1
|
Chen J, Zhang Z, Shen N, Yu H, Yu G, Qi J, Liu R, Hu C, Qu J. Bipartite trophic levels cannot resist the interference of microplastics: A case study of submerged macrophytes and snail. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137898. [PMID: 40107097 DOI: 10.1016/j.jhazmat.2025.137898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Some studies frequently focus on the toxic effects of compound pollution formed by microplastics and other pollutants on individual organisms, but it is still unclear how multi-trophic level organisms in compound communities resist the stress of microplastics. Thus, this research used a dose-response experiment (0, 0.1, 0.2, 0.5, 1 mg L-1) to illustrate the influences that microplastics might have on two symbiotic freshwater organisms Vallisneria natans and Sinotaia quadrata. The results showed the reduction of V. natans biomass in 0.5 and 1 mg L-1 groups (28-38 %), and disturbances on the photosynthetic system, reduced the chlorophyll content (15-85 %) and maximum quantum yields (10-31 %). In the case of S. quadrata, which subsisted by scraping leaf biofilms, there was a disruption in the functioning of the antioxidant system. Concurrently, the activities of digestive and neurotransmitter enzymes were affected, potentially leading to detrimental impacts on the organism's essential physiological processes. The introduction of microplastics significantly enhanced the relative abundance of specific microbial taxa, such as Proteobacteria within the biofilm of V. natans leaves and chloroflexi in the rhizosphere, thereby altering the microbial community assembly process. This means the potential ecological functions with microbes as the carrier was influenced. These results indicated that microplastic in aquatic environments can impact the metabolism, autotrophic, and heterotrophic behavior of double-end trophic organisms through symbiotic activities. Therefore, our study reveals how polystyrene microplastics affect the growth of submerged aquatic plants and snails, and from the perspective of community integrity and health, the introduction of these pollutants into freshwater environments may cause disruptive effects.
Collapse
Affiliation(s)
- Jun Chen
- Yunnan University, College of Ecology and Environment, Kunming 650500, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiqiang Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Nan Shen
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jing Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rui Liu
- Yunnan University, College of Ecology and Environment, Kunming 650500, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Liu Z, Qin M, Li R, Peijnenburg WJGM, Yang L, Liu P, Shi Q. Transport Dynamics and Physiological Responses of Polystyrene Nanoplastics in Pakchoi: Implications for Food Safety and Environmental Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10923-10933. [PMID: 40296279 DOI: 10.1021/acs.jafc.5c03590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Nanoplastics (NPs) have become a new environmental pollutant that causes serious harm to food safety. They can be absorbed by plants, transported to edible parts, transmitted to the human body along the food chain, and can threaten human health. The research investigated the transport and accumulation pathways of polystyrene NPs (PS-NPs) at varying concentrations using red fluorescence labeling. An analysis was conducted on the response of pakchoi to PS-NPs through a combination of transcriptional and physiological experiments. PS-NPs enter the xylem vessel of the root, subsequently carried to the petiole through transpirational tension, and eventually transported from the petiole's xylem vessels to the leaf. PS-NPs induced the accumulation of reactive oxygen species (ROS), which led to oxidative damage. In addition, it also disturbed the homeostasis of endogenous hormones and affected the growth of pakchoi. These findings help people understand the adverse effects of NPs on crops and increase attention to the hazards of NPs.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2300 RA, The Netherlands
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment, Bilthoven 3720 BA, The Netherlands
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
3
|
Liu H, Ciric L, Bhatti M. Effects of nanoplastics and compound pollutants containing nanoplastics on plants, microorganisms and rhizosphere systems: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118084. [PMID: 40158378 DOI: 10.1016/j.ecoenv.2025.118084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Nanoplastics (NPs) are the most widespread and least detectable type of plastic pollutant due to their extremely small particle size. The root system of plants has become an important pathway for NPs to enter the food chain from the natural environment. By combining with heavy metals or organic pollutants, NPs can exhibit greater biological toxicity compared to single pollutants. Although many studies have focused on the phytotoxicity and microbial toxicity of NPs separately, to the best of our knowledge, no review summarizes the toxicity of NPs from the perspective of the plant rhizosphere system with a combination of pollutants. By summarizing samples from 2015 to 2025, this review highlights that NPs can affect photosynthesis, gene transcription, and enzyme activity in both plants and microorganisms. NPs with large particle size can also disrupt the chemical balance of the rhizosphere environment and intensify competition for nutrients between plants and microorganisms, ultimately affecting the geochemical cycle. NPs of different particle sizes and concentrations can poison various biological structures, from surface layers to genetic material. In compound pollutants, where NPs combine with other contaminants, they can further disrupt elemental cycles in plants, reduce microbial community diversity, and increase the accumulation of other pollutants in the rhizosphere system compared to single pollutants. These findings provide new insights into the biotoxicity of NPs and the degradation of compound pollutants containing NPs. In addition, combined with the research results of this review, some research prospects on the relationship between NPs and rhizosphere systems are given.
