1
|
Liu Y, Qi H, Zhang J, Wang L, Wang Z. Lewis acid sites-regulated microscopic interface on graphite felt surface for enhanced heterogeneous electro-Fenton process: Formation of confinement effect and generation of singlet oxygen. J Colloid Interface Sci 2025; 694:137720. [PMID: 40306124 DOI: 10.1016/j.jcis.2025.137720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
The short lifetime and limited diffusion capability of hydroxyl radicals (•OH) restrict the further development of heterogeneous electro-Fenton (Hetero-EF) technology. In contrast, singlet oxygen (1O2) demonstrates many advantages over •OH. In the present work, a porous confined graphite felt (PCGF) was prepared through in-situ etching of nickel oxide (NiOx) and used as the cathode for Hetero-EF, aiming at constructing a 1O2-dominated Hetero-EF system to enhance its degradation performance for various antibiotic pollutants in wastewater. The in-situ etching of NiOx introduced abundant Lewis acid sites within the porous architecture of PCGF, enabling the modulation of electrode's interfacial properties and selective adsorption of Lewis basic substances, thereby generating a characteristic "confinement effect". This enhanced interfacial interaction achieved 50.23 % adsorptive removal of oxytetracycline within 30 min without external power supply, facilitating the enrichment of pollutants at the cathode interface. Meanwhile, the "confinement effect" significantly enhanced the utilization efficiency of reactive oxygen species and the selectivity of 1O2. The PCGF electrode demonstrated excellent degradation performance across a wide range of pH and exhibited strong anti-interference capability. The results from radical quenching experiments and density functional theory calculations revealed that the generation of 1O2 proceeded through multiple routes involving hydrogen peroxide, •OH, and superoxide anions. The present study presents a novel strategy for advancing the development of 1O2-dominated Hetero-EF systems for treating antibiotic-containing wastewaters.
Collapse
Affiliation(s)
- Yihao Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Haiqiang Qi
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Jian Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Liguo Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Zhongpeng Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Zhang Y, Lu J, Xu S, Ma D, Li Q, Wang Z, Gao B, Wang Y. Spatially-confined removal of intracellular antibiotic resistance genes via electrochemical membranes: Influence of pore size on electrical stimulation and exogenous reactive oxygen species oxidation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138237. [PMID: 40220394 DOI: 10.1016/j.jhazmat.2025.138237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Electrochemical membranes (EMs), as one of the most promising novel materials, offer the potential to eliminate antibiotic resistance genes (ARGs). However, there remain significant knowledge gaps regarding the removal pathways of ARGs within the spatially-confined pores of EMs, particularly for intracellular ARGs (iARGs). In this study, EMs with different pore sizes were utilized to treat synthetic water samples containing Escherichia coli genetically engineered with ARGs. It was thereby revealed that the removal efficiencies and pathways of iARGs are closely associated with the spatially-confined pores of EMs. Specifically, EMs with smaller pore sizes (e.g., 10 µm) are capable of removing more iARGs, mainly due to the synergistic effects of physical collision, direct electrical stimulation and exogenous reactive oxygen species (ROS) oxidation, with the latter two mechanisms being the predominant drivers. In contrast, EMs with larger pore sizes (e.g., 40 µm), show lower iARGs removal efficiencies. This is because the degradation of iARGs in these EMs relied more on exogenous ROS oxidation. In the case of large pores, cells can pass through the EMs without colliding with the pore walls, resulting in reduced exposure to physical collision and electrical stimulation. Additionally, the study found that 1O2 generated by EMs can penetrate into cells and opportunistically oxidize iARGs prior to their release into the extracellular environment. These findings provide valuable insights into the mechanisms and potential optimization strategies for EMs in curbing the horizontal transfer of ARGs.
Collapse
Affiliation(s)
- Yunxin Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Jiajun Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Shiping Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Defang Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Zhining Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China.
