1
|
Siboro SAP, Salma SA, Syuhada, Putri KSS, Yuliati F, Lee WK, Lim KT. Gum Rosin in Medical and Pharmaceutical Applications: From Conventional Uses to Modern Advancements. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2266. [PMID: 40429004 PMCID: PMC12113028 DOI: 10.3390/ma18102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025]
Abstract
Gum rosin and its derivatives have been used traditionally in coatings and adhesives and are now increasingly applied in diverse medical and pharmaceutical fields. Owing to its film-forming ability, hydrophobic nature, biocompatibility, and ease of chemical modification, gum rosin has emerged as a promising excipient for controlled drug release, targeted drug delivery, and other biomedical applications. This review summarizes the evolution of gum rosin applications, from its conventional roles to its modern utilization in nanocarriers, transdermal systems, and other advanced drug delivery platforms. In addition, we discuss the challenges related to allergenicity, brittleness, and excessive hydrophobicity and propose strategies (such as chemical modification and polymer blending) to overcome these issues. This review provides a reference framework for researchers developing new rosin-based materials in pharmaceutical sciences.
Collapse
Affiliation(s)
- Sonita Afrita Purba Siboro
- Polymer Technology, National Research and Innovation Agency, Tangerang 15346, Indonesia; (S.A.P.S.); (S.A.S.); (S.)
| | - Sabrina Aufar Salma
- Polymer Technology, National Research and Innovation Agency, Tangerang 15346, Indonesia; (S.A.P.S.); (S.A.S.); (S.)
| | - Syuhada
- Polymer Technology, National Research and Innovation Agency, Tangerang 15346, Indonesia; (S.A.P.S.); (S.A.S.); (S.)
| | | | - Frita Yuliati
- Polymer Technology, National Research and Innovation Agency, Tangerang 15346, Indonesia; (S.A.P.S.); (S.A.S.); (S.)
| | - Won-Ki Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | - Kwon-Taek Lim
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
2
|
Chen G, Zhang Y, Zhang K, Lv W, Lv Z, Gao X, Huang Y. Photothermal Superhydrophobic Zinc Oxide Cotton Fabric Based on an Impregnation Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9857-9868. [PMID: 40198214 DOI: 10.1021/acs.langmuir.5c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Superhydrophobic materials have applications such as oil-water separation, antifouling, and antibacterial properties. At present, most of the manufacturing process of superhydrophobic coatings not only is costly but also causes pollution to the environment, which is not in line with the concept of green and sustainable development. In this work, we have prepared a superhydrophobic coating using green and environmentally friendly chitosan, nanozinc oxide, γ-aminopropyl triethoxysilane (KH550), and stearic acid. The prepared cotton fabric showed remarkable superhydrophobic properties. Under simulated sunlight, the surface temperature of the superhydrophobic cotton fabric can increase to 50 °C. The superhydrophobic surface sustained its superhydrophobic property after at least 80 tape peeling tests, 50 occurrences of sandpaper friction, 3.5 h of washing, and 24 h of high-temperature heat treatment. Besides, the coating can be utilized for oil-water separation and is reusable. The oil-water separation effectiveness of the coating reaches more than 95%. Therefore, this inexpensive and ecofriendly nanozinc oxide/chitosan-based superhydrophobic coating has remarkable application potential.
Collapse
Affiliation(s)
- Guangli Chen
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yuxuan Zhang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Kangwei Zhang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wenjun Lv
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zaosheng Lv
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xiaofang Gao
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yanfen Huang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
3
|
Meng S, Lu Y. Superwettable Nanomaterials: Fabrication, Application, and Environmental Impact. ACS NANO 2025; 19:7417-7433. [PMID: 39977662 DOI: 10.1021/acsnano.4c17420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The increasing global concerns over energy consumption, environmental pollution, and sustainable development have sparked intensive research interest in advanced surface engineering solutions. This perspective critically reviews the development of superwettable surfaces as promising candidates for addressing these challenges. We analyze three key architectures that enable different levels of liquid repellency: micro/nano hierarchical structures for superhydrophobicity, re-entrant features for superoleophobicity, and doubly re-entrant designs for superomniphobicity. Recent developments have demonstrated significant progress in creating more environmentally conscious surfaces, including fluorine-free superhydrophobic textiles that reduce water and energy consumption in maintenance, energy-efficient smart windows with switchable wettability for building temperature regulation, and marine protective coatings that minimize chemical pollution. These advances contribute to environmental sustainability through multiple pathways: reduced resource consumption, improved energy efficiency, and decreased chemical pollution. However, challenges remain in achieving long-term durability, cost-effective fabrication, and comprehensive understanding of environmental impacts. This perspective provides insight into the current state of the field while highlighting the critical balance between performance optimization and environmental considerations in the development of next-generation superwettable materials.
