1
|
Lin Z, Oh HJ, Chang KH, Lim JY, Oh JM. Spatio-temporal dynamics variation of dissolved organic matter and water quality parameters in Giheung Reservoir: A vertical perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125214. [PMID: 40186968 DOI: 10.1016/j.jenvman.2025.125214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Water reservoirs in densely populated areas play a crucial role in water supply, irrigation, and flood regulation. This study investigated the spatiotemporal dynamics of dissolved organic matter (DOM) and its interactions with water quality parameters in Giheung Reservoir, South Korea. Monthly water samples were collected at three depths, measuring fifteen physicochemical properties alongside DOM characterization using Excitation-Emission Matrix Parallel Factor Analysis (EEM-PARAFAC), identifying four DOM components: C1 (microbial protein-like), C2 (humic-like), C3 (terrestrial humic-like), and C4 (tyrosine/tryptophan-like). Seasonal stratification influenced DOM distribution, with humic-like DOM (C2, C3) accumulating in deeper layers during summer, while protein-like DOM (C1, C4) dominated surface waters due to enhanced biological productivity, and mixing periods homogenizing DOM across depths. The dimictic thermal regime, with moderate summer stratification and full mixing in spring and autumn, governed these patterns. 2D correlation spectroscopy (2D-COS) identified sequential DOM variation across layers, with humic-like DOM increasing at depth during stratification. Fluorescence indices-Fluorescence Index (FI), Humification Index (HIX), and Biological Index (BIX)-were integrated into structural equation modeling (SEM), showing that temperature and dissolved oxygen strongly drive protein-like DOM, while nitrogen and phosphorus compounds shape DOM reactivity. These findings enhance understanding of DOM biogeochemical processes and provide valuable insights for reservoir management to maintain water quality.
Collapse
Affiliation(s)
- Ziyu Lin
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-si, 17104, Gyeonggi, Republic of Korea
| | - Hye-Ji Oh
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-si, 17104, Gyeonggi, Republic of Korea
| | - Kwang-Hyeon Chang
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-si, 17104, Gyeonggi, Republic of Korea
| | - Juin Yau Lim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jong-Min Oh
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-si, 17104, Gyeonggi, Republic of Korea.
| |
Collapse
|
2
|
Xu M, Chen HQ, Gao P, Shen XX. Fulvic acid impact on constructed wetland-microbial electrolysis cell system performance: Metagenomic insights. BIORESOURCE TECHNOLOGY 2024; 413:131504. [PMID: 39303948 DOI: 10.1016/j.biortech.2024.131504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
This study explores the roles of fulvic acid (FA) in both a conventionally constructed wetland (CCW) and a newly constructed wetland-microbial electrolysis cell (ECW). The results showed that FA increased the average removal efficiency of chemical oxygen demand, total phosphorus, total nitrogen, and ammonia nitrogen in ECW by 8.6, 46.2, 33.0, and 27.9 %, respectively, compared to CCW, and reduced the global warming potential by > 60 %. FA promoted the proliferation of electroactive bacteria (e.g., Chlorobaculum and Candidatus Tenderia) and FA-degrading bacteria (e.g., Anaerolineaceae and Gammaproteobacteria) and reduced methanogens (e.g., Methanothrix) via type-changing. The study's findings suggest that FA influences pollutant removal and microbiome dynamics by altering dissolved oxygen levels and redox potential. In summary, FA and ECW enhanced the efficiency of constructed wetlands by facilitating electron transfer and consumption, and supporting microbial growth and metabolism.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao-Xiao Shen
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China.
| |
Collapse
|
3
|
Wang Q, Xu Q, Liu W, Jiao M, Chen Z, Wang A. Transforming contaminant ligands at water-solid interfaces via trivalent metal coordination. ENVIRONMENT INTERNATIONAL 2024; 191:109008. [PMID: 39284258 DOI: 10.1016/j.envint.2024.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
In environmental matrices, the migration and distribution of contaminants at water-solid interfaces play a crucial role in their capture or dissemination. Scientists working in environmental remediation and wastewater treatment are increasingly aware of metal-contaminant coordination; however, interfacial behaviors remain underexplored. Here, we show that trivalent metal ions (e.g. Al3+ and Fe3+) mediate the migration of pollutant ligands (e.g. tetracycline (TC) and ofloxacin) to the organic solid interface. In the absence of Al3+, humic acid (HA) colloids (50 mg/L) capture 26.1 % of the TC in water (initial concentration: 10 mg/L) via weak intermolecular interactions (binding energy: -5.71 kcal/mol). Adding Al3+ (2.5 mg/L) significantly enhances the binding of TC to an impressive 94.2 % via Al3+ mediated coordination (binding energy: -84.89 kcal/mol). The significant increase in binding energy results in superior interfacial immobilization. However, excess free Al3+ competes for TC binding via direct binary coordination, as confirmed based on the unique fluorescence of Al3+-TC complexes. Density functional theory calculations reveal the intricate process of HA-Al3+ binding via carboxyl and phenolic hydroxyl sites. The HA-Al3+ flocs then leverage the remaining coordination capacity of Al3+ to chelate with TC. As well as providing insights into the pivotal role of metal ion on the self-purification of natural water bodies, our findings on the interfacial behavior of metal-contaminant coordination will propel coagulation technology to the capture of microscale pollutants.
