1
|
Cai D, Hu R, Guo M, Wang D, Zhu Y, Sun C, Chen X, Ye J, Kong X, Xu H. A solar thermoelectric system by temperature difference for efficient removal of chromium (VI) in water and soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136309. [PMID: 39531818 DOI: 10.1016/j.jhazmat.2024.136309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
In this work, we designed and developed a facile solar thermoelectric generator (STEG)-based system and a new electrokinetic remediation (EKR) system, which consists of main electrodes and unenergized auxiliary electrodes. The prepared nanocomposite was investigated for the effectiveness of the STEG+PANI-CNT/GF system in remediating Cr-contaminated. Photothermal performance test were applied in order to examine this STEG could export a power density of 365.56 mW/dm2 and output potential of 801 mV at the temperature difference of 50 ℃. Thus the STEG could be used as the power to construct a Cr(VI) removal system using polyaniline (PANI) film/carbon nanotubes (CNT) modified graphite felt (GF) electrode (PANI-CNT/GF) as cathode and graphite rod as anode. The as-prepared STEG+PANI-CNT/GF system exhibited a significant Cr(VI) removal efficiency (96.2 % in water) through electromigration, electro-adsorption and electroreduction. Moreover, a multi auxiliary electrodes (AEs) system (STEG+PANI-CNT/GF+AEs) with six PANI-CNT/GF auxiliary electrodes was constructed in remediating Cr(VI)-contaminated soil, showing Cr(VI) removal efficiency of 16.7-60.1 % higher than that of STEG+PANI-CNT/GF. The PANI-CNT/GF auxiliary electrodes could bind Cr(VI) and adjust electric field distribution, contributing to adsorption and reduction of Cr(VI). Consequently, this work provides a promoting approach for heavy metals removal in future application.
Collapse
Affiliation(s)
- Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rongxi Hu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Minxue Guo
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chen Sun
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinyan Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianghai Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Yang D, Fang W, Zhang H, Sun H, Gu X, Chen H, Luo J. Effects of nZVI on the migration and availability of Cr(VI) in soils under simulated acid rain leaching conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134985. [PMID: 38908184 DOI: 10.1016/j.jhazmat.2024.134985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Hexavalent chromium, Cr(VI), is a ubiquitous toxic metal that can be reduced to Cr(III) by nano-zero-valent iron (nZVI). Finding out effects of continuous rainfall leaching on the Cr(VI) release and availability remains a problem, needing to be addressed. Whether the Cr(VI) reduction by nZVI and continuous rainfall leaching lead to localized heterogeneity in soil is unclear. Therefore, two in situ high-resolution (HR) techniques of the diffusive gradients in thin-films (DGT) and planar optode were combined with ex situ sampling experiments here. Results demonstrate that nZVI decreased Cr(VI) leaching by 5.60-8.50 % compared to control soils. DGT-measured concentrations of Cr(VI), CDGT-Cr(VI), ranged from 7.31 to 19.4 μg L-1 in the control soils, increasing with depth while CDGT-Cr(VI) in nZVI-treated soils (2.41-6.18 μg L-1) decreased or remained stable with depth. However, simulated acid-rain leaching increases CDGT-Cr(VI) by 1.61-fold in nZVI-treated soils, negatively affecting the remediation. DGT measurements in bulk soils using disc devices are better at capturing the change of Cr(VI) availability at different conditions, whereas 2D-HR DGT mappings did not characterize significant mobilization of Cr(VI) at the micro-scale. These findings emphasize the importance of monitoring Cr(VI) release and availability in remediated soil under acid-rain leaching conditions for effective environment management.
Collapse
Affiliation(s)
- Danxing Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Haitao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Haiyi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
3
|
Manikandan S, Deena SR, Subbaiya R, Vijayan DS, Vickram S, Preethi B, Karmegam N. Waves of change: Electrochemical innovations for environmental management and resource recovery from water - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121879. [PMID: 39043086 DOI: 10.1016/j.jenvman.2024.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/27/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Environmental electrochemistry and water resource recovery are covered in this review. The study discusses the growing field's scientific basis, methods, and applications, focusing on innovative remediation tactics. Environmental electrochemistry may solve water pollution and extract resources. Electrochemical methods may effectively destroy or convert pollutants. This method targets heavy metals, organic compounds, and emerging water contaminants such as pharmaceuticals and microplastics, making it versatile. Environmental electrochemistry and resource recovery synergize to boost efficiency and sustainability. Innovative electrochemical methods can extract or synthesise metals, nutrients, and energy from wastewater streams, decreasing treatment costs and environmental effect. The study discusses electrocoagulation, electrooxidation, and electrochemical advanced oxidation processes and their mechanics and performance. Additionally, it discusses current electrode materials, reactor designs, and process optimisation tactics to improve efficiency and scalability. Resource recovery in electrochemical remediation methods is also examined for economic and environmental feasibility. Through critical examination of case studies and techno-economic evaluations, it explains the pros and cons of scaling up these integrated techniques. This study covers environmental electrochemistry and resource recovery's fundamental foundations, technology advances, and sustainable water management consequences.
