1
|
Zhang W, Wang W, Yao Z, Zhang T, Jiao H, Wang H. Leaching-driven transformations of tire wear particles (TWPs): Uncovering the neglected environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138529. [PMID: 40359750 DOI: 10.1016/j.jhazmat.2025.138529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Extensive research has been conducted on the leaching behavior and risks of the leachate of tire wear particles (TWPs) in aquatic environments. However, the leaching-driven transformations of TWPs and the subsequent environmental impacts have been largely overlooked. This work examines the changes in physicochemical properties of TWPs during leaching in several water bodies, thereby facilitating a more thorough assessment of the environmental impacts. The results revealed that the environmental behavior related properties of TWPs, including surface morphology, pores, contact angel, zeta potential, functional groups, and surface adsorption sites varied at different levels during leaching. The ionic strength and organic matter content of water body highly determine the above transformations. The carbon index (CI) and O/C ratio of TWPs increased by 55.40 % and 14.27 % after leached in the water for 30 days, while the adsorption capacity of the TWPs for tetracycline (TC) and oxytetracycline (OTC) decreased by 27 % and 24.63 %, respectively. Herein, the changes in the functional groups and polarity during leaching highly influenced the adsorption performance of leached-TWPs. This study provides novel insight into understanding the leaching behavior of TWPs in aquatic environments and highlights an urgent need to assess the environmental implications of leaching-driven transformations of TWPs.
Collapse
Affiliation(s)
- Wenlong Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Weixue Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Zhimin Yao
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Tengyue Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Huifeng Jiao
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China.
| |
Collapse
|
2
|
Zhang D, Li J, Sun C, Manullang CY, Yin J, Cao W, Jiang F. Interface adsorption characteristics of microplastics on multiple morphological arsenic compounds. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137234. [PMID: 39904163 DOI: 10.1016/j.jhazmat.2025.137234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Polystyrene (PS) and polyethylene terephthalate (PET) are commonly used materials that degrade into microplastics in the environment. These microplastics, possessing unique physical properties, can adsorb pollutants and contribute to composite pollution effects. This study examined the loading characteristics and toxic effects of PS and PET on six arsenic compounds, revealing that PS and PET displayed different adsorption capacities for these compounds, with PS demonstrating high adsorption for monomethylarsonic acid (MMA). The adsorption kinetics and isotherm analyses indicated that arsenic compounds quickly reached equilibrium on PS and PET. The kinetics were effectively described by pseudo-first-order models, and the isotherms aligned with the Langmuir and Freundlich models. Furthermore, simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) were used to desorb arsenic compounds bound to PS and PET. The effects of aging, pH, salinity, anions, and humic acid (HA) on the ability of inorganic arsenic (iAs) to bind to PS and PET were analyzed. The results indicated that aging and HA increased the adsorption capacity of the microplastics, while salinity, anions, and elevated pH negatively affected this capacity. Additionally, the influence of microplastics and iAs on the clearance of free radicals by reduced glutathione (GSH) was explored. Microplastics inhibited the clearance of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) by GSH, whereas iAs, especially arsenate, facilitated this process, likely due to synergistic effects with the oxidized form of GSH generated through GSH reactions. This study offers a theoretical foundation for understanding how microplastics transport various forms of arsenic compounds and their potential environmental risks.
Collapse
Affiliation(s)
- Di Zhang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jingxi Li
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chengjun Sun
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Corry Yanti Manullang
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok 16424, Indonesia
| | - Jiaxuan Yin
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Wei Cao
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Fenghua Jiang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
3
|
Liu S, Li C, Bundschuh J, Gao X, Gong X, Li H, Zhu M, Yi L, Fu W, Yu F. Microplastics in groundwater: Environmental fate and possible interactions with coexisting contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126026. [PMID: 40058558 DOI: 10.1016/j.envpol.2025.126026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Microplastics (MPs) are emerging environmental pollutants which represent a serious threat to ecosystems and human health and have received significant attention from the global community. Currently, a growing number of studies have found the presence of MPs in groundwater. This study exhaustively reviewed varying degrees of recent publications in Web of Science database and investigated the characteristics of MPs (concentration, types, sizes and shapes) in groundwater ecosystems, their migration characteristics, and interactions with co-occurring contaminants. Results suggested that current global research on MPs in groundwater has primarily focused on countries such as India, South Korea, China, Italy and United States. Pollution levels of MPs in groundwater show significant variability, ranging from 0 to 6832 n/L. The predominant plastic polymer types include PP, PE, PS, PA, PET and PVC. The sources of MPs in groundwater are primarily classified as associated with natural processes and anthropogenic activities. The physical, chemical and biological properties can influence the migration of MPs into groundwater. Furthermore, MPs can act as carriers, interacting with co-occurring contaminants, thereby enhancing their migration and toxicity, potentially posing a threat to groundwater ecosystems and human health. Consequently, the major challenges and associated recommendations for forthcoming research on MPs in groundwater are proposed.