Collapse
Affiliation(s)
- Qiandi Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Wenzong Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Meng Jiao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Aijie Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
4
|
Park Y, Noda I, Jung YM. Novel Developments and Progress in Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241255393. [PMID: 38872353 DOI: 10.1177/00037028241255393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This first of the two-part series of the comprehensive survey review on the progress of the two-dimensional correlation spectroscopy (2D-COS) field during the period 2021-2022, covers books, reviews, tutorials, novel concepts and theories, and patent applications that appeared in the last two years, as well as some inappropriate use or citations of 2D-COS. The overall trend clearly shows that 2D-COS is continually growing and evolving with notable new developments. The technique is well recognized as a powerful analytical tool that provides deep insights into systems in many science fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
5
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
6
|
Jiang W, Chen R, Lyu J, Qin L, Wang G, Chen X, Wang Y, Yin C, Mao Z. Remediation of the microecological environment of heavy metal-contaminated soil with fulvic acid, improves the quality and yield of apple. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132399. [PMID: 37647659 DOI: 10.1016/j.jhazmat.2023.132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The excessive application of chemical fertilizers and pesticides in apple orchards is responsible for high levels of manganese and copper in soil, and this poses a serious threat to soil health. We conducted a three-year field experiment to study the remediation effect and mechanism of fulvic acid on soil with excess manganese and copper. The exogenous application of fulvic acid significantly reduced the content of manganese and copper in soil and plants; increased the content of calcium; promoted the growth of apple plants; improved the fruit quality and yield of apple; increased the content of chlorophyll; increased the activity of superoxide dismutase, peroxidase, and catalase; and reduced the content of malondialdehyde. The number of soil culturable microorganisms, soil enzyme activity, soil microbial community diversity, and relative abundance of functional bacteria were increased, and the detoxification of the glutathione metabolism function was enhanced. The results of this study provide new insights that will aid the remediation of soil with excess manganese and copper using fulvic acid.
Collapse
Affiliation(s)
- Weitao Jiang
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Ran Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Jinhui Lyu
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Lei Qin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Gongshuai Wang
- College of Forestry Engineering Shandong Agriculture and Engineering University, Ji'nan, Shandong 250000, PR China
| | - Xuesen Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Yanfang Wang
- College of Chemistry and Material Science Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengmiao Yin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China.
| | - Zhiquan Mao
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
7
|
Li J, Zhang T, Shan X, Zheng W, Zhang Z, Ouyang Z, Liu P, Guo X. Abandoned disposable masks become hot substrates for plastisphere, whether in soil, atmosphere or water. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131321. [PMID: 37003000 PMCID: PMC10060800 DOI: 10.1016/j.jhazmat.2023.131321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
A large number of surgical masks (SMs) to be discarded indiscriminately during the spread of COVID-19. The relationship between the changes of masks entering the environment and the succession of the microorganisms on them is not yet clear. The natural aging process of SMs in different environments (water, soil, and atmosphere) was simulated, the changes and succession of the microbial community on SMs with aging time were explored. The results showed that the SMs in water environment had the highest aging degree, followed by atmospheric environment, and SMs in soil had the lowest aging degree. The results of high-throughput sequencing demonstrated the load capacity of SMs for microorganisms, showed the important role of environment in determining microbial species on SMs. According to the relative abundance of microorganisms, it is found that compared with the water environment, the microbial community on SMs in water is dominated by rare species. While in soil, in addition to rare species, there are a lot of swinging strains on the SMs. Uncovering the ageing of SMs in the environment and its association with the colonization of microorganisms will help us understand the potential of microorganisms, especially pathogenic bacteria, to survive and migrate on SMs.
Collapse
Affiliation(s)
- Jianlong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianli Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoling Shan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Zheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenming Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550003, China.
