023:e2300169. [PMID: 37035954 DOI: 10.1002/smtd.202300169] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Indexed: 06/19/2023]
Abstract
With the development of industrial and agricultural, a large amount of nitrate is produced, which not only disrupts the natural nitrogen cycle, but also endangers public health. Among the commonly used nitrate treatment techniques, the electrochemical nitrate reduction reaction (eNRR) has attracted extensive attention due to its mild conditions, pollution-free nature, and other advantages. An in-depth understanding of the eNRR mechanism is the prerequisite for designing highly efficient electrocatalysts. However, some traditional characterization tools cannot comprehensively and deeply study the reaction process. It is necessary to develop in situ and operando techniques to reveal the reaction mechanism at the time-resolved and atomic level. This review discusses the eNRR mechanism and summarizes the possible in situ techniques used in eNRR. A detailed introduction of various in situ techniques and their help in understanding the reaction mechanism is provided. Finally, the current challenges and future opportunities in this research area are discussed and highlighted.
Collapse
Affiliation(s)
- Huimin Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingjing Huang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinmeng Cai
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingying Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ang Cao
- Department of Physics, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
17
|
Zheng X, Yan Y, Li X, Liu Y, Yao Y. Theoretical insights into dissociative-associative mechanism for enhanced electrochemical nitrate reduction to ammonia. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130679. [PMID: 36580786 DOI: 10.1016/j.jhazmat.2022.130679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The development of electrochemical nitrate reduction reaction (NO3RR) is a "two birds-one stone" method, which can not only remove NO3- pollutant, but also produce valuable ammonia (NH3). However, a mechanistic understanding of the nitrate reduction process remains very limited. Herein, we highlighted a dissociative-associative mechanism for the NO3RR, in which the N-O bond of nitrate is initially broken to form *O and *NO2 intermediate adsorbed on two active sites (dissociation process) and then subsequently hydrogenated and reduced to ammonia (association process). By taking a series of diatomic site catalysts (CuTM/g-CN and CuTM/N6C, TM= Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as models, we systematically investigate the dissociative-associative mechanism for the NO3RR and compared with the Cu-based single-atom catalysts which follows the traditional directly associative mechanism. Density functional theory (DFT) calculations show that dissociative-associative mechanism is energetically favorable on seven catalysts (CuTi/g-CN, CuV/g-CN, CuMn/g-CN, CuCo/g-CN, CuV/N6C, CuCr/N6C and CuFe/N6C) with the significantly reduced limiting potential of - 0.14 V to - 0.47 V. Specifically, an efficiently screening strategy was proposed to determine the dissociative-associative or directly associative mechanism for NO3RR. This work can provide useful guideline for the rational design and development of NO3RR electrocatalysts.
Collapse
Affiliation(s)
- Xiaonan Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China; College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Yu Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Xiaoxiao Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Yang Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China.
| | - Yuan Yao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China.
| |
Collapse
|
18
|
Unveiling selective nitrate reduction to ammonia with Co3O4 nanosheets/TiO2 nanobelt heterostructure catalyst. J Colloid Interface Sci 2023; 630:714-720. [DOI: 10.1016/j.jcis.2022.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
|