Collapse
Affiliation(s)
- Shengfeng Liu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074, Wuhan, Hubei, China
| | - Chengcheng Li
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074, Wuhan, Hubei, China; School of Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; Shanxi Center of Technology Innovation for Mining Groundwater Pollution Prevention and Remediation in Karst Area, 030006, Taiyuan, Shanxi, China
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Xubo Gao
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074, Wuhan, Hubei, China; Shanxi Center of Technology Innovation for Mining Groundwater Pollution Prevention and Remediation in Karst Area, 030006, Taiyuan, Shanxi, China
| | - Xing Gong
- School of Civil and Transportation Engineering, Guangdong University of Technology, 511400, Guangzhou, Guangdong, China
| | - Huihui Li
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074, Wuhan, Hubei, China
| | - Mengyun Zhu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074, Wuhan, Hubei, China
| | - Ling Yi
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074, Wuhan, Hubei, China
| | - Wenxuan Fu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074, Wuhan, Hubei, China
| | - Fengze Yu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074, Wuhan, Hubei, China
| |
Collapse
|
4
|
Wu G, Lin J, Wang B, Huang F, Long Q, Tu W. Biochar doping of synthesized mordenite improves adsorption and oxidation in As(III) removal: Experiments and DFT calculations. ENVIRONMENTAL RESEARCH 2025; 270:120949. [PMID: 39889873 DOI: 10.1016/j.envres.2025.120949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/12/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
In this study, a composite material was synthesized through the co-pyrolysis of biochar doped with synthetic mordenite. The adsorption experiments conducted with BC@ASM on As(III) facilitated the determination of the optimal mass ratio of 20:1 (ASM: Yak dung) and a pyrolysis temperature of 500 °C. The adsorption properties of ASM and BC@ASM were examined through batch adsorption experiments and a range of characterization techniques. And the reaction mechanism was further elucidated by DFT calculations, revealing the essential difference in the adsorption of As(III) by ASM and BC@ASM. The adsorption kinetics of As(III) were found to align with both the pseudo-second-order and Elovich kinetic models, while the isothermal adsorption was consistent with the Freundlich model. The maximum theoretical adsorption capacities were determined to be 371.9 mg/g and 449.6 mg/g, respectively. When the initial concentration of arsenite (As(III)) is 100 mg/L, the optimal dosage of synthetic mordenite is determined to be between 6 and 8 g/L, while the optimal dosage of the composite material ranges from 5 to 6 g/L. The composite material demonstrated significant resistance to fluctuations in pH. Within the pH range of 2-12, the removal efficiency is sustained between 78.3% and 88.7%. Furthermore, the adsorption capacity exhibited minimal sensitivity to the presence of anions such as chloride (Cl⁻), nitrate (NO₃⁻), bicarbonate (HCO₃⁻), and sulfate (SO₄2⁻) in the surrounding environment. In addition, BC@ASM facilitated the formation of arsenite-tannic acid complexes, which markedly improved its adsorption capacity for arsenite. In conclusion, the composite material presents a viable approach for addressing arsenic contamination in aquatic environments, while the foundational data offers a novel perspective for the remediation of metallic pollutants.
Collapse
Affiliation(s)
- Guangwei Wu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Jing Lin
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China.
| | - Fuyang Huang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Quan Long
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, Sichuan, 610015, PR China
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, PR China
| |
Collapse
|
5
|
Mu L, Gao Z, Wang M, Tang X, Hu X. The Combined Toxic Effects of Polystyrene Microplastics and Arsenate on Lettuce Under Hydroponic Conditions. TOXICS 2025; 13:86. [PMID: 39997901 PMCID: PMC11860235 DOI: 10.3390/toxics13020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The combined pollution of microplastics (MPs) and arsenic (As) has gradually been recognized as a global environmental problem, which calls for detailed investigation of the synergistic toxic effects of MPs and As on plants and their mechanisms. Therefore, the interaction between polystyrene microplastics (PS-MPs) and arsenate (AsO43-) (in the following text, it is abbreviated as As(V)) and its toxic effects on lettuce were investigated in this study. Firstly, chemisorption was identified as the main mechanism between PS-MPs and As(V) by the analysis of adsorption kinetics, adsorption thermodynamics, and Fourier transform infrared spectroscopy (FTIR). At the same time, the addition of As(V) promoted the penetration of PS-MPs through the continuous endodermal region of the Casparis strip. Furthermore, compared with the CK group, it was found that the co-addition of As(V) exacerbated the lowering effect of PS-MPs on the pH value of the rhizosphere environment and the inhibitory effect on root growth. In the P20V10 group, the pH decreased by 33.0%. Compared to the CK group, P20, P20V1, and P20V10 decreased the chlorophyll content by 68.45% (16 SPAD units), 71.37% (17.73 SPAD units), and 61.74% (15.36 SPAD units) and the root length by 19.31% (4.18 cm), 50.72% (10.98 cm), and 47.90% (10.37 cm) in lettuce. P5V10 and P20V10 increased CAT content by 153.54% (33.22 U·(mgprol)-1) and 182.68% ((38.2 U·(mgprol)-1)), Ca by 31.27% and 37.68%, and Zn by 41.85% and 41.85%, but the presence of As(V) reduced Na by 22.85% (P5V1) and 49.95% (P5V10). The co-exposure significantly affected the physiological and biochemical indicators as well as the nutritional quality of the lettuce. Finally, the metabolomic analysis of the lettuce leaves showed that combined pollution with PS-MPs and As(V) affected the metabolic pathways of the tricarboxylic acid cycle (TCA cycle), sulfur metabolism, and pyruvate metabolism. This study provides data for pollution management measures for co-exposure to PS-MPs and As(V).