| |
Collapse
|
3
|
Zhang X, Wu C, Wang Z, Zou Y, Yang L, He M, Li J, Meng E, Zhao H. Degradation of phenol by metal-free electro-fenton using a carbonyl-modified activated carbon cathode: Promoting simultaneous H 2O 2 generation and activation. ENVIRONMENTAL RESEARCH 2024; 263:120020. [PMID: 39288546 DOI: 10.1016/j.envres.2024.120020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/19/2024]
Abstract
The low yield of hydrogen peroxide, narrow pH application range, and secondary pollution due to iron sludge precipitation are the major drawbacks of the electro-Fenton (EF) process. Metal-free electro-Fenton technology based on carbonaceous materials is a promising green pollutant degradation technology. Activated carbon cathodes enriched with carbonyl functional groups were prepared using a two-step annealing method for the degradation of phenol pollutants. The •OH in the activation process of H2O2 were identified using the EPR test technique. The action mechanism of carbonyl groups on H2O2 activation was investigated in conjunction with density functional theory (DFT) calculations. The EPR tests demonstrated that the modified activated carbon could promote the in-situ activation of H2O2 to •OH. And the results of material analysis and DFT showed that C=O could facilitate the activation of hydrogen peroxide through the electron transfer mechanism as an electron-donating group. Electrochemical tests showed that both the oxygen reduction activity and 2e-ORR selectivity of the modified activated carbons were significantly improved. Compared with the original activated carbon cathode and EF, the degradation efficiency of phenol in the ACNH-1000/GF cathode was increased by 58.10% and 45.61%, respectively. Compared with EF, ACNH-1000/GF metal-free electro-Fenton effectively expands the pH application range, and is proven to be less affected by solution initial pH, while avoiding secondary pollution. The metal-free electro-Fenton system can save more than a quarter of the cost of EF system. This study has a deep understanding of the reaction mechanism of the carbonyl modified activated carbon, and provides valuable insights for the design of metal-free catalysts, so as to promote its application in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Xiaolong Zhang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Chuanyan Wu
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Zhonghua Wang
- School of Civil Engineering and Architecture, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Yulong Zou
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Lei Yang
- School of Civil Engineering and Architecture, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Mingqi He
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Jun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Erlin Meng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| |
Collapse
|
4
|
Li S, Jiang X, Xu W, Li M, Liu Z, Han W, Yu C, Li J, Wang H, Yeung KL. Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal. WATER RESEARCH 2024; 267:122456. [PMID: 39357158 DOI: 10.1016/j.watres.2024.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m-3·order-1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater.
Collapse
Affiliation(s)
- Shuai Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | - Wei Han
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Chenglong Yu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - King Lun Yeung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| |
Collapse
|
5
|
Yang S, Cui Y, Liu Z, Peng C, Sun S, Yang J, Wang M. Performance of a polymerization-based electrochemically assisted persulfate process on a real coking wastewater treatment. J Environ Sci (China) 2024; 146:149-162. [PMID: 38969443 DOI: 10.1016/j.jes.2023.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2024]
Abstract
Industrial wastewater should be treated with caution due to its potential environmental risks. In this study, a polymerization-based cathode/Fe3+/peroxydisulfate (PDS) process was employed for the first time to treat a raw coking wastewater, which can achieve simultaneous organics abatement and recovery by converting organic contaminants into separable solid organic-polymers. The results confirm that several dominant organic contaminants in coking wastewater such as phenol, cresols, quinoline and indole can be induced to polymerize by self-coupling or cross-coupling. The total chemical oxygen demand (COD) abatement from coking wastewater is 46.8% and the separable organic-polymer formed from organic contaminants accounts for 62.8% of the abated COD. Dissolved organic carbon (DOC) abatement of 41.9% is achieved with about 89% less PDS consumption than conventional degradation-based process. Operating conditions such as PDS concentration, Fe3+ concentration and current density can affect the COD/DOC abatement and organic-polymer yield by regulating the generation of reactive radicals. ESI-MS result shows that some organic-polymers are substituted by inorganic ions such as Cl-, Br-, I-, NH4+, SCN- and CN-, suggesting that these inorganic ions may be involved in the polymerization. The specific consumption of this coking wastewater treatment is 27 kWh/kg COD and 95 kWh/kg DOC. The values are much lower than those of the degradation-based processes in treating the same coking wastewater, and also are lower than those of most processes previously reported for coking wastewater treatment.