Collapse
Affiliation(s)
- Siyu Meng
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, U.K
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, U.K
| |
Collapse
|
4
|
Yang J, Yang Y, Zhang J, Xu Y, Liu J. Synergistic enhancement of hydrophobicity and mechanical properties of cellulose paper by (3-glycidoxypropyl) trimethoxy and rosin. Int J Biol Macromol 2025; 295:139661. [PMID: 39793788 DOI: 10.1016/j.ijbiomac.2025.139661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Cellulose-based paper is inherently poor in hydrophobicity and mechanical strength, limiting its practical applications in daily life such as packaging materials, water-resistant labels, and disposable tableware. This study aimed to develop an effective and eco-friendly strategy to address these limitations by enhancing the hydrophobicity and mechanical properties of cellulose paper. To achieve this, an internal sizing agent was prepared by combining (3-glycidoxypropyl) trimethoxy (GPS) with natural rosin. This sizing agent was applied to cellulose paper, and its effectiveness was evaluated. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the successful introduction of rosin and GPS into the cellulose fiber network, forming covalent bonds. The variation in the microstructure and surface elemental distribution of the sizing cellulose paper was further analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Thermogravimetric analysis (TGA) was conducted to evaluate the improved thermostability of the sizing cellulose paper. These structural improvements, including covalent bond formation and gap filling, contributed to the enhanced hydrophobicity and mechanical properties of the paper. This study provides a convenient and cost-effective approach to enhancing the functional properties of cellulose paper, offering new possibilities for its practical applications in eco-friendly packaging materials, disposable paper products, and high-performance paper-based packaging.
Collapse
Affiliation(s)
- Jia Yang
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China
| | - Yongbin Yang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China.
| | - Jun Zhang
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China
| | - Yang Xu
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China.
| | - Jianrong Liu
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China.
| |
Collapse
|
5
|
Yu P, Yu Z, Guo Y, Liao K, Li K, Xia S, Song Y. Triple Corrosion Protection: Dual-Layer Coating with Simultaneous Superhydrophobicity, Intelligent Self-Healing, and Shape Memory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4016-4030. [PMID: 39921724 DOI: 10.1021/acs.langmuir.4c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
In this paper, a self-healing superhydrophobic smart two-layer coating, ZOA/SMP-S, was developed. ZIF-8 was surface hydrophobically modified by octadecylphosphoric acid (OPA) to obtain Z-OPA and then encapsulated with a corrosion inhibitor, AMT ( 2-Amino-5-mercapto-1,3,4-thiadiazole), to obtain the superhydrophobic nanocontainers, ZOA. ZOA was embedded into the SMP (shape memory coating) to obtain the smart coating, and Z-OPA was sprayed to obtain the second superhydrophobic coating. SEM showed that the scratch coatings were rapidly reduced by scratches after a simple heat treatment. The prepared composite coatings showed excellent performance in corrosion inhibitor release, immersion, superhydrophobicity, and self-healing experiments. The contact angle of the superhydrophobic coating reached 158.2°, and the sliding angle was 2.8°. The low-frequency impedance value |Z|f=0.01 Hz of ZOA/SMP-S is as high as 1.58 × 1010 Ω·cm2 after 40 days of immersion test, which indicates that the triple protection greatly enhances the corrosion resistance of the coating.
Collapse
Affiliation(s)
- Pengao Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Zongxue Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Yuchi Guo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Kexi Liao
- School Oil & Nature Gas Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Kun Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Shuangshuang Xia
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Yulong Song
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
6
|
Chavan TK, Sethi SK. Eco-friendly self-cleaning coatings: fundamentals, fabrication, applications, and sustainability. J Mater Chem B 2025; 13:429-453. [PMID: 39576006 DOI: 10.1039/d4tb01392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Eco-friendly self-cleaning coatings have garnered significant attention due to their potential to address environmental concerns while offering remarkable properties. This review explores the dynamic field of such coatings, focusing on their fundamental principles, fabrication techniques, applications, and sustainability. The main findings of this review shed light on the fundamentals of a wetting phenomenon that underpins superhydrophobicity and self-cleaning, revealing how bio-inspired approaches and sustainable materials have enabled the development of sustainable coatings. This review is structured around the fundamental principles of superhydrophobicity, discussing the basic mechanisms and following different approaches to eco-friendly coatings, focusing on bio-inspired methods and sustainable materials. Next, detailed fabrication techniques are discussed to create such coatings followed by various applications across industries, emphasizing the real-world impact of eco-friendly coatings. The next section discusses the various advantages followed by investigating the environmental implications and discussing how these coatings contribute to sustainability. The review concludes with commercial superhydrophobic self-cleaning products, which reflect the current state of research, outlining the challenges, and providing insights into future directions and innovations in this field. By providing an in-depth analysis of their fabrication techniques, applications, and potential future directions, it serves as a valuable resource for researchers and engineers seeking to design eco-friendly superhydrophobic coatings.
Collapse
Affiliation(s)
- Tanaji K Chavan
- Dept. of Mechanical, Materials & Aerospace Engineering, Indian Institute of Technology (IIT) Dharwad, Dharwad, Karnataka, India.
| | - Sushanta K Sethi
- Dept. of Mechanical, Materials & Aerospace Engineering, Indian Institute of Technology (IIT) Dharwad, Dharwad, Karnataka, India.
| |
Collapse
|
7
|
Feng X, Zhang X, Yan W, Chen K, Guo X, Huang Y, Zhang J, Chen D. Fluorine-free, superhydrophobic self-healing and UV-blocking cotton fabric for oil/water separation. Int J Biol Macromol 2024; 283:137718. [PMID: 39551286 DOI: 10.1016/j.ijbiomac.2024.137718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The discharge of oily wastewater not only pollutes waters but also deteriorates our living environment. Superhydrophobic cotton fabric is considered as an important remedy material for oily wastewater cleanup due to outstanding advantages including low cost, high porosity and switchable wettability. However, the existing superhydrophobic fabrics cannot exhibit durable superhydrophobicity during real-life applications due to poor interaction between the coatings and fabric substrates. To address this issue, one-step strategy is proposed to fabricate superhydrophobic cotton fabric by immersion in a octa-[2-(carboxyl methyl thio) ethyl]-polyhedral oligomeric silsesquioxane/cerium dioxide/polydimethylsiloxane (POSS/CeO2/PDMS) coating. As expected, the finished cotton fabric exhibits robust superhydrophobic resistance to mechanical abrasion and chemical corrosions. Notably, the finished cotton fabric shows thermal self-healing superhydrophobicity even if undergone repetitive abrasion cycles and air plasma etching. It is proposed that the rising temperature accelerates the rotations of PDMS chains and the migrations of MAPOSS and CeO2, contributing superhydrophobic self-healing of the damaged cotton fabric. Meanwhile, the superhydrophobic fabric displays high oil/water separation efficiency even in strong acid and alkali environments. Additionally, the POSS/CeO2/PDMS coating improves mechanical, thermal and UV-blocking properties of the finished cotton fabric. This work will pave a way to exploitation and applications of novel multifunctional textiles.