Collapse
Affiliation(s)
- Li Mu
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Ziwei Gao
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Mengyuan Wang
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Xin Tang
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
| |
Collapse
|
6
|
Kong Y, Zhou Y, Zhang P, Nie Y, Ma J. Coagulation performance and mechanism of different novel covalently bonded organic silicon-aluminum/iron composite coagulant for As(V) removal from water: The role of hydrolysate species and the effect of coexisting microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135819. [PMID: 39265390 DOI: 10.1016/j.jhazmat.2024.135819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Arsenate [As(V)] pollution is a challenge for water treatment, and the effect of coexisting microplastics (MPs) on As(V) removal is still not clear. In this study, series novel covalently bonded organic silicon-aluminum/iron composite coagulants (CSA/F) with different Al/Fe molar ratios were prepared for enhancing As(V) removal. The effect mechanism of MPs (PS MPs and PS-COOH MPs) on As(V) removal by using CSAF coagulation was analyzed. CSAF and CSF showed significantly better As(V) removal performance than other coagulants under the same conditions, especially CSF, more than 90 % As(V) removal was achieved at dosage of 20 mg/L and pH of 4.0-8.0. Interestingly, the introduction of silane coupling agent and the increase of Fe content in CSA/F changed the Al/Fe species distribution. Charge neutralization dominant in As(V) removal by using CSA, whereas adsorption and net sweeping contributed to As(V) coagulation by using CSAF and CSF with higher iron proportion at neutral pH. 3 µm MPs were removed by net sweeping of amorphous Al/Fe hydroxides, while 26 µm MPs were charge-neutralized or surface adsorbed by coagulant hydrolysates. The aliphatic C-H and -COOH functional groups of MPs were the main sites of hydrogen bonding adsorption with the hydroxyl groups of coagulant hydrolysates. This study is conducive to mitigating the environmental toxicity of arsenic and provides new insights into the interaction mechanism between composite pollutants and coagulants in waters.
Collapse
Affiliation(s)
- Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Yahua Zhou
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Pengjun Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China.
| |
Collapse
|
7
|
Chu X, Tian Y, An R, Jiang M, Zhao W, Guo H, Zhao P. Interfacial interactions between colloidal polystyrene microplastics and Cu in aqueous solution and saturated porous media: Model fitting and mechanism analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122741. [PMID: 39368375 DOI: 10.1016/j.jenvman.2024.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Microplastic (MP) and heavy metal pollution have received much attention. Few researches have been carried out on the influence of the interaction between MPs and heavy metals on their transport in saturated porous media, which concerns their fate. Therefore, the interaction mechanisms between colloidal polystyrene microplastics (PSMPs) and Cu were first carried out by applying batch adsorption experiments. Subsequently, the transport and retention of PSMPs and Cu in saturated porous media was explored through column experiments. The interaction process between PSMPs and Cu was further investigated using density functional theory (DFT) calculations. Findings demonstrated that PSMPs had strong adsorption capacity for Cu ((60.07 ± 2.57) mg g-1 at pH 7 and ionic strength 0 M) and the adsorption process was chemically dominated, non-uniform, and endothermic. The O-containing functional groups on PSMP surfaces showed essential roles in Cu adsorption, and the adsorption process mainly contained electrostatic and complexation interactions. In column experiments, Cu could inhibit PSMP transport by the cation bridging effect and changing the electrical properties of glass beads, while PSMPs may facilitate Cu transport through the carrying effect. These findings confirmed that interfacial interactions between MPs and Cu could influence their transport in saturated porous media directly, providing great environmental significance.
Collapse
Affiliation(s)
- Xianxian Chu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ruopan An
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Menghan Jiang
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Hao Guo
- The Institute of Seawater Desalination and Multipurpose Utilization, Tianjin, 300192, China
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
8
|
Hao L, Ma H, Xing B. Surface characteristics and adsorption properties of polypropylene microplastics by ultraviolet irradiation and natural aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173962. [PMID: 38876352 DOI: 10.1016/j.scitotenv.2024.173962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The vast application and deep integration of plastic commodity with our human lives raise a great concern about the ubiquitous microplastics (MPs) in nature, yet the environmental behavior of MPs remain unclear. As a main type and candidate of MPs, pristine polypropylene MPs (PP-MP-Pris), as well as the influence of ultraviolet (UV) irradiation on the degree of aging and surface characteristics, were characterized quantitatively by Fourier infrared spectroscopy, scanning electron microscopy, contact angle meter, automatic specific surface area and pore analyzer and laser particle analyzer, with natural aged PP-MPs (PP-MP-Age) as comparison. The carbonyl index (CI) of UV aged PP-MPs (PP-MP-U) was increased with extension of exposure time, while biofilm with abundant functional groups and the maximum CI value were the characteristics of PP-MP-Age. Moreover, the adsorption capacity of PP-MP-U for crystal violet (CV) was increased and reached the maximum after 30 days, while that of PP-MP-Age was weakened, probably due to the enhanced hydrophilicity and the shedding of calcium carbonate (CaCO3) during the natural aging process, which was demonstrated by hydrochloric acid treatment, indicating the vital involvement of CaCO3. Moreover, the better fitting to PSO kinetics and Freundlich isotherm models indicated that the multilayered and non-homogeneous surface adsorption was acted as the rate-controlling step. Furthermore, the positive values of ΔGθ, ΔHθ and ΔSθ indicated that the adsorption was a non-spontaneous, endothermic process with increased degree of the freedom on the interface of PP-MPs and CV solution. The presence of divalent salts inhibited CV adsorption, demonstrating that electrostatic attraction played a major role in CV capture. The hydrophobic interaction, micropore filling, hydrogen bonding, and π - π conjugation were possible involved. This study is of great significance for better understanding the complex pollution of MPs and its potential environmental risks in the future.