Collapse
Affiliation(s)
- Suiqin Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuhong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengqian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf CH-8600, Switzerland.
| | - Chao Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiquan Sun
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jingjing Yang
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Sun P, Han B, Yu Z, Yao S, Liu J, Jiang R, Huang J, Hou Y, Zhang B, Li M, Mo R. Exploration of the mechanism of levofloxacin removal by N-doped-induced interfacial micro-electric field-activated persulfate. J Colloid Interface Sci 2024; 675:36-51. [PMID: 38964123 DOI: 10.1016/j.jcis.2024.06.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
The defects formed by N doping always coexist with pyrrole nitrogen (Po) and pyridine nitrogen (Pd), and the synergistic mechanisms of H2O2 production and PMS activation between the different Po: Pd are unknown. This paper synthesized MOF-derived carbon materials with different nitrogen-type ratios as cathode materials in an electro-Fenton system using precursors with different nitrogen-containing functional groups. Several catalysts with different Po: Pd ratios (0:4, 1:3, 2:2, 3:1, 4:0) were prepared, and the best catalyst for LEV degradation was FC-CN (Po: Pd=3:1). X-ray Photoelectron Spectroscopy (XPS) and density-functional theory (DFT) calculations show that the introduction of nitrogen creates an interfacial micro-electric field (IMEF) in the carbon layer and the metal, accelerates the electron transfer from the carbon layer to the Co atoms, and promotes cycling between the Fe3+/Co2+ redox pairs, with the electron transfer reaching a maximum at Po: Pd = 3:1. FC-CN (Po: Pd=3:1) achieved more than 95 % LEV degradation in 90 min at pH = 3-9, with a lower energy consumption of 0.11 kWh m-3 order-1. and the energy consumption of the catalyst for LEV degradation is lower than that of those catalysts reported. In addition, the degradation pathway of LEV was proposed based on UPLC-MS and Fukui function. This study offers some valuable information for the application of MOF derivatives.
Collapse
Affiliation(s)
- Pengxin Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Biao Han
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530020, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Jing Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Jun Huang
- School of Civil Engineering and Architecture, Guangxi Minzu University, Nanning 530004, China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Boge Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Mingjie Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Rongli Mo
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Lin Y, Zhang Y, Wang Y, Lv Y, Yang L, Chen Z, Ni BJ, Chen X. Efficient degradation and mineralization of polyethylene terephthalate microplastics by the synergy of sulfate and hydroxyl radicals in a heterogeneous electro-Fenton-activated persulfate oxidation system. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135635. [PMID: 39182298 DOI: 10.1016/j.jhazmat.2024.135635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The presence of polyethylene terephthalate (PET) microplastics (MPs) in waters has posed considerable threats to the environment and humans. In this work, a heterogeneous electro-Fenton-activated persulfate oxidation system with the FeS2-modified carbon felt as the cathode (abbreviated as EF-SR) was proposed for the efficient degradation of PET MPs. The results showed that i) the EF-SR system removed 91.3 ± 0.9 % of 100 mg/L PET after 12 h at the expense of trace loss (< 0.07 %) of [Fe] and that ii) dissolved organics and nanoplastics were first formed and accumulated and then quickly consumed in the EF-SR system. In addition to the destruction of the surface morphology, considerable changes in the surface structure of PET were noted after EF-SR treatment. On top of the emergence of the O-H bond, the ratio of C-O/C=O to C-C increased from 0.25 to 0.35, proving the rupture of the backbone of PET and the formation of oxygen-containing groups on the PET surface. With the verified involvement and contributions of SO4•- and •OH, three possible paths were proposed to describe the degradation of PET towards complete mineralization through chain cleavage and oxidation in the EF-SR system.
Collapse
Affiliation(s)
- Yinghui Lin
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yuehua Zhang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yonghao Wang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yuancai Lv
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xueming Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
8
|
Pan M, He Z, Yang X. Functional biochar accelerates peroxymonosulfate activation for organic contaminant degradation via the specific B-C-N configuration. CHEMOSPHERE 2024; 365:143202. [PMID: 39218261 DOI: 10.1016/j.chemosphere.2024.143202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Functional biochar designed with heteroatom doping facilitates the activation of peroxymonosulfate (PMS), triggering both radical and non-radical systems and thus augmenting pollutant degradation efficiency. A sequence of functional biochar, derived from hyperaccumulator (Sedum alfredii) residues, was synthesized via sequential doping with boron and nitrogen. The SABC-B@N-2 exhibited outstanding catalytic effectiveness in activating PMS to degrade the model pollutant, acid orange 7 (Kobs = 0.0655 min-1), which was 6.75 times more active than the pristine biochar and achieved notable mineralization efficiency (71.98%) at reduced PMS concentration (0.1 mM). Relative contribution evaluations, using steady-state concentrations combined with electrochemical and in situ Raman analyses, reveal that co-doping with boron and nitrogen alters the reaction pathway, transitioning from PMS activation through multiple reactive oxygen species (ROSs) to a predominantly non-radical process facilitated by electron transfer. Moreover, the previously misunderstood concept that singlet oxygen (1O2) plays a central role in the degradation of AO7 has been clarified. Correlation analysis and density functional theory calculations indicate that the distinct BCN configuration, featuring the BC2O group and pyridinic-N, is fundamental to the active site. This research substantially advances the sustainability of phytoremediation by offering a viable methodology to synthesize highly catalytic functional biochar utilizing hyperaccumulator residues.