Collapse
Affiliation(s)
- Haoran Liu
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom
| | - Lena Ciric
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom
| | - Manpreet Bhatti
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom.
| |
Collapse
|
4
|
Lin Z, Xu D, Zhao Y, Sheng B, Wu Z, Wen X, Zhou J, Chen G, Lv J, Wang J, Liu G. Micro/Nanoplastics in plantation agricultural products: behavior process, phytotoxicity under biotic and abiotic stresses, and controlling strategies. J Nanobiotechnology 2025; 23:231. [PMID: 40114145 PMCID: PMC11927206 DOI: 10.1186/s12951-025-03314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
With the extensive utilization of plastic products, microplastics/nanoplastics (MPs/NPs) contamination not only poses a global hazard to the environment, but also induces a new threat to the growth development and nutritional quality of plantation agricultural products. This study thoroughly examines the behavior of MPs/NPs, including their sources, entry routes into plants, phytotoxicity under various biotic and abiotic stresses (e.g., salinity, polycyclic aromatic hydrocarbons, heavy metals, antibiotics, plasticizers, nano oxide, naturally occurring organic macromolecular compounds, invasive plants, Botrytis cinerea mycorrhizal fungi.) and controlling strategies. MPs/NPs in agricultural systems mainly originate from mulch, sewage, compost fertilizer, municipal solid waste, pesticide packaging materials, etc. They enter plants through endocytosis, apoplast pathways, crack-entry modes, and leaf stomata, affecting phenotypic, metabolic, enzymatic, and genetic processes such as seed germination, growth metabolism, photosynthesis, oxidative stress and antioxidant defenses, fruit yield and nutrient quality, cytotoxicity and genotoxicity. MPs/NPs can also interact with other environmental stressors, resulting in synergistic, antagonistic, or neutral effects on phytotoxicity. To address these challenges, this review highlights strategies to mitigate MPs/NPs toxicity, including the development of novel green biodegradable plastics, plant extraction and immobilization, exogenous plant growth regulator interventions, porous nanomaterial modulation, biocatalysis and enzymatic degradation. Finally, the study identifies current limitations and future research directions in this critical field.
Collapse
Affiliation(s)
- Zhihao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China.
| | - Yiming Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Bin Sheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhijian Wu
- College of Horticulture, Hunan Agricultural University, Hunan, 410125, China
| | - Xiaobin Wen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jie Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Jun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China.
| |
Collapse
|
5
|
Nazari M, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z. Polyethylene nanoplastics affected morphological, physiological, and molecular indices in tomato (Solanum lycopersicum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109523. [PMID: 39827703 DOI: 10.1016/j.plaphy.2025.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
This study explored morphological, physiological, molecular, and epigenetic responses of tomatoes (Solanum lycopersicum) to soil contamination with polyethylene nanoplastics (PENP; 0.01, 0.1, and 1 gkg-1 soil). The PENP pollution led to severe changes in plant morphogenesis. The PENP treatments were associated with decreased plant biomass, reduced internode length, delayed flowering, and prolonged fruit ripening. Abnormal inflorescences, flowers, and fruits observed in the PENP-exposed seedlings support genetic changes and meristem dysfunction. Exposure of seedlings to PENP increased H2O2 accumulation and damaged membranes, implying oxidative stress. The PENP treatments induced activities of catalase (EC1.11.1.6), peroxidase (EC1.11.1.7), and phenylalanine ammonia-lyase (EC4.3.1.24) enzymes. Soil contamination with PENP also decreased the net photosynthesis, maximum photosystem efficiency, stomatal conductance, and transpiration rate. The nano-pollutant upregulated the expression of the histone deacetylase (HDA3) gene and R2R3MYB transcription factor. However, the AP2a gene was down-regulated in response to the PENP treatment. Besides, EPNP epigenetically contributed to changes in DNA methylation. The concentrations of proline, soluble phenols, and flavonoids also displayed an upward trend in response to the applied PENP treatments. The long-term exposure of seedlings to PENP influenced fruit biomass, firmness, ascorbate, lycopene, and flavonoid content. These findings raise concerns about the hazardous aspects of PENP to agricultural ecosystems and food security.