Collapse
Affiliation(s)
- Lin Hao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Lin L, Yuan B, Liu H, Ke Y, Zhang W, Li H, Lu H, Liu J, Hong H, Yan C. Microplastics emerge as a hotspot for dibutyl phthalate sources in rivers and oceans: Leaching behavior and potential risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134920. [PMID: 38880047 DOI: 10.1016/j.jhazmat.2024.134920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Dibutyl phthalate (DBP) as a plasticizer has been widely used in the processing of plastic products. Nevertheless, these DBP additives have the potential to be released into the environment throughout the entire life cycle of plastic products. Herein, the leaching behavior of DBP from PVC microplastics (MPs) in freshwater and seawater and its potential risks were investigated. The results show that the plasticizer content, UV irradiation, and hydrochemical conditions have a great influence on the leaching of DBP from the MPs. The release of DBP into the environment increases proportionally with higher concentrations of additive DBP in MPs, particularly when it exceeds 15 %. The surface of MPs undergoes accelerated oxidation and increased hydrophilicity under UV radiation, thereby facilitating the leaching of DBP. Through 30 continuous leaching experiments, the leaching of DBP from MPs in freshwater and seawater can reach up to 12.28 and 5.42 mg g-1, respectively, indicating that MPs are a continuous source of DBP pollution in the aquatic environment. Moreover, phthalate pollution index (PPI) indicates that MPs can significantly increase DBP pollution in marine environment through land and sea transport processes. Therefore, we advocate that the management of MPs waste containing DBP be prioritized in coastal sustainable development.
Collapse
Affiliation(s)
- Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Huiling Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Yue Ke
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Weifeng Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
10
|
Colpaert R, de Vaufleury A, Rieffel D, Amiot C, Crini N, Gimbert F. The effects of polystyrene microparticles on the environmental availability and bioavailability of As, Cd and Hg in soil for the land snail Cantareus aspersus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174451. [PMID: 38969124 DOI: 10.1016/j.scitotenv.2024.174451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The combined contamination of terrestrial environments by metal(loid)s (MEs) and microplastics (MPs) is a major environmental issue. Once MPs enter soils, they can interact with MEs and modify their environmental availability, environmental bioavailability, and potential toxic effects on biota. Although research efforts have been made to describe the underlying mechanisms driving MP and ME interactions, the effects of MPs on ME bioavailability in terrestrial Mollusca have not yet been documented. To fill this gap, we exposed the terrestrial snail Cantareus aspersus to different combinations of polystyrene (PS) and arsenic (As), cadmium (Cd), or mercury (Hg) concentrations. Using kinetic approaches, we then assessed the variations in the environmental availability of As, Cd or Hg after three weeks of equilibration and in the environmental bioavailability of As, Cd or Hg to snails after four weeks of exposure. We showed that while environmental availability was influenced by the total ME concentration, the effects of PS were limited. Although an increase in As availability was observed for the highest exposure concentrations at the beginning of the experiment, the soil ageing processes led to rapid adsorption in the soil regardless of the PS particle concentration. Concerning transfers to snail, ME bioaccumulation was ME concentration-dependent but not modified by the PS concentration in the soils. Nevertheless, the kinetic approaches evidenced an increase in As (2- to 2.6-fold) and Cd (1.6-fold), but not Hg, environmental bioavailability or excretion (2.3- to 3.6-fold for As, 1.8-fold for Cd) at low PS concentrations. However, these impacts were no longer observable at the highest PS exposure concentrations because of the increase in the bioaccessibility of MEs in the snail digestive tract. The generalization of such hormetic responses and the identification of the precise mechanisms involved necessitate further research to deepen our understanding of the MP-mediated behaviour of MEs in co-occurring scenarios.
Collapse
Affiliation(s)
- Romain Colpaert
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France
| | - Annette de Vaufleury
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France
| | - Dominique Rieffel
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France
| | - Caroline Amiot
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France
| | - Nadia Crini
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France
| | - Frédéric Gimbert
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000 Besançon, France.
| |
Collapse
|
11
|
Devi SS, Saifudeen N, Kumar KS, Kumar AB. Does the microplastics ingestion patterns and polymer composition vary across the oceanic zones? A case study from the Indian coast. MARINE POLLUTION BULLETIN 2024; 204:116532. [PMID: 38824708 DOI: 10.1016/j.marpolbul.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
This study explores microplastic (MP) presence in the gastrointestinal tracts of deep-sea fish from the Central Indian Ocean, off the Indian coast. Among the 27 species examined, 19 showed MP contamination, averaging 2.68 ± 0.30 (±SE) MPs per individual. Polymer analysis via FTIR and micro-Raman identified several types, including polyethylene terephthalate (PET), polyvinyl alcohol (PVA), polypropelene (PP), polyvinyl acetate (PVC), polyurethane (PU), polytetrafluoroethylene (PTFE), polyaniline (PANI), polymethyl methacrylate (PMMA), and polyethersulfone (PES), with PET being the most prevalent (33.33 %). MP ingestion was higher in benthopelagic fish and those at higher trophic levels, as indicated by comparisons across oceanic zones. Niche partitioning analysis suggests feeding behaviour as a primary influencer of MP ingestion in deep-sea fish rather than habitat or trophic level. The study proposes the potential use of deep-sea fish as indicators for assessing microplastic pollution across oceanic zones and deep-sea regions through bycatch monitoring.
Collapse
Affiliation(s)
- Suvarna S Devi
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India
| | - Nasila Saifudeen
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India
| | | | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India.
| |
Collapse
|
12
|
Guo J, Rong H, He L, Chen C, Zhang B, Tong M. Effects of arsenic on the transport and attachment of microplastics in porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134285. [PMID: 38640672 DOI: 10.1016/j.jhazmat.2024.134285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Understanding the impact of arsenic (As(III), inorganic pollutant widely present in natural environments) on microplastics (MPs, one type of emerging contaminants) mobility is essential to predict MPs fate and distribution in soil-groundwater systems, yet relevant research is lacking. This study explored the effects of As(III) copresent in suspensions (0.05, 0.5, and 5 mg/L) on MPs transport/attachment behaviors in porous media containing varied water contents (θ = 100 %, 90 %, and 60 %) under different ionic strengths (5, 10, and 50 mM NaCl) and flow rates (2, 4, and 8 m/day). Despite solution ionic strengths, flow rates, porous media water contents, sizes, and surface charges of MPs, with coexisting humic acid, and in actual water samples, As(III) of three concentrations increased MPs transport in quartz sand and natural sandy soil. The increased electrostatic repulsion between MPs and sand caused by the altered MPs surface charge via the adsorption of As(III) together with steric repulsion from As(III) in solution contributed to the promoted MPs mobility in porous media. The occupying attachment sites by As(III) partially contributed to the increased mobility of MPs with negative surface charge in porous media. Clearly, As(III) coexisting in suspensions would enhance MPs transport in porous media, increasing MPs environment risks.