Collapse
Affiliation(s)
- Xiang Feng
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xiaoyuan Zhang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Weixia Yan
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Kailong Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xin Guo
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Yuanfen Huang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Jinfeng Zhang
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Dongzhi Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China; State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China.
| |
Collapse
|
8
|
Chen Y, Xue Y, Ma S, Shi H, Wang Y, Ren H, Xu K. Enhanced oil/water separation using superhydrophobic nano SiO 2-modified porous melamine sponges. CHEMOSPHERE 2024; 369:143879. [PMID: 39626802 DOI: 10.1016/j.chemosphere.2024.143879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/08/2024]
Abstract
Recent advancements in functional sponge materials have garnered significant interest due to their efficacy and cost-effectiveness in oil spill remediation. This study introduces both silane coupling agent (methyltrichlorosilane and 3-aminopropyltriethoxysilane) and nano-SiO₂ particles into the melamine sponge framework via impregnation. Additionally, polydimethylsiloxane (PDMS) serves a crucial role in curing to fuse the substrate with the coating through robust covalent bonds. The modified sponges (SiMAPs) facilitate the formation of rough surfaces comprising hierarchical structures by the deposition of nano-SiO₂ particles, while the silane coupling agents and PDMS contribute to a reduced surface energy. These SiMAP sponges maintain high stability with a water contact angle of 162.6° and demonstrate an adsorption capacity ranging from 40 to 90 times their weight in oil or organic solvents. Furthermore, they achieve a separation efficiency exceeding 98% and an oil flux of 14.38 L/m2∙s in immiscible oil-water mixtures. Additionally, the sorption of trichloromethane reaches 88.1 g/g, and the separation efficiency for surfactant-stabilized emulsions containing diesel is 62.8%. Remarkably, the oil-water separation efficiency surpasses 99.8% in dynamic continuous oil-water separation cycles, as evidenced by 20 experimental trials. These results underscore the substantial potential of SiMAP-modified sponges for addressing oil pollution by enhancing oil-water separation.
Collapse
Affiliation(s)
- Yongsheng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yi Xue
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haochuan Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
9
|
Chen J, Liu P, Guo Z. Robust special wettability materials for oil-water separation: Mechanisms and strategies. Adv Colloid Interface Sci 2024; 335:103355. [PMID: 39591836 DOI: 10.1016/j.cis.2024.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/16/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
Special wettability materials have been favored by researchers in recent years, and have played a great role in a variety of fields such as fog water collection, anti-fog, anti-icing, self-cleaning, etc. Especially in the field of oil-water separation, the frequent occurrence of offshore oil spills has seriously endangered the ecological environment. Inspired by nature, researchers have developed and manufactured a lot of bionic special wettability materials, which are expected to be effective in oil-water separation and solve the problem. However, the inherent fragility of these materials significantly limits their practical applications. There is an urgent need to fabricate special wettability materials with excellent mechanical and chemical stability through appropriate surface structure and composition design. In this review, the wettability theory and failure mechanisms of special wettability materials used for oil-water separation are reviewed, followed by a summary of test methods used to characterize durability. Methods to improve the durability of materials in recent years are described. Firstly, starting from the substrate material, the appropriate substrate material is selected according to the working environment. Secondly, micro/nano hierarchical structures can enhance the robustness and durability of materials. For coating-type materials, strengthening the bond between the substrate material and the coating is a common and effective strategy. Chemical bonds can be formed between them, and the binder can also be introduced. Moreover, endowing the material with self-healing properties is also an efficient approach. The final section summarizes the challenges in this field and offers an outlook, with the expectation of enabling large-scale, real-world applications.
Collapse
Affiliation(s)
- Jiaobing Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Peng Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
10
|
Chen H, Cao Y, Wang C, Tie F, Dong W, Camaiti M, Baglioni P. Superhydrophobic surfaces for the sustainable maintenance of building materials and stone-built heritage: The challenges, opportunities and perspectives. Adv Colloid Interface Sci 2024; 335:103343. [PMID: 39561656 DOI: 10.1016/j.cis.2024.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Bio-inspired superhydrophobic surfaces have demonstrated great potential for functional applications across a wide range of fields, including the surface maintenance of building materials. In the outdoor environment, the degradation of building materials, such as concretes, stones, bricks, tiles and mortars, poses severe structural, functional and aesthetic risks to the entire construction, raising growing concerns worldwide. Superhydrophobic surfaces are ideal multifunctional protective coatings, owing to the inhibition of liquid adhesion/penetration, spontaneous surface self-cleaning and hindering the adhesion of bacterial cells to surfaces. Yet, despite the appealing multi-functionalities and the large number of materials reported in recent years, several drawbacks that hamper wide production and application remain unresolved, e.g., poor chemical/mechanical/weathering durability, low transparency, insufficient antimicrobial effect in humid environments, toxic and environmentally unfriendly raw materials upon fabrication. In this review, the key bottlenecks identified after tentative applications are summarized underlying the underpinning mechanisms in depth. The newly proposed emerging strategies for addressing the specific limitations are then categorized and discussed in detail. Additionally, taking into account the physicochemical properties of building materials, the particular requirements concerning stone-built heritage conservation and the outdoor environment, the feasibility and the pros and cons of novel strategies are critically reviewed, outlining the future prospects of the field.