Collapse
Affiliation(s)
- Masoumeh Nazari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
6
|
Bandeira FO, Alves PRL, Hennig TB, Vaz VP, Vicentini DS, Juneau P, Dewez D, Matias WG. Individual and combined toxicity of polystyrene nanoplastics and clothianidin toward Daphnia magna, Lemna minor, Chlamydomonas reinhardtii, and Microcystis aeruginosa. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:470-483. [PMID: 39919234 DOI: 10.1093/etojnl/vgae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/23/2024] [Accepted: 10/01/2024] [Indexed: 02/09/2025]
Abstract
Nanoplastics (NPs) and neonicotinoids are common pollutants in aquatic ecosystems. Although their co-occurrence is expected in multiple environments, studies assessing their combined effects are still limited. This toxicological assessment investigated the potential effects of polystyrene NPs (PSNPs), clothianidin (CLO), and their mixtures on four aquatic species: the freshwater cladoceran Daphnia magna, the duckweed Lemna minor, the green algae Chlamydomonas reinhardtii, and the cyanobacteria Microcystis aeruginosa. Toxicological tests were performed following International Organization for Standardization and Organisation for Economic Co-operation and Development protocols. Acute, chronic (multigenerational) and swimming behavior tests were performed with D. magna, and growth inhibition tests were run with L. minor, C. reinhardtii, and M. aeruginosa. Abbott's model was used to predict the toxicological interactions of the mixtures for each one of the tested species. The D. magna immobility and swimming behavior tests revealed that the combined toxicities of PSNPs and CLO are decreased when the compounds are present as a mixture. Antagonistic interactions were also observed for C. reinhardtii growth, whereas for L. minor and M. aeruginosa, interactions ranged from antagonism to additivity. Chronic multigenerational tests with D. magna revealed that neonates obtained from the exposed parental generation showed a delay in the first brood during the recovery (nonexposure) phase, but this effect disappeared at the next generation, which indicates that microcrustaceans will probably be able to recover on a long-term scale if contamination is stopped. Our results provide new insights into the combined toxicity and ecological risk of NPs and neonicotinoids toward aquatic organisms.
Collapse
Affiliation(s)
- Felipe Ogliari Bandeira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Laboratory of Soil Ecotoxicology, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Thuanne Braúlio Hennig
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Vitor Pereira Vaz
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Ecotoxicology of Aquatic Microorganisms Laboratory-GRIL-EcotoQ-TOXEN, Department of Biological Sciences, University of Quebec at Montreal, Montréal, QC, Canada
| | - Denice Schulz Vicentini
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory-GRIL-EcotoQ-TOXEN, Department of Biological Sciences, University of Quebec at Montreal, Montréal, QC, Canada
| | - David Dewez
- Laboratory of Environmental & Analytical Biochemistry of Contaminants, Department of Chemistry, University of Quebec at Montreal, Montréal, QC, Canada
| | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
7
|
Jamil A, Ahmad A, Moeen-Ud-Din M, Zhang Y, Zhao Y, Chen X, Cui X, Tong Y, Liu X. Unveiling the mechanism of micro-and-nano plastic phytotoxicity on terrestrial plants: A comprehensive review of omics approaches. ENVIRONMENT INTERNATIONAL 2025; 195:109257. [PMID: 39818003 DOI: 10.1016/j.envint.2025.109257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
Micro-and-nano plastics (MNPs) are pervasive in terrestrial ecosystems and represent an increasing threat to plant health; however, the mechanisms underlying their phytotoxicity remain inadequately understood. MNPs can infiltrate plants through roots or leaves, causing a range of toxic effects, including inhibiting water and nutrient uptake, reducing seed germination rates, and impeding photosynthesis, resulting in oxidative damage within the plant system. The effects of MNPs are complex and influenced by various factors including size, shape, functional groups, and concentration. Recent advancements in omics technologies such as proteomics, metabolomics, transcriptomics, and microbiomics, coupled with emerging technologies like 4D omics, phenomics, spatial transcriptomics, and single-cell omics, offer unprecedented insight into the physiological, molecular, and cellular responses of terrestrial plants to MNPs exposure. This literature review synthesizes current findings regarding MNPs-induced phytotoxicity, emphasizing alterations in gene expression, protein synthesis, metabolic pathways, and physiological disruptions as revealed through omics analyses. We summarize how MNPs interact with plant cellular structures, disrupt metabolic processes, and induce oxidative stress, ultimately affecting plant growth and productivity. Furthermore, we have identified critical knowledge gaps and proposed future research directions, highlighting the necessity for integrative omics studies to elucidate the complex pathways of MNPs toxicity in terrestrial plants. In conclusion, this review underscores the potential of omics approaches to elucidate the mechanisms of MNPs-phytotoxicity and to develop strategies for mitigating the environmental impact of MNPs on plant health.