Collapse
Affiliation(s)
- Jia Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Cuibai Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
13
|
Chu X, Liu J, He N, Li J, Li T, Tian Y, Zhao P. Cu fate driven by colloidal polystyrene microplastics with pipe scale destabilization in drinking water distribution systems. WATER RESEARCH 2024; 256:121613. [PMID: 38663210 DOI: 10.1016/j.watres.2024.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
Microplastics (MPs) and Cu have been detected in drinking water distribution systems (DWDSs). Investigating MP effects on Cu adsorption by pipe scales and concomitant variations of pipe scales was critical for improving the water quality, which remained unclear to date. Therefore, polystyrene microplastics (PSMPs) were adopted for the model MPs to determine their effects on Cu fate and pipe scale stabilization, containing batch adsorption, metal speciation extraction, and Cu release experiments. Findings demonstrated that complexation and electrostatic interactions were involved in Cu adsorption on pipe scales. PSMPs contributed to Cu adsorption via increasing negative charges of pipe scales and providing additional adsorption sites for Cu, which included the carrying and component effects of free and adsorbed PSMPs, respectively. The decreased iron and manganese oxides fraction (45.57 % to 29.91 %) and increased organic fraction (48.51 % to 63.58 %) of Cu in pipe scales when PSMPs were coexisting illustrated that PSMPs had a greater affinity for Cu than pipe scales and thus influenced its mobility. Additionally, the release of Cu could be facilitated by the coexisted PSMPs, with the destabilization of pipe scales. This study was the first to exhibit that Cu fate and pipe scale stabilization were impacted by MPs, providing new insight into MP hazards in DWDSs.
Collapse
Affiliation(s)
- Xianxian Chu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Liu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Nan He
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaxin Li
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tiantian Li
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Saygin H, Tilkili B, Kayisoglu P, Baysal A. Oxidative stress, biofilm-formation and activity responses of P. aeruginosa to microplastic-treated sediments: Effect of temperature and sediment type. ENVIRONMENTAL RESEARCH 2024; 248:118349. [PMID: 38309565 DOI: 10.1016/j.envres.2024.118349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Climate change and plastic pollution are the big environmental problems that the environment and humanity have faced in the past and will face in many decades to come. Sediments are affected by many pollutants and conditions, and the behaviors of microorganisms in environment may be influenced due to changes in sediments. Therefore, the current study aimed to explore the differential effects of various microplastics and temperature on different sediments through the metabolic and oxidative responses of gram-negative Pseudomonas aeruginosa. The sediments collected from various fields including beaches, deep-sea discharge, and marine industrial areas. Each sediment was extracted and then treated with various microplastics under different temperature (-18, +4, +20 and 35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed sediment samples were incubated with Pseudomonas aeruginosa to test bacterial activity, biofilm, and oxidative characteristics. The results showed that both the activity and the biofilm formation of Pseudomonas aeruginosa increased with the temperature of microplastic treatment in the experimental setups at the rates between an average of 2-39 % and 5-27 %, respectively. The highest levels of bacterial activity and biofilm formation were mainly observed in the beach area (average rate +25 %) and marine industrial (average rate +19 %) sediments with microplastic contamination, respectively. Moreover, oxidative characteristics significantly linked the bacterial activities and biofilm formation. The oxidative indicators of Pseudomonas aeruginosa showed that catalase and glutathione reductase were more influenced by microplastic contamination of various sediments than superoxide dismutase activities. For instance, catalase and glutathione reductase activities were changed between -37 and +169 % and +137 to +144 %, respectively; however, the superoxide dismutase increased at a rate between +1 and + 21 %. This study confirmed that global warming as a consequence of climate change might influence the effect of microplastic on sediments regarding bacterial biochemical responses and oxidation characteristics.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Pinar Kayisoglu
- Deptment of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Deptment of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
15
|
Saygin H, Tilkili B, Karniyarik S, Baysal A. Culture dependent analysis of bacterial activity, biofilm-formation and oxidative stress of seawater with the contamination of microplastics under climate change consideration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171103. [PMID: 38402970 DOI: 10.1016/j.scitotenv.2024.171103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Temperature changes due to climate change and microplastic contamination are worldwide concerns, creating various problems in the marine environment. Therefore, this study was carried out to discover the impact of different temperatures of seawater exposed to different types of plastic materials on culture dependent bacterial responses and oxidative characteristics. Seawater was exposed to microplastics obtained from various plastic materials at different temperature (-18, +4, +20, and +35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed seawater samples were analyzed for bacterial activity, biofilm formation and oxidative characteristics (antioxidant, catalase, glutathione, and superoxide dismutase) using Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. The results showed that the activity and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus were affected through oxidative stress by catalase, glutathione, and superoxide dismutase due to the microplastic deformation by temperature changes. This study confirms that temperature changes as a result of climate change might influence microplastic degradation and their contamination impact in seawater in terms of bacterial metabolic and oxidation reactions.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Sinem Karniyarik
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
16
|
Wright ACM, Boots B, Ings TC, Green DS. Impacts of pristine, aged and leachate of conventional and biodegradable plastics on plant growth and soil organic carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11766-11780. [PMID: 38224439 PMCID: PMC10869392 DOI: 10.1007/s11356-024-31838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Plastic is an essential component of agriculture globally, becoming a concerning form of pollution. Biodegradable alternatives are gaining attention as a potential replacement for commonly used, non-degradable plastics, but there is little known about the impacts of biodegradable plastics as they age and potential leachates are released. In this study, different types (conventional: polyethylene and polypropylene and biodegradable: polyhydroxybutyrate and polylactic acid) of micro- and meso-films were added to soil at 0.1% (w/w) prior to being planted with Lolium perenne (perennial ryegrass) to evaluate the plant and soil biophysical responses in a pot experiment. Root and shoot biomass and chlorophyll content were reduced when soil was exposed to plastics, whether conventional or biodegradable, pristine, aged or when just their leachate was present. The pH and organic matter content of soil exposed to these plastics and their leachates was significantly reduced compared to control samples; furthermore, there was an increase in CO2 respiration rate from soil. In general, meso (> 5 mm) and micro (< 5 mm) plastic films did not differ in the impact on plants or soil. This study provides evidence that conventional and biodegradable plastics have both physical and chemical impacts on essential soil characteristics and the growth of L. perenne, potentially leading to wider effects on soil carbon cycling.