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Yang R, Sun Z, Liu X, Long X, Gao L, Shen Y. Biomass composite with exogenous organic acid addition supports the growth of sweet sorghum ( Sorghum bicolor ' Dochna') by reducing salinity and increasing nutrient levels in coastal saline-alkaline soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1163195. [PMID: 37056508 PMCID: PMC10086266 DOI: 10.3389/fpls.2023.1163195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Introduction In coastal saline lands, organic matter is scarce and saline stress is high. Exploring the promotion effect of intervention with organic acid from biological materials on soil improvement and thus forage output and determining the related mechanism are beneficial to the potential cultivation and resourceful, high-value utilization of coastal mudflats as back-up arable land. Method Three exogenous organic acids [humic acid (H), fulvic acid (F), and citric acid (C)] were combined with four kinds of biomass materials [cottonseed hull (CH), cow manure (CM), grass charcoal (GC), and pine needle (PN)] and applied to about 0.3% of medium-salt mudflat soil. The salinity and nutrient dynamics of the soil and the growth and physiological differences of sweet sorghum at the seedling, elongation, and heading stages were observed under different treatments to screen for efficient combinations and analyze the intrinsic causes and influencing mechanisms. Results The soil salinity, nutrient dynamics, and forage grass biological yield during sweet sorghum cultivation in saline soils differed significantly (p < 0.05) depending on the type of organic acid-biomass composite applied. Citric acid-pine needle composite substantially reduced the soil salinity and increased the soil nutrient content at the seedling stage and improved the root vigor and photosynthesis of sweet sorghum by increasing its stress tolerance, allowing plant morphological restructuring for a high biological yield. The improvement effect of fulvic acid-pine needle or fulvic acid-cow manure composite was manifested at the elongation and heading stages. Discussion Citric acid-pine needle composite promoted the growth of saline sweet sorghum seedlings, and the effect of fulvic acid-pine needle composite lasted until the middle and late stages.
Collapse
Affiliation(s)
- Ruixue Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhengguo Sun
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xinbao Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Limin Gao
- Ecological Research Center, Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Nanjing, China
| | - Yixin Shen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Liu N, Ye W, Zhao G, Liu G. Release of free-state ions from fulvic acid-heavy metal complexes via VUV/H 2O 2 photolysis: Photodegradation of fulvic acids and recovery of Cd 2+ and Pb 2+ stripping voltammetry currents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120420. [PMID: 36243185 DOI: 10.1016/j.envpol.2022.120420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Fulvic acid (FA), a ubiquitous organic matter in the environment, can enhance the mobility and bioavailability of Cd2+ and Pb2+ through competitive complexation to form FA-heavy metal ions (FA-HMIs) complexes with excellent solubility. Because FA-HMIs are electrochemically inactive, square wave anodic stripping voltammetry (SWASV) cannot accurately detect the content of bioavailable Cd2+ and Pb2+ in soils and sediments. This study ostensibly aimed to efficiently recover SWASV signals of Cd2+ and Pb2+ in FA-HMIs by disrupting FA-HMIs complexes using the combined vacuum ultraviolet and H2O2 (VUV/H2O2) process. Essentially, this study explored the photodegradation behavior and photolysis by-products of FA and their effects on the conversion of FA-HMIs complexes to free-state Cd2+ and Pb2+ using multiple characterization techniques, as well as revealed the complexation mechanism of FA with Cd2+ and Pb2+. Results showed that reactive groups such as carboxyl and hydroxyl endowed FA with the ability to complex Cd2+ and Pb2+. After FA-HMIs underwent VUV/H2O2 photolysis for 9 min at 125 mg/L of H2O2, FA was decomposed into small molecular organics while removing its functional groups, which released the free-state Cd2+ and Pb2+ and recovered their SWSAV signals. However, prolonged photolytic mineralization of FA to inorganic anions formed precipitates with Cd2+ and Pb2+, thereby decreasing their SWSAV signals. Moreover, the VUV/H2O2 photolysis significantly improved the SWASV detection accuracy toward the Cd2+ and Pb2+ in real soil and sediment samples, verifying its practicality.
Collapse
Affiliation(s)
- Ning Liu
- Key Lab of Smart Agriculture Systems, Ministry of Education, China Agricultural University, Beijing, 100083, PR China
| | - Wenshuai Ye
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing, 100083, PR China
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, PR China
| | - Gang Liu
- Key Lab of Smart Agriculture Systems, Ministry of Education, China Agricultural University, Beijing, 100083, PR China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing, 100083, PR China.