Collapse
Affiliation(s)
- Asad Jamil
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Ambreen Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yuxuan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
8
|
Tang S, Qian J, Lu B, He Y, Liu Y, Xu K, Shen J. Adsorption and uptake of functionalized nanoplastics (NPs) by wetland plant (Sphagnum): A unique pathway for polystyrene-NPs reduction in non-vascular plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175367. [PMID: 39127200 DOI: 10.1016/j.scitotenv.2024.175367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Wetlands are sources and sinks for nanoplastics (NPs), where adsorption and uptake by plants constitute a crucial pathway for NPs accumulation. This study found that Sphagnum exhibited a high potential (~89.75 %) to intercept NPs despite the lack of root systems and stomata. Two pathways for 100nm polystyrene NPs accumulation in Sphagnum were located: (i) Spiral interception and foliar adsorption. Efficient adsorption is credited to the micro/nano-interlocked leaf structure, which is porous, hydrophilic and rough. (ii) Intracellular enrichment through pores. Fluorescence tracking indicates pseudo-leaves (lateral > cephalic branches) as primary organs for internalization. Accumulation of differently functionalized NPs was characterized: PS-Naked-NPs (PS), PS-COOH-NPs (PC) and PS-NH2-NPs (PN) were all largely retained by pathway (i), while pathway (ii) mainly uptake PN and PC. Unlike PS aggregation in transparent cells, PC enrichment in chloroplast cells and PN in intercellular spaces reduced pigment content and fluorescence intensity. Further, the effects of the accumulated NPs on the ecological functions of Sphagnum were evaluated. NPs reduce carbon flux (assimilation rate by 57.78 %, and respiration rate by 33.50%), significantly decreasing biomass (PS = 13.12 %, PC = 26.48 %, PN = 35.23 %). However, toxicity threshold was around 10 μg/mL, environmental levels (≤1 μg/mL) barely affected Sphagnum. This study advances understanding of the behavior and fate of NPs in non-vascular plants, and provides new perspectives for developing Sphagnum substrates for NPs interception.
Collapse
Affiliation(s)
- Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Kailin Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Junwei Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
9
|
Jamil A, Ahmad A, Irfan M, Hou X, Wang Y, Chen Z, Liu X. Global microplastics pollution: a bibliometric analysis and review on research trends and hotspots in agroecosystems. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:486. [PMID: 39509054 DOI: 10.1007/s10653-024-02274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
The prevalence of microplastics (MPs) in agricultural ecosystems poses a notable threat to dynamics of soil ecosystems, crop productivity, and global food security. MPs enter agricultural ecosystems from various sources and have considerable impacts on the physiochemical properties soil, soil organisms and microbial communities, and plants. However, the intensity of these impacts can vary with the size, shape, types, and the concentrations of MPs in the soil. Besides, MPs can enter food chain through consummation of crops grown on MPs polluted soils. In this study, we conducted a bibliometric analysis of 1636 publications on the effects of MPs on agricultural ecosystems from 2012 to May 2024. The results revealed a substantial increase in publications over the years, and China, the USA, Germany, and India have emerged as leading countries in this field of research. Social network analysis identified emerging trends and research hotspots. The latest burst keywords were contaminants, biochar, polyethylene microplastics, biodegradable microplastics, antibiotic resistance genes, and quantification. Furthermore, we have summarized the effects of MPs on various components of agricultural ecosystems. By integrating findings from diverse disciplinary perspectives, this study provides a valuable insight into the current knowledge landscape, identifies research gaps, and proposes future research directions to effectively tackle the intricate challenges associated with MPs pollution in agricultural environments.