Collapse
Affiliation(s)
- Amy C M Wright
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| | - Bas Boots
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Thomas C Ings
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Dannielle S Green
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| |
Collapse
|
17
|
Guo F, Liu B, Zhao J, Hou Y, Wu J, Hu H, Zhou C, Hu H, Zhang T, Yang Z. Temperature-dependent effects of microplastics on sediment bacteriome and metabolome. CHEMOSPHERE 2024; 350:141190. [PMID: 38215830 DOI: 10.1016/j.chemosphere.2024.141190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
The increasing prevalence of microplastics in the environment has become a concern for various ecosystems, including wetland ecosystems. Here, we investigated the effects of three popular microplastic types: polyethylene, polylactic acid, and tire particles at 5 °C and 25 °C on the sediment microbiome and metabolome at the 3% (w/w) level. Results indicated that temperature greatly influenced catalase and neutral phosphatase activities, whereas the type of microplastic had a more significant impact on urease and dehydrogenase activities. The addition of microplastic, especially tire particles, increased microbial diversity and significantly altered the microbial community structure and metabolic profile, leading to the formation of different clusters of microbial communities depending on the temperature. Nonetheless, the effect of temperature on the metabolite composition was less significant. Functional prediction showed that the abundance of functional genes related to metabolism and biogeochemical cycling increased with increasing temperature, especially the tire particles treatment group affected the nitrogen cycling by inhibiting ureolysis and nitrogen fixation. These observations emphasize the need to consider microplastic type and ambient temperature to fully understand the ecological impact of microplastics on microbial ecosystems.
Collapse
Affiliation(s)
- Feng Guo
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China; School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450011, PR China
| | - Biao Liu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China.
| | - Jiaying Zhao
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450011, PR China
| | - Yiran Hou
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Hongwei Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Changrui Zhou
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Hui Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Tingting Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Ziyan Yang
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450011, PR China
| |
Collapse
|
18
|
Ortega DE, Cortés-Arriagada D. Interaction mechanism of water-soluble inorganic arsenic onto pristine nanoplastics. CHEMOSPHERE 2024; 350:141147. [PMID: 38195016 DOI: 10.1016/j.chemosphere.2024.141147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
Nanoplastics (NPLs) persist in aquatic habitats, leading to incremental research on their interaction mechanisms with metalloids in the environment. In this regard, it is known that plastic debris can reduce the number of water-soluble arsenicals in contaminated environments. Here, the arsenic interaction mechanism with pure NPLs, such as polyethylene terephthalate (PET), aliphatic polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), and polystyrene (PS) is evaluated using computational chemistry tools. Our results show that arsenic forms stable monolayers on NPLs through surface adsorption, with adsorption energies of 9-24 kcal/mol comparable to those on minerals and composite materials. NPLs exhibit varying affinity towards arsenic based on their composition, with As(V) adsorption showing higher stability than As(III). The adsorption mechanism results from a balance between electrostatics and dispersion forces (physisorption), with an average combined contribution of 87%. PA, PET, PVC, and PS maximize the electrostatic effects over dispersion forces, while PE and PP maximize the dispersion forces over electrostatic effects. The electrostatic contribution is attributed to hydrogen bonding and the activation of terminal O-C, C-H, and C-Cl groups of NPLs, resulting in several pairwise interactions with arsenic. Moreover, NPLs polarity enables high mobility in aqueous environments and fast mass transfer. Upon adsorption, As(III) keeps the NPLs polarity, while As(V) limits subsequent uptake but ensures high mobility in water. The solvation process is destabilizing, and the higher the NPL polarity, the higher the solvation energy penalty. Finally, the mechanistic understanding explains how temperature, pressure, pH, salinity, and aging affect arsenic adsorption. This study provides reliable quantitative data for sorption and kinetic experiments on plastic pollution and enhances our understanding of interactions between water contaminants.