Collapse
Affiliation(s)
- Minghui Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Fort Pierce, FL, 34945, USA
| | - Xiaoe Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
9
|
Ren G, Zhang J, Wang X, Liu G, Zhou M. A critical review of persulfate-based electrochemical advanced oxidation processes for the degradation of emerging contaminants: From mechanisms and electrode materials to applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173839. [PMID: 38871317 DOI: 10.1016/j.scitotenv.2024.173839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The persulfate-based electrochemical advanced oxidation processes (PS-EAOPs) exhibit distinctive advantages in the degradation of emerging contaminants (ECs) and have garnered significant attention among researchers, leading to a consistent surge in related research publications over the past decade. Regrettably, there is still a lack of a critical review gaining deep into understanding of ECs degradation by PS-EAOPs. To address the knowledge gaps, in this review, the mechanism of electro-activated PS at the interface of the electrodes (anode, cathode and particle electrodes) is elaborated. The correlation between these electrode materials and the activation mechanism of PS is systematically discussed. The strategies for improving the performance of electrode material that determining the efficiency of PS-EAOPs are also summarized. Then, the applications of PS-EAOPs for the degradation of ECs are described. Finally, the challenges and outlook of PS-EAOPs are discussed. In summary, this review offers valuable guidance for the degradation of ECs by PS-EAOPs.
Collapse
Affiliation(s)
- Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jie Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xufei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guanyu Liu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Minghua Zhou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Wang M, Song Z, Shen Q, Zeng H, Su X, Sun F, Dong W, Xing D, Zhou G. Simultaneous enhanced antibiotic pollutants removal and sustained permeability of the membrane involving CoFe 2O 4/MoS 2 catalyst initiated with simple H 2O 2 backwashing. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135086. [PMID: 39024762 DOI: 10.1016/j.jhazmat.2024.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Membranes for wastewater treatment should ideally exhibit sustainable high permeate production, enhanced pollutant removal, and intrinsic physical rejection. In this study, CoFe2O4/MoS2 serves as a non-homogeneous phase catalyst; it is combined with polyether sulfone membranes via liquid-induced phase separation to simultaneously sustain membrane permeability and enhance antibiotic pollutant degradation. The prepared catalytic membranes have higher pure water flux (329.34 L m-2 h-1) than pristine polyethersulfone membranes (219.03 L m-2 h-1), as well as higher mean pore size, porosity, and hydrophilicity. Under a moderate transmembrane pressure (0.05 MPa), tetracycline (TC) in synthetic and real wastewater was degraded by the optimal catalytic membrane by 72.7 % and 91.2 %, respectively. Owing to the generation of the reactive oxygen species (ROS) during the Fenton-like reaction process, the catalytic membrane could exclude the natural organics during the H2O2 backwash step and selectively promote fouling degradation in the membrane channel. The irreversible fouling ratio of the catalyzed membrane was significantly reduced, and the flux recovery rate increased by up to 91.6 %. A potential catalytic mechanism and TC degradation pathways were proposed. This study offers valuable insights for designing catalytic membranes with enhanced filtration performance.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zi Song
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qi Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haojie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wenyi Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dingyu Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guofei Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
11
|
Qian J, Liu W, Jiang Y, Ye L, Wei X, Xi S, Shi L, Zeng L. Defect Engineering of 2D Copper Tin Composite Nanosheets Realizing Promoted Electrosynthesis Performance of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306485. [PMID: 37941515 DOI: 10.1002/smll.202306485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Indexed: 11/10/2023]
Abstract
The transformation of the two-electron oxygen reduction reaction (2e-ORR) to produce hydrogen peroxide (H2 O2 ) is a promising green synthesis approach that can replace the high-energy consumption anthraquinone process. However, designing and fabricating low-cost, non-precious metal electrocatalysts for 2e-ORR remains a challenge. In this study, a method of combining complexation precipitation and thermal treatment to synthesize 2D copper-tin composite nanosheets to serve as the 2e-ORR electrocatalysts is utilized, achieving a high H2 O2 selectivity of 92.8% in 0.1 m KOH, and a bulk H2 O2 electrosynthesis yield of 1436 mmol·gcat -1 ·h-1 using a flow cell device. Remarkably, the H2 O2 selectivity of this catalyst decreases by only 0.5% after 10,000 cyclic voltammetry (CV) cycles. In addition, it demonstrates that the same catalyst can achieve 97% removal of the organic pollutant methyl blue in an aqueous system solution within 1 h using the on-site degradation technology. A reasonable control of defect concentration on the 2D copper-tin composite nanosheets that can effectively improve the electrocatalytic performance is found. Density functional theory calculations confirm that the surface of the 2D copper-tin composite nanosheets is conducive to the adsorption of the key intermediate OOH* , highlighting its excellent electrocatalytic performance for ORR with high H2 O2 selectivity.