Collapse
Affiliation(s)
- Asad Jamil
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ambreen Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Ziwei Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
10
|
Zhuang H, Li Z, Wang M, Liu B, Chu Y, Lin Z. Effects of microplastics and combined pollution of polystyrene and di-n-octyl phthalate on photosynthesis of cucumber (Cucumis sativus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174426. [PMID: 38969123 DOI: 10.1016/j.scitotenv.2024.174426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Photosynthesis provides carbon sources and energy for crop growth and development, and the widespread presence of microplastics and plastic plasticisers in agricultural soils affects crop photosynthesis, but the mechanism of the effect is not clear. This study aims to investigate the effects of different microplastics and plasticizers on cucumber photosynthesis. Using polyvinyl chloride (PVC), polyethylene (PE), polystyrene (PS), and di-n-octyl phthalate (DOP) as representative microplastics and plasticizers, we assessed their impact on cucumber photosynthesis. Our results reveal significant alterations in key parameters: intercellular CO2 concentration (Ci) and transpiration rate (Tr) increased across all treatments, whereas stomatal limit value (Ls) and water use efficiency (WUE) decreased. Notably, PS + DOP treatment led to a significant reduction in the maximum efficiency of photosystem II (Fv/Fm) and ATP accumulation. Furthermore, PE and PS + DOP treatments decreased lycopene and ɛ-carotene synthesis rates, as well as abscisic acid (ABA) accumulation. All treatments inhibited the conversion of β-carotene into strigolactone (SL) and decreased chlorophyll synthesis rates, with PS + DOP exhibiting the most severe impact. Regarding chlorophyll degradation pathways, PVC and PE treatments reduced chlorophyll decomposition rates, whereas DOP with PS promoted degradation. PE and PS treatments also impaired light energy capture, electron transport, and the structural stability of photosystems I and II, as well as photosynthetic capacity and NADPH and ATP synthesis rates. Our findings underscore the differential impacts of microplastics and plasticizers on cucumber photosynthesis, with PS + DOP having the most detrimental effect. These results shed light on the complex interactions between microplastics and plant physiology, highlighting the urgent need for mitigation strategies in agricultural practices to safeguard crop productivity and environmental sustainability.
Collapse
Affiliation(s)
- Haoran Zhuang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhenxia Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China.
| | - Menglin Wang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Bo Liu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yiwen Chu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ziyu Lin
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China
| |
Collapse
|
11
|
Lai JL, Li ZG, Han MW, Huang Y, Xi HL, Luo XG. Analysis of environmental biological effects and OBT accumulation potential of microalgae in freshwater systems exposed to tritium pollution. WATER RESEARCH 2024; 250:121013. [PMID: 38118252 DOI: 10.1016/j.watres.2023.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
The ecological risk of tritiated wastewater into the environment has attracted much attention. Assessing the ecological risk of tritium-containing pollution is crucial by studying low-activity tritium exposure's environmental and biological effects on freshwater micro-environment and the enrichment potential of organically bound tritium (OBT) in microalgae and aquatic plants. The impact of tritium-contaminated wastewater on the microenvironment of freshwater systems was analyzed using microcosm experiments to simulate tritium pollution in freshwater systems. Low activity tritium pollution (105 Bq/L) induced differences in microbial abundance, with Proteobacteria, Bacteroidota, and Desulfobacterota occupying important ecological niches in the water system. Low activity tritium (105-107 Bq/L) did not affect the growth of microalgae and aquatic plants, but OBT was significantly enriched in microalgae and two aquatic plants (Pistia stratiotes, Spirodela polyrrhiza), with the enrichment coefficients of 2.08-3.39 and 1.71-2.13, respectively. At the transcriptional level, low-activity tritium (105 Bq/L) has the risk of interfering with gene expression in aquatic plants. Four dominant cyanobacterial strains (Leptolyngbya sp., Synechococcus elongatus, Nostoc sp., and Anabaena sp.) were isolated and demonstrated good environmental adaptability to tritium pollution. Environmental factors can modify the tritium accumulation potential in cyanobacteria and microalgae, theoretically enhancing food chain transfer.