Collapse
Affiliation(s)
- Daniela E Ortega
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, 8370854, Chile.
| | - Diego Cortés-Arriagada
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, 8940577, Chile.
| |
Collapse
|
19
|
Liang J, Chen X, Duan X, Gu X, Zhao X, Zha S, Chen X. Natural aging and adsorption/desorption behaviors of polyethylene mulch films: Roles of film types and exposure patterns. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133588. [PMID: 38290328 DOI: 10.1016/j.jhazmat.2024.133588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Polyethylene (PE) mulch films are an important source of microplastics (MPs) in agricultural soils, which may further affect the bioavailability of coexisting pollutants. In this study, white (WM), black (BM), and silver-black (SM) PE mulch films were aged on the soil surface and under soil burial to simulate the two exposure patterns of abandoned mulch films in the field. Results indicated that the soil-surface exposure induced more pronounced aging characteristics, and WM seemed the most susceptible. Serious surface deterioration by aging led to a drastic decrease in the tensile properties of the films, suggesting the tendency to fragment. Oxygen-containing functional groups were generated on the film surfaces, with oxygen/carbon ratios increasing by up to 29 times, which contributed to the prominent increase in Pb adsorption on the film-derived MPs. Additionally, the film surface became more hydrophobic when exposed to the soil surface but more hydrophilic in the soil-burial exposure, which was in agreement with the change in triclosan adsorption, i.e., promotion and suppression, respectively. Aging generally decreased the desorption potential of the adsorbed pollutants in simulated gastrointestinal solutions due to increased interactions. By comparison, exposure patterns were revealed to be the critical factor for these changes, regardless of film types.
Collapse
Affiliation(s)
- Jingcheng Liang
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou 213001, China
| | - Xian Chen
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou 213001, China.
| | - Xiaotong Duan
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou 213001, China
| | - Xueyuan Gu
- School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xiaopeng Zhao
- School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Simin Zha
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou 213001, China
| | - Xingming Chen
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou 213001, China
| |
Collapse
|
20
|
Wang R, Yang L, Guo M, Lin X, Wang R, Guo S. Effects of microplastic properties and dissolved organic matter on phosphorus availability in soil and aqueous mediums. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122784. [PMID: 37871740 DOI: 10.1016/j.envpol.2023.122784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Plastic mulching films and phosphate fertilizers have been widely used to improve agricultural soil productivity. Microplastics (MP) and phosphorus (P) significantly accumulate in agricultural soil and water bodies. However, the effects of residual MP on P availability in soil and aqueous mediums remain unclear. In this study, available P (Olsen-P) in soils and P adsorption capacity in aqueous medium were determined to examine the influence of MP properties on P availability in laboratory. In agricultural soils, Olsen-P was significantly affected by MP types. Conventional MP (mulching film particles), such as polyethylene (PE) and polyvinyl chloride (PVC), and biodegradable MP, such as polylactic acid (PLA), substantially reduced soil Olsen-P by 9.7-38.6% and 38.4-73.6%, respectively. The size and concentration of MP strongly affected soil Olsen-P, with smaller (25 μm) and more concentrated (5%) MP causing greater reductions in Olsen-P. In the soil contaminated with MP, increased fulvic acid content significantly increased Olsen-P levels. Microplastics exhibited strong P adsorption capacities, leading to decreased P availability in aqueous medium. Conventional MP exhibited a higher P adsorption capacity than biodegradable MP, with P distribution coefficients (Kd values) ordered as PVC (5.19 L kg-1) > PE (4.23 L kg-1) > PLA (2.48 L kg-1). Notably, the Kd values increased with decreasing sizes of conventional MP, whereas the opposite trend was observed for PLA. The presence of fulvic acid affected the adsorption of P by MP in aqueous medium. Increased fulvic acid content reduced P adsorption capacity of MP, thus enhancing P availability. Our findings contribute to a better understanding of P dynamics in MP-contaminated agricultural soil and aqueous medium, which could aid in formulating sustainable agricultural practices and effective environmental management strategies for plastic mulching films and P contamination.
Collapse
Affiliation(s)
- Runze Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lin Yang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Miaomiao Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaohua Lin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rui Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Shengli Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
21
|
Parameswarappa Jayalakshmamma M, Na Nagara V, Borgaonkar A, Sarkar D, Sadik O, Boufadel M. Characterizing microplastics in urban runoff: A multi-land use assessment with a focus on 1-125 μm size particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166685. [PMID: 37652378 DOI: 10.1016/j.scitotenv.2023.166685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Urban areas play a significant role in generating microplastics (MPs) through increased vehicular and human activities, making urban runoff a key source of MP pollution in receiving waterways. The composition of MPs is anticipated to vary with land use; hence, identifying the hotspots of contamination within urban areas is imperative for the targeted interventions to reduce MPs at their sources. This study collected one-liter stormwater runoffs from three different land uses as sheet flow during two storm events to quantify the MPs and identify the polymers transported from land-based sources. The analytical method included a combination of Fourier transform infrared spectrometer, Raman microscope, and Nile red staining techniques. This study analyzed the broad spectrum of MPs, i.e., 1 μm-5 mm, and tire wear and bitumen particles, considered the two major research gaps in stormwater studies. The MP concentrations were 67.7 ± 11.3 pL-1in commercial, 23 ± 10.3 pL-1 in residential, and 168.7 ± 37.1 pL-1in highways. The trend of MP concentrations followed an order of highway > commercial > residential with an exclusive presence of polymethylmethacrylate and ethylene-vinyl acetate in highways; cellophane, methylcellulose, polystyrene, polyamide, and polytetrafluorethylene in commercial; and high-density polyethylene in residential areas. The dominant MP morphology consisted of fragments, accounting for 89 % of the identified MPs, followed by 10 % fibers and 1 % films. This study observed a prevalence of MPs sizes <125 μm constituting 49 % of the total composition. These findings underscore the vital role of land use patterns in shaping MP abundance and reinforce the urgency of implementing effective management strategies to mitigate MP pollution in stormwater runoff.