| |
Collapse
|
10
|
Cui H, Zhao Y, Zhao L, Song C, Lu Q, Wei Z. Insight into the Soil Dissolved Organic Matter Ligand-Phenanthrene-Binding Properties Based on Parallel Faction Analysis Combined with Two-Dimensional Correlation Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13873-13881. [PMID: 36268899 DOI: 10.1021/acs.jafc.2c06013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) can strongly bind to organic contaminants and control phenanthrene in soil. Herein, four individual parallel factor analysis (PARAFAC) components were found in soil DOM. Component C1 was the humic-like component ligand T, and component C2 was a combination of humic fluorophore ligands M1 and M2. Furthermore, components C3 and C4 were characterized as terrestrial and ubiquitous humic substances. Then, the modified Stern-Volmer complexation model was used to reveal soil DOM component-phenanthrene-binding properties. The overall binding characteristics of a PARAFAC component could not express the phenanthrene-binding properties. Therefore, two-dimensional correlation spectroscopy was used to reveal DOM ligand-phenanthrene-binding properties. After binding with phenanthrene, DOM ligands T, M2, A2, and C1 were quenched but DOM ligands M1, A1, and C2 were excited. The ligands with higher humification presented higher phenanthrene-binding ability. With these promising results, the DOM ligand-phenanthrene-binding characteristics offered theoretical support for soil pollution control.
Collapse
Affiliation(s)
- Hongyang Cui
- College of Life Sciences and Technology, Harbin Normal University, Harbin150025, China
- College of Life Science, Northeast Agricultural University, Heilongjiang150030, People's Republic of China
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing100871, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Heilongjiang150030, People's Republic of China
| | - Li Zhao
- College of Life Science, Northeast Agricultural University, Heilongjiang150030, People's Republic of China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng252000, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin150025, China
| | - Zimin Wei
- College of Life Sciences and Technology, Harbin Normal University, Harbin150025, China
- College of Life Science, Northeast Agricultural University, Heilongjiang150030, People's Republic of China
| |
Collapse
|
11
|
Gao Y, Zhu J, He A. Effect of dissolved organic matter on the bioavailability and toxicity of cadmium in zebrafish larvae: Determination based on toxicokinetic-toxicodynamic processes. WATER RESEARCH 2022; 226:119272. [PMID: 36283231 DOI: 10.1016/j.watres.2022.119272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The presence of dissolved organic matter (DOM) strongly influences the bioavailability of metals in aquatic environments; however, the association between the binding activities and the concentrations of DOM compositions is not well documented, leading to uncertainties in metal toxicity assessment. We creatively quantify the mitigation and acceleration effects of DOM compositions on cadmium (Cd) bioaccumulation and toxicity in zebrafish larvae using abiotic ligand (ABLs) and biotic ligand (BLs) in a toxicokinetic-toxicodynamic (TK-TD) model. The BL-TK-TD model could accurately predict the protective effect of fulvic acid while overestimating the complexing capacity of citric acid. The model also could successfully simulate the protective effects of native DOM in most cases from 32 natural water bodies in China. The observed LC50 values of Cd showed a peak effect for the native DOM fraction comprising hydrophilic acidic contents (3.55 ± 0.44 mg L - 1) in natural water from 32 sites. The BL-TK-TD model provides practically useful information to identify the effect of different DOM compositions on metal bioavailability and toxicity in aquatic environments and guides future water management policies aimed at controlling aquatic heavy metal pollution.
Collapse
Affiliation(s)
- Yongfei Gao
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Jingxue Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - An He
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
12
|
Cui H, Xie L, Zhang G, Zhao Y, Wei Z. Revealing the Inner Changes of Component Composition Derived from DOM PARAFAC Based on Two-Dimensional Correlation Spectroscopy. Molecules 2022; 27:7316. [PMID: 36364142 PMCID: PMC9655640 DOI: 10.3390/molecules27217316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 12/07/2024] Open
Abstract
Plenty of humic acid components compositions are contained in dissolved organic matter (DOM) derived from composting. Fluorescence signals were employed to characterize the changes in DOM components in the component process. In the composting process, five individual DOM fluorescence parallel factor analysis (PARAFAC) components were identified. At the end of the composting, PARAFAC component C5, which represented high humification and complex structure compounds, was detected, but the simple structure DOM PARAFAC component C1 was absent. In this study, a technique combining EEM-PARAFAC with two-dimensional correlation spectroscopy (2DCOS) further supplied detailed information about the dynamics of DOM peaks in PARAFAC components. 2DCOS results showed that the variation of the peaks in PARAFAC components was different in the composting process. The formation of a complex DOM fluorescence substance was attributed to the residues from the simple fluorescence peak degradation. The evolution of the DOM fluorescence peaks in each PARAFAC component indicated that simple structure compounds helped the formation of the complex DOM fluorescence substance in the composting process. These results revealed that EEM/PARAFAC combined with 2DCOS could be used to track the evolution of DOM PARAFAC components during the composting process.
Collapse
Affiliation(s)
- Hongyang Cui
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|