Collapse
Affiliation(s)
- Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhan-Guo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Meng-Wei Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yan Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
12
|
Yu H, Jia H, Shen N, Gang D, Yuan W, Yang Y, Hu C, Qu J. Can "Risk-Sharing" Mechanisms Help Clonal Aquatic Plants Mitigate the Stress of Nanoplastics? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2984-2997. [PMID: 38306608 DOI: 10.1021/acs.est.3c09436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Most aquatic plants applied to ecological restoration have demonstrated a clonal growth pattern. The risk-spreading strategy plays a crucial role in facilitating clonal plant growth under external environmental stresses via clonal integration. However, the effects of different concentrations of nanoplastics (NPs) on the growth traits of clonal aquatic plants are not well understood. Therefore, this study aimed to investigate the impact of NPs exposure on seedlings of parent plants and connected offspring ramets. A dose response experiment (0.1, 1, and 10 mg L-1) showed that the growth of Eichhornia crassipes (water hyacinth) was affected by 100 nm polystyrene nanoplastics after 28 days of exposure. Tracer analysis revealed that NPs are accumulated by parent plants and transferred to offspring ramets through stolon. Quantification analysis showed that when the parent plant was exposed to 10 mg L-1 NPs alone for 28 days, the offspring ramets contained approximately 13 ± 2 μg/g NPs. In the case of connected offspring ramets, leaf and root biomass decreased by 24%-51% and 32%-51%, respectively, when exposed to NP concentrations ranging from 0.1 to 10 mg L-1. Excessive enrichment of NPs had a detrimental effect on the photosynthetic system, decreasing the chlorophyll content and nonphotochemical quenching. An imbalance in the antioxidant defense systems, which were unable to cope with the oxidative stress caused by NP concentrations, further damaged various organs. The root system can take up NPs and then transfer them to the offspring through the stolon. Interference effects of NPs were observed in terms of root activity, metabolism, biofilm composition, and the plant's ability to purify water. However, the risk-spreading strategy employed by parent plants (interconnected offspring ramets) offered some relief from NP-induced stress, as it increased their relative growth rate by 1 to 1.38 times compared to individual plants. These findings provide substantial evidence of the high NP enrichment capacity of E. crassipes for ecological remediation. Nevertheless, we must also remain aware of the environmental risk associated with the spread of NPs within the clonal system of E. crassipes, and contaminated cloned individuals need to be precisely removed in a timely manner to maintain normal functions.
Collapse
Affiliation(s)
- Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huawei Jia
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Shen
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Diga Gang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Bansal M, Santhiya D, Sharma JG. Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8354-8368. [PMID: 38170356 DOI: 10.1007/s11356-023-31680-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Contaminated soil is one of today's most difficult environmental issues, posing serious hazards to human health and the environment. Contaminants, particularly micro-nano plastics, have become more prevalent around the world, eventually ending up in the soil. Numerous studies have been conducted to investigate the interactions of micro-nano plastics in plants and agroecosystems. However, viable remediation of micro-nano plastics in soil remains limited. In this review, a powerful in situ soil remediation technology known as phytoremediation is emphasized for addressing micro-nano-plastic contamination in soil and plants. It is based on the synergistic effects of plants and the microorganisms that live in their rhizosphere. As a result, the purpose of this review is to investigate the mechanism of micro-nano plastic (MNP) uptake by plants as well as the limitations of existing MNP removal methods. Different phytoremediation options for removing micro-nano plastics from soil are also described. Phytoremediation improvements (endophytic-bacteria, hyperaccumulator species, omics investigations, and CRISPR-Cas9) have been proposed to enhance MNP degradation in agroecosystems. Finally, the limitations and future prospects of phytoremediation strategies have been highlighted in order to provide a better understanding for effective MNP decontamination from soil.
Collapse
Affiliation(s)
- Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
14
|
Dainelli M, Castellani MB, Pignattelli S, Falsini S, Ristori S, Papini A, Colzi I, Coppi A, Gonnelli C. Growth, physiological parameters and DNA methylation in Spirodela polyrhiza (L.) Schleid exposed to PET micro-nanoplastic contaminated waters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108403. [PMID: 38290343 DOI: 10.1016/j.plaphy.2024.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
The effects of polyethylene terephthalate micro-nanoplastics (PET-MNPs) were tested on the model freshwater species Spirodela polyrhiza (L.) Schleid., with focus on possible particle-induced epigenetic effects (i.e. alteration of DNA methylation status). MNPs (size ∼ 200-300 nm) were produced as water dispersions from PET bottles through repeated cycles of homogenization and used to prepare N-medium at two environmentally relevant concentrations (∼0.05 g L-1 and ∼0.1 g L-1 of MNPs). After 10 days of exposure, a reduction in fresh and dry weight was observed in treated plants, even if the average specific growth rate for both frond number and area was not altered. Impaired growth was coupled with a MNP-induced decrease of chlorophyll fluorescence parameters (i.e. ΨETo and Piabs, indicators of photochemical efficiency) and starch concentration, as well as with alterations in plant ionomic profile and oxidative status. The methylation-sensitive amplification polymorphism (MSAP) technique was used to assess possible changes in DNA methylation levels induced by plastic particles. The analysis showed unusual hypermethylation in 5'-CCGG sites that could be implicated in DNA protection from dangerous agents (i.e. reactive oxygen species) or in the formation of new epialleles. This work represents the first evidence of MNP-induced epigenetic modifications in the plant world.