Collapse
Affiliation(s)
- Meghana Parameswarappa Jayalakshmamma
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA
| | - Viravid Na Nagara
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA
| | - Ashish Borgaonkar
- School of Applied Engineering and Technology, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Omowunmi Sadik
- Chemistry and Environmental Science, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA
| | - Michel Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA.
| |
Collapse
|
22
|
Ma JW, Wu YQ, Xu CL, Luo ZX, Yu RL, Hu GR, Yan Y. Inhibitory effect of polyethylene microplastics on roxarsone degradation in soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131483. [PMID: 37116328 DOI: 10.1016/j.jhazmat.2023.131483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox(V)), an extensively used organoarsenical feed additive, enters soils through the application of Rox(V)-containing manure and further degrades to highly toxic arsenicals. Microplastics, as emerging contaminants, are also frequently detected in soils. However, the effects of microplastics on soil Rox(V) degradation are unknown. A microcosm experiment was conducted to investigate soil Rox(V) degradation responses to polyethylene (PE) microplastics and the underlying mechanisms. PE microplastics inhibited soil Rox(V) degradation, with the main products being 3-amino-4-hydroxyphenylarsonic acid [3-AHPAA(V)], N-acetyl-4-hydroxy-m-arsanilic acid [N-AHPAA(V)], arsenate [As(V)], and arsenite [As(III)]. This inhibition was likely driven by the decline in soil pH by PE microplastic addition, which may directly enhance Rox(V) sorption in soils. The decreased soil pH further suppressed the nfnB gene related to nitroreduction of Rox(V) to 3-AHPAA(V) and nhoA gene associated with acetylation of 3-AHPAA(V) to N-AHPAA(V), accompanied by a decrease in the relative abundance of possible Rox(V)-degrading bacteria (e.g., Pseudomonadales), although the diversity, composition, network complexity, and assembly of soil bacterial communities were largely influenced by Rox(V) rather than PE microplastics. Our study emphasizes microplastic-induced inhibition of Rox(V) degradation in soils and the need to consider the role of microplastics in better risk assessment and remediation of Rox(V)-contaminated soils.
Collapse
Affiliation(s)
- Jie-Wen Ma
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Ya-Qing Wu
- Instrumental Analysis Center of Huaqiao University, Huaqiao University, Xiamen 361021, China
| | - Chen-Lu Xu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhuan-Xi Luo
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Rui-Lian Yu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Gong-Ren Hu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
23
|
Tang S, Sun P, Qu G, Tian Y, Liu J, Pervez MN, Li X, Cao C, Zhao Y. Photo-aged non-biodegradable and biodegradable mulching film microplastics alter the interfacial behaviors between agricultural soil and inorganic arsenic. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131552. [PMID: 37207479 DOI: 10.1016/j.jhazmat.2023.131552] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 05/21/2023]
Abstract
The impacts of microplastics (MPs) prevalent in soil on the transport of pollutants were urged to be addressed, which has important implications for ecological risk assessment. Therefore, we investigated the influence of virgin/photo-aged biodegradable polylactic acid (PLA) and non-biodegradable black polyethylene (BPE) mulching films MPs on arsenic (As) transport behaviors in agricultural soil. Results showed that both virgin PLA (VPLA) and aged PLA (APLA) enhanced the adsorption of As(Ⅲ) (9.5%, 13.3%) and As(Ⅴ) (22.0%, 6.8%) due to the formation of abundant H-bonds. Conversely, virgin BPE (VBPE) reduced the adsorption of As(Ⅲ) (11.0%) and As(Ⅴ) (7.4%) in soil owing to the "dilution effect", while aged BPE (ABPE) improved arsenic adsorption amount to the level of pure soil due to newly generated O-containing functional groups being feasible to form H-bonds with arsenic. Site energy distribution analysis indicated that the dominant adsorption mechanism of arsenic, chemisorption, was not impacted by MPs. The occurrence of biodegradable VPLA/APLA MPs rather than non-biodegradable VBPE/ABPE MPs resulted in an increased risk of soil accumulating As(Ⅲ) (moderate) and As(Ⅴ) (considerable). This work uncovers the role of biodegradable/non-biodegradable mulching film MPs in arsenic migration and potential risks in the soil ecosystem, depending on the types and aging of MPs.
Collapse
Affiliation(s)
- Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peipei Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Tian
- School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Junlai Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Md Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Xiuyan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
24
|
Liu J, Wen Y, Mo Y, Liu W, Yan X, Zhou H, Yan B. Chemical speciation determines combined cytotoxicity: Examples of biochar and arsenic/chromium. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130855. [PMID: 36708695 DOI: 10.1016/j.jhazmat.2023.130855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
As both electron donors and acceptors, biochars (BCs) may interact with multivalent metal ions in the environment, causing changes in ionic valence states and resulting in unknown combined toxicity. Therefore, we systematically investigated the interaction between BCs and Cr (Cr(III) & Cr(VI)) or As (As(III) & As(V)) and their combined cytotoxicity in human colorectal mucosal (FHC) cells. Our results suggest that the redox-induced valence state change is a critical factor in the combined cytotoxicity of BCs with Cr/As. Specifically, when Cr(VI) was adsorbed on BCs, 86.4 % of Cr(VI) was reduced to Cr(III). In contrast, As(III) was partially oxidized to As(V) with a ratio of 37.2 %, thus reaching a reaction equilibrium. Meanwhile, only As(V) was released in the cell, which could cause more As(III) to be oxidized. As both Cr(III) and As(V) are less toxic than their corresponding counterparts Cr(VI) and As(III), different redox interactions between BCs and Cr/As and release profiles between BCs and Cr/As together lead to reduced combined cytotoxicity of BP-BC-Cr(VI) and BP-BC-As(III). It suggests that the valence state changes of metal ions due to redox effects is one of the parameters to be focused on when studying the combined toxicity of complexes of BCs with different heavy metal ions.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuting Wen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yucong Mo
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|