Collapse
Affiliation(s)
- Hongyi Chen
- Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (Northwestern Polytechnical University), Ministry of Education, 710072 Xi'an, China
| | - Yijian Cao
- Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (Northwestern Polytechnical University), Ministry of Education, 710072 Xi'an, China.
| | - Cong Wang
- Key Laboratory of Cultural Heritage Research and Conservation (Northwest University), Ministry of Education, Xi'an 710127, China
| | - Fude Tie
- Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (Northwestern Polytechnical University), Ministry of Education, 710072 Xi'an, China
| | - Wenqiang Dong
- Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (Northwestern Polytechnical University), Ministry of Education, 710072 Xi'an, China.
| | - Mara Camaiti
- CNR-Institute of Geosciences and Earth Resources, 50121 Florence, Italy.
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
11
|
Yuan HB, Zhao M, Wang J, Chen G, Chen Z, Xing T. Flexible, breathable, and durable superhydrophobic cotton fabric modified by behenic acid, tung oil, and ZIF-8 with anti-icing and self-cleaning properties. Int J Biol Macromol 2024; 277:133847. [PMID: 39084982 DOI: 10.1016/j.ijbiomac.2024.133847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Textiles with self-cleaning and anti-icing capabilities in cold climates are essential for outdoor workers and enthusiasts. Superhydrophobic modification of textile surfaces is effective in imparting these characteristics. Although there are numerous methods available for manufacturing superhydrophobic textiles, careful consideration is warranted for environmental concerns over fluorochemicals, stability of superhydrophobic coatings, and fabric breathability. In this work, we utilized biomass resources such as tung oil and behenic acid, along with zeolitic imidazolate framework (ZIF-8), to modify cotton fabrics, thereby creating an innovative behenic acid/tung oil/ZIF-8 modified cotton (BTZC) fabric with anti-icing and self-cleaning features. This material manifests a unique nanoflower-shaped surface morphology, demonstrating exceptional superhydrophobicity with a static water contact angle (CA) of 162° and a sliding angle (SA) of 2°. Moreover, BTZC excels in its thermal stability, breathability, and resistance to icing. Equally impressive is its robust stability, as evidenced through rigorous testing under continuous washing and abrasion, sustained high and low temperatures, extreme pH environments, and immersion in various chemical solvents. BTZC presents as a fluorine-free, durable, economically viable alternative for outdoor textile applications, marking substantial progress in the utilization of biomass and metal-organic framework materials in the textile industry and promising implications for value enhancement.
Collapse
Affiliation(s)
- Hua-Bin Yuan
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Manman Zhao
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Jiapeng Wang
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Guoqiang Chen
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tieling Xing
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Hu Y, Bao Z, Li Z, Wei R, Yang G, Qing Y, Li X, Wu Y. Develop a novel and multifunctional soy protein adhesive constructed by rosin acid emulsion and TiO 2 organic-inorganic hybrid structure. Int J Biol Macromol 2024; 277:134177. [PMID: 39067730 DOI: 10.1016/j.ijbiomac.2024.134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Soy protein adhesives (SPI) exhibit broad prospects in substituting aldehyde-based resin due to the economic and environmental-friendly characteristics, but still face a challenge because of the dissatisfied bonding strength and terrible water resistance. Herein, prompted by organic-inorganic hierarchy, a multifunctional and novel soy protein adhesive (SPI-RAE-TiO2) consisting of rosin acid emulsion (RAE) and TiO2 nanoparticles (TiO2) were proposed. In comparison with original SPI, the dry and wet shear strengths of modified adhesive reached 2.01 and 1.21 MPa, respectively, which were increased by 130 % and 200 %. Furthermore, SPI-6RAE-0.5TiO2 was selected as the best proportion via the method of response surface methodology (RSM). What's more, SPI-6RAE-0.5TiO2 adhesive demonstrated prominent coating performance in both dry and wet surface conditions. Meanwhile, SPI-6RAE-0.5TiO2 adhesive possessed excellent mildew resistance and antibacterial ability with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), reflecting the antibacterial rates 97.71 % and 98.16 %, respectively. In addition, SPI-6RAE-0.5TiO2 adhesive also exhibited the outstanding green features such as the reduction of formaldehyde pollution and greenhouse effect through Life Cycle Assessment (LCA). Thus, this work provided a novel and functional approach to design multifunctional, superior-property and low-carbon footprint soy protein adhesive.