Collapse
Affiliation(s)
- Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Maria Beatrice Castellani
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Sara Pignattelli
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Sara Falsini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Sandra Ristori
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| |
Collapse
|
15
|
Panizzolo M, Martins VH, Ghelli F, Squillacioti G, Bellisario V, Garzaro G, Bosio D, Colombi N, Bono R, Bergamaschi E. Biomarkers of oxidative stress, inflammation, and genotoxicity to assess exposure to micro- and nanoplastics. A literature review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115645. [PMID: 37922781 DOI: 10.1016/j.ecoenv.2023.115645] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The increased awareness about possible health effects arising from micro- and nanoplastics (MNPs) pollution is driving a huge amount of studies. Many international efforts are in place to better understand and characterize the hazard of MNPs present in the environment. The literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology in two different databases (PubMed and Embase). The selection of articles was carried out blind, screening titles and abstracts according to inclusion and exclusion criteria. In general, these studies rely on the methodology already in use for assessing hazard from nanomaterials and particles of concern. However, only a limited number of studies have so far directly measured human exposure to MNPs and examined the relationship between such exposure and its impact on human health. This review aims to provide an overview of the current state of research on biomarkers of oxidative stress, inflammation, and genotoxicity that have been explored in relation to MNPs exposure, using human, cellular, animal, and plant models. Both in-vitro and in-vivo models suggest an increased level of oxidative stress and inflammation as the main mechanism of action (MOA) leading to adverse effects such as chronic inflammation, immunotoxicity and genotoxicity. With the identification of such biological endpoints, representing critical key initiating events (KIEs) towards adaptive or adverse outcomes, it is possible to identify a panel of surrogate biomarkers to be applied and validated especially in occupational settings, where higher levels of exposure may occur.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Vitor Hugo Martins
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Davide Bosio
- Unit of Occupational Medicine, A.O.U Città della Salute e della Scienza di Torino, Turin, Italy
| | - Nicoletta Colombi
- Federated Library of Medicine "F. Rossi", University of Turin, 10126 Turin, Italy
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
16
|
Sun C, Yang X, Gu Q, Jiang G, Shen L, Zhou J, Li L, Chen H, Zhang G, Zhang Y. Comprehensive analysis of nanoplastic effects on growth phenotype, nanoplastic accumulation, oxidative stress response, gene expression, and metabolite accumulation in multiple strawberry cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165432. [PMID: 37437629 DOI: 10.1016/j.scitotenv.2023.165432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Nanoplastics (NPs) have emerged as a novel environmental threat due to their potential impacts on both animals and plants. Currently, research on the ecotoxicity of NPs has mainly focused on marine aquatic organisms and freshwater algae, with very limited investigations conducted on horticultural plants. This study examined the effects of varying concentrations (0, 1, 10, 50 mg·L-1) of polystyrene NPs (PS-NPs) on strawberry growth. The findings revealed that low concentrations of PS-NPs stimulated strawberry growth, whereas high concentrations impeded it. Notably, diverse strawberry cultivars displayed considerable differences in their sensitivity to PS-NP exposure. Laser scanning confocal microscopy confirmed the absorption of PS-NPs by strawberry roots, with variations in PS-NP accumulation observed across different cultivars. Comparative transcriptomics analysis suggested that the differential expression of genes responsible for calcium ion transport played a significant role in the observed intervarietal differences in PS-NP accumulation among strawberry cultivars. Furthermore, distinct variations in endogenous oxidative responses were observed in different strawberry cultivars under PS-NP treatment. Further analysis indicated that the down-regulation of peroxidase (POD) gene expression and terpenoid compounds accumulation were responsible for heightened endogenous oxidative stress observed in certain strawberry cultivars under PS-NP treatment. Transcriptomic and metabolomic analyses were performed on six strawberry cultivars to investigate their response to PS-NPs in terms of endogenous gene expression and metabolite accumulation. The results identified one commonly up-regulated gene (wall-associated receptor kinase-like) and sixteen commonly down-regulated genes associated with lipid metabolism and carbohydrate metabolism. In addition, a significant reduction in fatty acid metabolite accumulation was observed in the six strawberry cultivars under PS-NP treatment. These findings have significant implications for understanding the effects of NPs on strawberry growth, metabolism, and antioxidant responses, as well as identifying marker genes for monitoring and evaluating the impact of NP pollution on strawberry.