Collapse
Affiliation(s)
- Junning Qian
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuting Jiang
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ling Ye
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xianbin Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Le Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lin Zeng
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Lim HJ, Kim DJ, Rigby K, Chen W, Xu H, Wu X, Kim JH. Peroxymonosulfate-Based Electrochemical Advanced Oxidation: Complication by Oxygen Reduction Reaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19054-19063. [PMID: 37943016 PMCID: PMC10691423 DOI: 10.1021/acs.est.3c06156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Peroxymonosulfate (PMS)-based electrochemical advanced oxidation processes (EAOPs) have received widespread attention in recent years, but the precise nature of PMS activation and its impact on the overall process performance remain poorly understood. This study presents the first demonstration of the critical role played by the oxygen reduction reaction in the effective utilization of PMS and the subsequent enhancement of overall pollutant remediation. We observed the concurrent generation of H2O2 via oxygen reduction during the cathodic PMS activation by a model nitrogen-doped carbon nanotube catalyst. A complex interplay between H2O2 generation and PMS activation, as well as a locally increased pH near the electrode due to the oxygen reduction reaction, resulted in a SO4•-/•OH-mixed oxidation environment that facilitated pollutant degradation. The findings of this study highlight a unique dependency between PMS-driven and H2O2-driven EAOPs and a new perspective on a previously unexplored route for further enhancing PMS-based treatment processes.
Collapse
Affiliation(s)
- Hyun Jeong Lim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic
of Korea
| | - David J. Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Kali Rigby
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Wensi Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Huimin Xu
- Department
of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuanhao Wu
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jae-Hong Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
13
|
Cai L, Yao Q, Du X, Zhong J, Lu H, Tao X, Zhou J, Dang Z, Lu G. Validation of quenching effectiveness and pollutant degradation ability of singlet oxygen through model reaction system. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132488. [PMID: 37696208 DOI: 10.1016/j.jhazmat.2023.132488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Quenching method is widely used to assess the contribution of specified reactive species through the probe inhibition efficiency (IE) caused by adding excessive quencher. However, for reactive species with weak ability such as singlet oxygen (1O2), the quenching results are prone to ambiguity. In this study, an 1O2 system using furfuryl alcohol (FFA) as a probe was successfully constructed by methylene-blue-N vis-photosensitization, to discuss the quenching, interference elimination and pollutant degradation ability of 1O2. Inhibition of FFA transformation caused by both quenching and interrupting of 1O2 production was found. The quenching is affected by quencher dosage and ability, which depends on the second-order-rate constant (k). A high k means a strong ability, and less dosage is required to achieve the same IE. Comparison between the calculated ratio of reactive species consumed by quencher and experimental IE helps to judge the interruption of 1O2 production. None of the organic-solvents (methanol, ethanol, iso-propanol, n-butanol, iso-butanol, tert-butanol, tetrahydrofuran, acetonitrile, acetone and chloroform) scavenged 1O2, which would be used as screening-agent for other reactive species (e.g., hydroxyl radicals) that would interrupt 1O2 contribution assessment. Besides, 1O2 was powerless to degrade most selected pollutants. These results encourage proper use of quenchers and better experimental design.