Collapse
Affiliation(s)
- Yinchun Hu
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Zhenyang Bao
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Zhaoshuang Li
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China.
| | - Renzhong Wei
- Treezo New Material Science & Technology Group Co., Ltd., Hangzhou 311107, China
| | - Guoen Yang
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China.
| |
Collapse
|
13
|
Xia S, Yu Z, Tang J, Chen Y, Zhang X, Guo S, Yu P. A Fluorine-Free Superhydrophobic Cotton Fabric Prepared by a Green and Energy-Saving Method Is Used for Long-Lasting and Efficient Oil-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19060-19072. [PMID: 39193890 DOI: 10.1021/acs.langmuir.4c02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Oil pollution poses a major threat to the ecosystem. Therefore, it is necessary to develop a material that can separate oil and water efficiently. Fabrics have a wide range of applications due to their economic simplicity and degradability. However, the existing methods of preparing superhydrophobic fabrics are complicated and energy-consuming, which are difficult to meet the concept of green and sustainable development. Moreover, various modified fabrics are less stable in harsh environments and do not have the ability to efficiently separate oil and water over a long period of time. In this paper, superhydrophobic zirconium dioxide (ZrO2) obtained from the modification of stearic acid was loaded onto the fabric surface using the adhesive properties of PDMS, resulting in the preparation of superhydrophobic/superoleophilic STA-ZrO2 fabrics. The fabric is made without involving time-consuming and energy-consuming heating, and it offers efficient oil-water separation, good stability and excellent recyclability. Truly in line with the concept of sustainable development.
Collapse
Affiliation(s)
- Shuangshuang Xia
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Zongxue Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Res Inst Ind Hazardous Waste Disposal & Resource, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Junlei Tang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yan Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Xiuzhu Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Shijie Guo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Pengao Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|
14
|
Wu W, Miao S, Gong X. Stable and Durable Superhydrophobic Cotton Fabrics Prepared via a Simple 1,4-Conjugate Addition Reaction for Ultrahigh Efficient Oil-Water Separation. Macromol Rapid Commun 2024; 45:e2400292. [PMID: 38837517 DOI: 10.1002/marc.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Superhydrophobic materials used for oil-water separation have received wide attention. However, the simple and low-cost strategy for making durable superhydrophobic materials remains a major challenge. Here, this work reports that stable and durable superhydrophobic cotton fabrics can be prepared using a simple two-step impregnation process. Silica nanoparticles are surface modified by hydrolysis condensation of 3-aminopropyltrimethoxysilane (APTMS). 1,4-conjugate addition reaction between the acrylic group of cross-linking agent pentaerythritol triacrylate (PETA) and the amino group of octadecylamine (ODA) forms a covalent cross-linked rough network structure. The long hydrophobic chain of ODA makes the cotton fabric exhibit excellent superhydrophobic properties, and the water contact angle (WCA) of the fabric surface reaches 158°. The modified cotton fabric has good physical and chemical stability, self-cleaning, and anti-fouling. At the same time, the modified fabric shows excellent oil/water separation efficiency (98.16% after 20 cycles) and ultrahigh separation flux (15413.63 L m-2 h-1) due to its superhydrophobicity, superoleophilicity, and inherent porous structure. The method provides a broad prospect in the future diversification applications of oil/water separation and oil spill cleaning.
Collapse
Affiliation(s)
- Wanze Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Shiwei Miao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
- Hepu Research Center for Silicate Materials Industry Technology, 27 Huanzhu Avenue, Hepu county, Beihai, 536100, China
| |
Collapse
|
15
|
Shastri A, Gore PM, Kandasubramanian B. Engineering superhydrophobicity: a survey of coating techniques for silicone-based oil-water separation membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41854-41872. [PMID: 38869805 DOI: 10.1007/s11356-024-33686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024]
Abstract
Oil spills in the ocean and the release of contaminated wastewater from industries cause significant harm to the ecosystem and water sources. To tackle this environmental problem, oil-water mixture separation has been the subject of extensive research over the past few decades. Improving oil absorbents is crucial in removing organic contaminants from wastewater produced by industrial activities. To this end, there is an increasing need for materials that can efficiently and flexibly recover oils from contaminated ocean waters, industrial wastewater, and other sources. Silicones are often used for this purpose because of their exceptional mechanical and thermal durability, as well as their low toxicity. The materials produced from silicones, such as foam, sponge, or substrate, exhibit excellent oil-absorbing properties (maximum oil absorption range, 23.2-77 g/g) and outstanding compression cycles. This article review highlights the advancements in the manufacturing of silicone-based products that have been extensively researched for oil-water separation. Understanding the interdependencies that determine the structure, performance, and manufacturing strategy is essential to producing selective oil absorbents with more commercial potential in the future. Recycling of silicones has also become increasingly important as a goal for the circular economy.
Collapse
Affiliation(s)
- Abhilasha Shastri
- Department of Chemical Engineering, Institute of Chemical Technology (ICT), Mumbai, Marathwada Campus, Jalna, 431203, Maharashtra, India
| | - Prakash M Gore
- Walchandnagar Industries Ltd., Walchandnagar, Pune, 413114, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Material Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India.
| |
Collapse
|
16
|
Cui S, Wu M, Xu M, Li X, Ren Q, Wang L, Zheng W. Supercritical CO 2 extrusion foaming of highly open-cell poly(lactic acid) foam with superior oil adsorption performance. Int J Biol Macromol 2024; 269:132138. [PMID: 38718998 DOI: 10.1016/j.ijbiomac.2024.132138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Addressing marine oil spills and industrial water pollution necessitates the development of eco-efficient oil-absorbing materials. With increasing concern for the environment, there is a consensus to decrease the use of petroleum-based polymers. Herein, lightweight poly(lactic acid) (PLA) blend foams with varying thermoplastic polyurethane (TPU) content were fabricated via a solvent-free, eco-friendly supercritical carbon dioxide (scCO2) extrusion foaming technology. The incorporation of TPU significantly enhanced the crystallization rate of PLA, with the semi-crystallization time of PT30 and PT50 blends at 105 °C exhibiting a reduction of 77.2 % and 47.9 %, respectively, compared to neat PLA. The resulting foams exhibited an open-cell structure with excellent selective oil adsorption capabilities. Notably, the PT30 foam achieved a remarkable maximum expansion ratio of 36.0, while the PT50 foam attained the highest open-cell content of 96.2 %. The PT50 foam demonstrated an outstanding adsorption capacity, spanning from 4.7 to 18.8 g/g for diverse oils and solvents, with rapid adsorption kinetics, reaching 94.9 % of the equilibrium adsorption capacity for CCl4 within just 1 min. Furthermore, the PT50 foam retained 95.2 % of its adsorption capacity for CCl4 over 10 adsorption-desorption cycles. This study presents a scalable and sustainable approach for large-scale production of high-performance, bio-based foams, facilitating efficient oil-water separation.