Collapse
Affiliation(s)
- Chendong Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Xiaofang Yang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qijuan Gu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Guihua Jiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lan Shen
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jiayan Zhou
- Agricultural Technology Extension Center of Zhejiang Province, China
| | - Long Li
- Agricultural Technology Extension Center of Jiande, Hangzhou, China
| | - Hexiu Chen
- Agricultural Technology Extension Center of Jiande, Hangzhou, China
| | - Guofang Zhang
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Yuchao Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
17
|
Santini G, Castiglia D, Perrotta MM, Landi S, Maisto G, Esposito S. Plastic in the Environment: A Modern Type of Abiotic Stress for Plant Physiology. PLANTS (BASEL, SWITZERLAND) 2023; 12:3717. [PMID: 37960073 PMCID: PMC10648480 DOI: 10.3390/plants12213717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
In recent years, plastic pollution has become a growing environmental concern: more than 350 million tons of plastic material are produced annually. Although many efforts have been made to recycle waste, a significant proportion of these plastics contaminate and accumulate in the environment. A central point in plastic pollution is demonstrated by the evidence that plastic objects gradually and continuously split up into smaller pieces, thus producing subtle and invisible pollution caused by microplastics (MP) and nanoplastics (NP). The small dimensions of these particles allow for the diffusion of these contaminants in farmlands, forest, freshwater, and oceans worldwide, posing serious menaces to human, animal, and plant health. The uptake of MPs and NPs into plant cells seriously affects plant growth, development, and photosynthesis, finally limiting crop yields and endangering natural environmental biodiversity. Furthermore, nano- and microplastics-once adsorbed by plants-can easily enter the food chain, being highly toxic to animals and humans. This review addresses the impacts of MP and NP particles on plants in the terrestrial environment. In particular, we provide an overview here of the detrimental effects of photosynthetic injuries, oxidative stress, ROS production, and protein damage triggered by MN and NP in higher plants and, more specifically, in crops. The possible damage at the physiological and environmental levels is discussed.
Collapse
Affiliation(s)
- Giorgia Santini
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Daniela Castiglia
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy
| | - Maryanna Martina Perrotta
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Simone Landi
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Giulia Maisto
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Sergio Esposito
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| |
Collapse
|
18
|
Yu Q, Gao B, Wu P, Chen M, He C, Zhang X. Effects of microplastics on the phytoremediation of Cd, Pb, and Zn contaminated soils by Solanum photeinocarpum and Lantana camara. ENVIRONMENTAL RESEARCH 2023; 231:116312. [PMID: 37270082 DOI: 10.1016/j.envres.2023.116312] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Microplastics are emerging pollutants and have become a global environmental issue. The impacts of microplastics on the phytoremediation of heavy metal-contaminated soils are unclear. A pot experiment was conducted to investigate the effects of four additions (0, 0.1%, 0.5%, and 1% w·w-1) of polyethylene (PE) and cadmium (Cd), lead (Pb), and zinc (Zn) contaminated soil on the growth and heavy metal accumulation of two hyperaccumulators (Solanum photeinocarpum and Lantana camara). PE significantly decreased the pH and activities of dehydrogenase and phosphatase in soil, while it increased the bioavailability of Cd and Pb in soil. Peroxidase (POD), catalase (CAT), and malondialdehyde (MDA) activity in the plant leaves were all considerably increased by PE. PE had no discernible impact on plant height, but it did significantly impede root growth. PE affected the morphological contents of heavy metals in soils and plants, while it did not alter their proportions. PE increased the content of heavy metals in the shoots and roots of the two plants by 8.01-38.32% and 12.24-46.28%, respectively. However, PE significantly reduced the Cd extraction amount in plant shoots, while it significantly increased the Zn extraction amount in the plant roots of S. photeinocarpum. For L. camara, a lower addition (0.1%) of PE inhibited the extraction amount of Pb and Zn in the plant shoots, but a higher addition (0.5% and 1%) of PE stimulated the Pb extraction amount in the plant roots and the Zn extraction amount in the plant shoots. Our results indicated that PE microplastics have negative effects on the soil environment, plant growth, and the phytoremediation efficiency of Cd and Pb. These findings contribute to a better knowledge of the interaction effects of microplastics and heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Qiankui Yu
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Bo Gao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Wu
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Minni Chen
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Chuanqian He
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|