Collapse
Affiliation(s)
- Limiao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qian Yao
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiayi Zhong
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Haijian Lu
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
14
|
Li X, Ma S, Hu Y, Zhang C, Xiao C, Shi Y, Liu J, Cheng J, Chen Y. Degradation of norfloxacin in a heterogeneous electro-Fenton like system coupled with sodium chloride as the electrolyte. CHEMICAL ENGINEERING JOURNAL 2023; 473:145202. [DOI: 10.1016/j.cej.2023.145202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
15
|
Liu J, Hu Y, Li X, Xiao C, Shi Y, Chen Y, Cheng J, Zhu X, Wang G, Xie J. High-efficient degradation of chloroquine phosphate by oxygen doping MoS 2 co-catalytic Fenton reaction. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131894. [PMID: 37352777 DOI: 10.1016/j.jhazmat.2023.131894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
To degrade the antiviral and antimalarial drug chloroquine phosphate (CQP), an oxygen doping MoS2 nanoflower (O-MoS2-230) co-catalyst was prepared by a hydrothermal method to construct an O-MoS2-230 co-catalytic Fenton system (O-MoS2-230/Fenton) without pH adjustment (initial pH 5.4). Remarkable CQP degradation efficiency (99.5 %) could be achieved in 10 min under suitable conditions ([co-catalyst] = 0.2 g L-1, [Fe2+]0 = 70 μM, [H2O2]0 = 0.4 mM) with a reaction rate constant of 0.24 min-1, which was 4.8 times that of MoS2 co-catalytic Fenton system (MoS2/Fenton). Compared to MoS2/Fenton, the system had 1.5 times more Fe2+ (28.4 μM) and showed a 24.0 % increase in H2O2 activation efficiency, reaching 50.0 %. The electron paramagnetic resonance (EPR) determinations and active species trapping experimental data revealed that •OH and 1O2 were responsible for CQP degradation. The combination of experiments and density functional theory (DFT) calculation demonstrates that O doping in MoS2 modifies the surface charge distribution, leading to an increase in its conductivity, thus accelerating the Fe3+/Fe2+ cycle and promoting reactive oxygen species (ROS) generation. Furthermore, O-MoS2-230/Fenton system exhibited excellent stability. This work reveals the degradation mechanism of accelerated Fe3+/Fe2+ cycle and abundant ROS in the O-MoS2-230/Fenton system and provides a promising technology for antibiotic pollutant degradation.
Collapse
Affiliation(s)
- Jingyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Xian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yueyue Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiaoqiang Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| |
Collapse
|
16
|
Xiao C, Hu Y, Li Q, Liu J, Li X, Shi Y, Chen Y, Cheng J, Zhu X, Wang G, Xie J. Degradation of sulfamethoxazole by super-hydrophilic MoS 2 sponge co-catalytic Fenton: Enhancing Fe 2+/Fe 3+ cycle and mass transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131878. [PMID: 37379606 DOI: 10.1016/j.jhazmat.2023.131878] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
To promote the cycle of Fe2+/Fe3+ in co-catalytic Fenton and enhance mass transfer in an external circulation sequencing batch packed bed reactor (ECSPBR), super-hydrophilicity MoS2 sponge (TMS) modified by tungstosilicic acid (TA) was prepared for efficiently degrading sulfamethoxazole (SMX) antibiotics in aqueous solution. The influence of hydrophilicity of co-catalyst on co-catalytic Fenton and the advantages of ECSPBR were systematically studied through comparative research methods. The results showed that the super hydrophilicity increased the contact between Fe2+ and Fe3+ with TMS, then accelerated Fe2+/Fe3+ cycle. The max Fe2+/Fe3+ ratio of TMS co-catalytic Fenton (TMS/Fe2+/H2O2) was 1.7 times that of hydrophobic MoS2 sponge (CMS) co-catalytic Fenton. SMX degradation efficiency could reach over 90% under suitable conditions. The structure of TMS remained unchanged during the process, and the max dissolved concentration of Mo was lower than 0.06 mg/L. Additionally, the catalytic activity of TMS could be restored by a simple re-impregnation. The external circulation of the reactor was conducive to improving the mass transfer and the utilization rate of Fe2+ and H2O2 during the process. This study offered new insights to prepare a recyclable and hydrophilic co-catalyst and develop an efficient co-catalytic Fenton reactor for organic wastewater treatment.
Collapse
Affiliation(s)
- Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Qitian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jingyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yueyue Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
17
|
Li X, Chen Y, Xiao C, Hu Y, Liu H, Chen Y, Cheng J. Manipulating the morphology of self-assembly broccoli-like cobalt nickel spinel for enhancing the peroxydisulfate activation towards highly-effective ciprofloxacin degradation: Radical and non-radical pathways, mechanism and toxicity evaluation. APPLIED SURFACE SCIENCE 2023; 617:156593. [DOI: 10.1016/j.apsusc.2023.156593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|