Collapse
Affiliation(s)
- Shijie Cui
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang Province 315211, China; Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Minghui Wu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Mingxian Xu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyun Li
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Ren
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Long Wang
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenge Zheng
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Feng Y, Xu T, Shi X, Hu Y, Ni C, Chu Z, Yang Z. Multifunctional coatings fabricated from Chinese hemp-derived superhydrophobic micro-nanocellulose. Int J Biol Macromol 2024; 263:130430. [PMID: 38403218 DOI: 10.1016/j.ijbiomac.2024.130430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Ecologically feasible strategies for constructing superhydrophobic surfaces offer versatile applications in waterproofing, self-cleaning, selective absorption, and corrosion protection. Herein, we prepared low-surface-energy branched-chain-enriched micronanorod (F@SiO2@MNC) by hydrolyzing silane coupling agent and modifying fluoropolymer using micro-nanocellulose extracted from waste straw (Chinese hemp). These rods were sprayed and adhered to various substrates precoated with a binder, resulting in superhydrophobic surfaces. F@SiO2@MNC addition allowed for the formation of stable spherical liquid droplets when in contact with different types of aqueous liquids. Furthermore, these surfaces demonstrated excellent self-cleaning, robustness, abrasion resistance, UV resistance, cycling stability, and other multifunctionalities. They significantly enhanced the mechanical properties of filter paper, effectively separated oil water mixtures, and improved the corrosion resistance of metals. Our proposed strategy represents a novel approach for developing multifunctional coatings assembled from micronanocellulose.
Collapse
Affiliation(s)
- Yibin Feng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojin Shi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Chunlin Ni
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhuangzhuang Chu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| |
Collapse
|
18
|
Zuo L, Yang Y, Zhang H, Ma Z, Xin Q, Ding C, Li J. Bioinspired Multiscale Mineralization: From Fundamentals to Potential Applications. Macromol Biosci 2024; 24:e2300348. [PMID: 37689995 DOI: 10.1002/mabi.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The wondrous and imaginative designs of nature have always been an inexhaustible treasure trove for material scientists. Throughout the long evolutionary process, biominerals with hierarchical structures possess some specific advantages such as outstanding mechanical properties, biological functions, and sensing performances, the formation of which (biomineralization) is delicately regulated by organic component. Provoked by the subtle structures and profound principles of nature, bioinspired functional minerals can be designed with the participation of organic molecules. Because of the designable morphology and functions, multiscale mineralization has attracted more and more attention in the areas of medicine, chemistry, biology, and material science. This review provides a summary of current advancements in this extending topic. The mechanisms underlying mineralization is first concisely elucidated. Next, several types of minerals are categorized according to their structural characteristic, as well as the different potential applications of these materials. At last, a comprehensive overview of future developments for bioinspired multiscale mineralization is given. Concentrating on the mechanism of fabrication and broad application prospects of multiscale mineralization, the hope is to provide inspirations for the design of other functional materials.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
19
|
Foorginezhad S, Asadnia M. Superhydrophobic Al 2O 3/MMT-PDMS Coated Fabric for Self-Cleaning and Oil-Water Separation Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18311-18326. [PMID: 38052486 PMCID: PMC10734309 DOI: 10.1021/acs.langmuir.3c02325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
This study introduces a novel superhydrophobic coating applied to the fabric surface through spray coating of the Al2O3/MMT nanocomposite and PDMS polymer to enhance the surface roughness and reduce the surface tension, respectively. The as-prepared coating exhibits a remarkable superhydrophobic property with a water contact angle (WCA) of ∼174.6° and a water sliding angle (WSA) < 5°. Notably, the fabric demonstrates a self-cleaning property through removing dust and dirt via adhering to water droplets. Moreover, the insignificant loss of WCA (3.2 and 1%) after exposure to alkaline and acidic media for 10 days verifies the promising chemical stability of the coated layer, whereas WCA > 160° after 24 h of immersion in various organic solvents further indicates the layer resistance. Besides, the layer sustains WCA of 174.5, 172.5, and 168.45° after 1 month of air exposure, ultrasonic washing, and 50 cycles of home laundry. The mechanical resistance of the fabric was verified by maintaining a WCA of 158.73° after 200 abrasion cycles. Also, the layer exhibits thermal resistance with <4.1% of WCA loss in the temperature range of -10 to 180 °C. Additionally, the superhydrophobic coating excels in oil-water separation, achieving >99% separation efficiency for various oils. These exceptional properties position the fabric for diverse applications, including protective clothing, outdoor gear, medical textiles, and sportswear, emphasizing its versatility and novelty in the realm of superhydrophobic materials.
Collapse
Affiliation(s)
- S. Foorginezhad
- Department
of Engineering Sciences and Mathematics, Luleå University of Technology, Energy Science, Luleå 97187, Sweden
| | - M. Asadnia
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
20
|
Vaithilingam S, Thirviyam SK, Muthukaruppan A, Arulanandu JA. CdO-Nanografted Superhydrophobic Hybrid Polymer Composite-Coated Cotton Fabrics for Self-Cleaning and Oil/Water Separation Applications. ACS OMEGA 2023; 8:43163-43177. [PMID: 38024688 PMCID: PMC10652371 DOI: 10.1021/acsomega.3c06790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
The current study presents a simple and cost-competitive method for the development of high-performance superhydrophobic and superoleophilic cotton fabrics coated with cadmium oxide/cerotic acid (CdO/CE)-polycaprolactone (PCL)- and cadmium oxide/stearic acid (CdO/ST)-polycaprolactone-grafted hybrid composites. X-ray powder diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy are used to characterize the CdO/CE-PCL and CdO/ST-PCL and polycaprolactone-modified cotton fabrics. Using an optical contact angle meter, the wetting behavior of corrosive liquids such as coffee, milk, tea, water dyed with methylene blue, strong acids (HCl), strong alkali (NaOH), and saturated salt solution (NaCl) on the CdO-CE/ST/PCL-modified cotton fabrics is assessed as well as the durability of CdO-CE/ST/PCL-modified cotton fabrics in corrosive liquids. Data obtained from the oil-water separation experiment indicate remarkable separation efficiency with oil purity values of ≥99.97 wt %, and high permeation flux values of up to 11,700 ± 300 L m-2 h-1 are observed for surfactant-stabilized water-in-oil emulsions via a gravity-driven technique. From the data obtained, it is concluded that the nano-CdO-grafted superhydrophobic hybrid polymer composite-coated cotton fabrics (CdO-ST/(CE)/PCL/CFs) can be utilized for self-cleaning and oil/water separation applications.
Collapse
Affiliation(s)
- Selvaraj Vaithilingam
- Nanotech
Research Lab, Department of Chemistry, University
College of Engineering Villupuram (A Constituent College of Anna University,
Chennai), Kakuppam, Villupuram 605 103, Tamil Nadu, India
| | - Swarna Karthika Thirviyam
- Nanotech
Research Lab, Department of Chemistry, University
College of Engineering Villupuram (A Constituent College of Anna University,
Chennai), Kakuppam, Villupuram 605 103, Tamil Nadu, India
- Dept.
of Chemistry, SDNB Vaishnav College for
Women, Chrompet, Chennai 600 044, India
| | - Alagar Muthukaruppan
- Polymer
Engineering Laboratory, PSG Institute of
Technology and Applied Research, Neelambur, Coimbatore 641 062, India
| | | |
Collapse
|
21
|
Li Q, He Y, Yan J, Li Y, Feng J, Wang Z. From rosin to novel bio-based silicone rubber: a review. Biomater Sci 2023; 11:7311-7326. [PMID: 37847519 DOI: 10.1039/d3bm01308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Rosin is a characteristic natural renewable resource. In view of the unique hydrogenated phenanthrene ring skeleton structure of rosin, it can be designed and synthesized to modify silicone rubber for improving its mechanical properties, thermal stability, and other properties. In this paper, the research progress of silicone rubber modified by rosin and its derivatives is reviewed, including internal or surface modification of room temperature or high temperature vulcanized silicone rubber. The different chemical modifications and polymerization pathways to obtain bio-based silicone rubber (e.g. rosin-based silicone cross-linking agent, filler compound rosin-based silicone cross-linking agent, rosin-based polymer, and rosin quaternary ammonium salt bifunctional antibacterial coating) are discussed and its research prospect is reviewed. Overall, the present review article will provide a quantitative experimental basis for rosin to produce bio-renewable multifunctional silicone rubber to increase our level of understanding of the behavior of this important class of silicone rubber and other similar bio-based polymers.
Collapse
Affiliation(s)
- Qiaoguang Li
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510000, China
| | - Yuxin He
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510000, China
| | - Jie Yan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510000, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510000, China.
| | - Junfeng Feng
- College of Chemical Engineering, Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhihong Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
22
|
Yang Y, Dong J, Wang R, Lin Z, Cai Z. Urchin-like fluorinated covalent organic frameworks decorated fabric for effective self-cleaning and versatile oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132149. [PMID: 37536158 DOI: 10.1016/j.jhazmat.2023.132149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Oil contamination and industrial organic pollutants emission have been a serious problem affecting the ecological and residential environment. Membrane-based separation shows great application prospect due to its low-cost, environmental-friendly and easy operation. Therefore, the development of efficient oil-water separation membranes is highly desirable. Herein, a fabric filter with superwettability was prepared by coating urchin-like fluorinated covalent organic frameworks (COFs) on fabric, which was well utilized in filtering immiscible oil-water mixture and surfactant-stabilized water-in-oil emulsion driven only by gravity for the first time. The as-prepared COF fabric filter (defined as fabric@u-FCOF) possessed many outstanding properties, including superhydrophobicity with the water contact angle of approximately 151.6°, satisfactory resistance for alkaline, acidic and saline environments, as well as superior mechanical durability under harsh conditions. Because of the super-micropore of fabric@u-FCOF and the nanopore in the COF coating, the obtained fabric@u-FCOF exhibited excellent performances in terms of separation efficiency and permeability, in which the oil flux was up to 16964 L·m-1·h-2 and separation efficiency for the mixed o-dichlorobenzene/water was higher than 99.4%. In addition, the fabric@u-FCOF also showed excellent self-cleaning performance due to the micro/nano hierarchical structure of its surface. These excellent properties make it an ideal candidate for applications of oil/water separation and water purification.
Collapse
Affiliation(s)
- Yixin Yang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinghan Dong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ran Wang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077 Hong Kong, SAR, PR China.
| |
Collapse
|
23
|
Voo WX, Chong WC, Teoh HC, Lau WJ, Chan YJ, Chung YT. Facile Preparation of Durable and Eco-Friendly Superhydrophobic Filter with Self-Healing Ability for Efficient Oil/Water Separation. MEMBRANES 2023; 13:793. [PMID: 37755215 PMCID: PMC10534750 DOI: 10.3390/membranes13090793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023]
Abstract
The superhydrophobic feature is highly desirable for oil/water separation (OWS) operation to achieve excellent separation efficiency. However, using hazardous materials in fabricating superhydrophobic surfaces is always the main concern. Herein, superhydrophobic filters were prepared via an eco-friendly approach by anchoring silica particles (SiO2) onto the cotton fabric surface, followed by surface coating using natural material-myristic acid via a dip coating method. Tetraethyl orthosilicate (TEOS) was used in the synthesis of SiO2 particles from the silica sol. In addition, the impact of the drying temperature on the wettability of the superhydrophobic filter was investigated. Moreover, the pristine cotton fabric and as-prepared superhydrophobic cotton filters were characterised based on Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) and contact angle (CA) measurement. The superhydrophobic cotton filter was used to perform OWS using an oil-water mixture containing either chloroform, hexane, toluene, xylene or dichloroethane. The separation efficiency of the OWS using the superhydrophobic filter was as high as 99.9%. Moreover, the superhydrophobic fabric filter also demonstrated excellent durability, chemical stability, self-healing ability and reusability.
Collapse
Affiliation(s)
- Wei Xin Voo
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia; (W.X.V.); (H.C.T.)
| | - Woon Chan Chong
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia; (W.X.V.); (H.C.T.)
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Hui Chieh Teoh
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia; (W.X.V.); (H.C.T.)
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Yi Jing Chan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia;
| | - Ying Tao Chung
- Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology & Built Environment, UCSI University Kuala Lumpur Campus, Jalan Mandarina Damai 1, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
24
|
Kaushal N, Singh AK. Advancement in utilization of bio-based materials including cellulose, lignin, chitosan for bio-inspired surface coatings with special wetting behavior: A review on fabrication and applications. Int J Biol Macromol 2023; 246:125709. [PMID: 37414313 DOI: 10.1016/j.ijbiomac.2023.125709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Natural bio-material surface with hydrophobic behavior (aqueous droplet to roll off from its surface) has inspired researchers to design sustainable artificial coatings with hydrophobic or superhydrophobic behavior. The developed hydrophobic or superhydrophobic artificial coatings are highly useful in various applications such as water remediation, oil/water separation, self-cleaning, anti-fouling, anti-corrosion and also in medical fields including anti-viral, anti-bacterial efficacy. In recent years, among various coating materials, bio-based materials derived from plants and animals (cellulose, lignin, sugarcane bagasse, peanut shell, rice husk, egg cell etc.) are applied on various surfaces in order to develop fluorine free hydrophobic coatings with longer durability by lowering the surface energy and increasing the surface roughness. This review summarized recent developments in hydrophobic/superhydrophobic coating fabrication methods, properties and applications with the use of different bio-based materials and their combinations. In addition, basic mechanisms behind the coating fabrication process and their durability under different environmental conditions are also discussed. Moreover, prospects and limitations of bio-based coatings in practical applications have been highlighted.
Collapse
Affiliation(s)
- Natasha Kaushal
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Arun K Singh
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
25
|
Wang Z, Ren Y, Wu F, Qu G, Chen X, Yang Y, Wang J, Lu P. Advances in the research of carbon-, silicon-, and polymer-based superhydrophobic nanomaterials: Synthesis and potential application. Adv Colloid Interface Sci 2023; 318:102932. [PMID: 37311274 DOI: 10.1016/j.cis.2023.102932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
With the rapid development of science and technology, superhydrophobic nanomaterials have become one of the hot topics from various subjects. Due to their distinct properties, such as superhydrophobicity, anti-icing and corrosion resistance, superhydrophobic nanomaterials are widely used in industry, agriculture, defense, medicine and other fields. Hence, the development of superhydrophobic materials with superior performance, economical, practical features, and environment-friendly properties are extremely important for industrial development and environmental protection. Aimed to provide a scientific and theoretical basis for the subsequent study on the preparation of composite superhydrophobic nanomaterials, this paper reviewed the latest progress in the research of superhydrophobic surface wettability and the theory of superhydrophobicity, summarized and analyzed the latest development of carbon-based, silicon-based and polymer-based superhydrophobic nanomaterials in terms of their synthesis, modification, properties and structure sizes (diameters), discussed the problems and unique application prospects of carbon-based, silicon-based and polymer-based superhydrophobic nanomaterials.
Collapse
Affiliation(s)
- Zuoliang Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Yuanchuan Ren
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Fenghui Wu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China.
| | - Xiuping Chen
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Yuyi Yang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Jun Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| | - Ping Lu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; National Regional Engineering Research Center-NCW, Kunming 650500, Yunnan, China
| |
Collapse
|
26
|
Bai L, Wang X, Sun X, Li J, Huang L, Sun H, Gao X. Enhanced superhydrophobicity of electrospun carbon nanofiber membranes by hydrothermal growth of ZnO nanorods for oil-water separation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|