Collapse
Affiliation(s)
- S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - S R Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia; Oliver R. Tambo Africa Research Chair Initiative (ORTARChI) Environment and Development, The Copperbelt University, P.O. Box 21692, Kitwe, Zambia
| | - D S Vijayan
- Department of Civil Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission Research Foundation (VMRF - DU), Paiyanur, Chennai, 603104, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - B Preethi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
4
|
Liu H, Ye W, Zhang H, Wang H, Wei J. Integration of adsorption, reduction, and filtration in PANI/PVDF nanofiber composite membrane for removal of Cr(VI). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28695-28705. [PMID: 38558343 DOI: 10.1007/s11356-024-33098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Here, polyaniline/polyvinylidene fluoride (PANI/PVDF) nanofiber composite membrane was fabricated using electrostatic spinning technology to remove hexavalent chromium Cr(VI). The employment of PANI not only extremely enhanced the hydrophilic property of the nanofiber membrane, but also facilitated the transfer of Cr2O72- from water to the membrane. The PANI/PVDF membrane had an extremely excellent performance in getting rid of Cr(VI) and a quite large flux (250 L/m2 h). The maximum adsorption quantity of the membrane could reach 334.5 mg/g in which adsorption played 52.12% part and reduction played 47.87% part. The removal rate could reach nearly 100% immediately in the permeate solution under filtration while it needed 240 min to reach 100% only by static adsorption. Therefore, the interception of the membrane and the adsorption reduction of PANI had synergistic effect on removal of Cr(VI). Furthermore, the removal rate of Cr(VI) could still reach 95.97% after reused 8 times. The membrane showed a very good reusability and application prospect.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Separation Membranes and Membrane Processes / National Center for International Joint Research On Separation Membranes, Tiangong University, Tianjin, 300387, China.
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| | - Wei Ye
- State Key Laboratory of Separation Membranes and Membrane Processes / National Center for International Joint Research On Separation Membranes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Huan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes / National Center for International Joint Research On Separation Membranes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Huicai Wang
- State Key Laboratory of Separation Membranes and Membrane Processes / National Center for International Joint Research On Separation Membranes, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes / National Center for International Joint Research On Separation Membranes, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| |
Collapse
|
5
|
Zhao R, Zhang X, Zhou Y, Li J, Guo B, Oyama K, Tokoro C. Influence of elevated temperature on the species and mobility of chromium in ferrous sulfate-amended contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120457. [PMID: 38503231 DOI: 10.1016/j.jenvman.2024.120457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/22/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Ferrous sulfate (FeSO4) combined with acid pretreatment is usually employed to remediate contaminated soils containing Cr(VI). However, the long-term efficiency of this stabilization method is important for its sustainability. In this study, a gradient temperature-elevating exposure test was employed to investigate the stability of Cr in FeSO4-remediated soil when exposed to elevated temperatures (40 °C, 120 °C, and 500 °C), possibly caused by hot weather and/or wildfires. The results of chemical extraction and X-ray absorption near edge structure spectroscopy (XANES) showed that the Cr(VI) in contaminated soil was successfully transformed to Cr(III) after stabilization, resulting in the dramatic decrease of water-leachable Cr(VI). The stabilization efficiency was further improved under 40 °C treatment after 30 days. Subsequently, the 120 °C treatment (7 days) had relatively little effect on the Cr speciation and mobility in soils. However, even one day of 500 °C calcination resulted in the deterioration of stabilization efficiency, and the water-leachable Cr(VI) re-increased and became higher than the Chinese environmental standards (total Cr 15 mg/L, Cr(VI) 5 mg/L) for the classification of hazardous solid wastes. XANES results reflected that heating at 500 °C facilitate the formation of Cr2O3, which was mainly caused by thermal decomposition and dehydration of Cr(OH)3 in the soil. Besides, the transformation of Cr species resulted in the enhanced association of Cr with the most stable residual fraction (88.3%-91.6%) in soil. Based on chemical extraction results, it was suggested that the oxidation of Cr(III) to Cr(VI) contributed to the re-increased mobility of Cr(VI) in soil. However, the XANES results showed that almost no significant re-oxidization of Cr(III) to Cr(VI) happened after heating at 500 °C, which was probably caused by XANES linear combination fits (LCF) uncertainties. Moreover, the changes in soil properties, including a rise in pH to a slightly alkaline range and/or the decomposition of organic matter, possibly contributed to the enhanced mobility of Cr(VI) in soil. This study contributes to clarifying the mobility and transformation of Cr in contaminated soils and provides a support for the sustainable management of remediated soils.
Collapse
Affiliation(s)
- Ruolin Zhao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China
| | - Xinqing Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China
| | - Yiwen Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong province, 510650, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong province, 510650, China.
| | - Binglin Guo
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui province, 230009, China.
| | - Keishi Oyama
- Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Chiharu Tokoro
- Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan; Faculty of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
6
|
Yang Y, Xu M, Jin W, Jin J, Dong F, Zhang Z, Yan X, Shao M, Wan Y. PANI/MCM-41 adsorption for removal of Cr(VI) ions and its application in enhancing electrokinetic remediation of Cr(VI)-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121684-121701. [PMID: 37953422 DOI: 10.1007/s11356-023-30751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
In this study, a polyaniline/mesoporous silica (PANI/MCM-41) composite material that can be used as a filler for permeable reactive barrier (PRB) was prepared by in situ polymerization. Firstly, the adsorption capacity of PANI/MCM-41 on Cr (VI) in solution was investigated. The results show that the prepared PANI/MCM-41 exhibits a significant Cr (VI) adsorption capacity (~ 340 mg/g), and the adsorption process is more accurately described by the Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic functions evidenced that the Cr(VI) adsorption was an endothermic spontaneous process. In addition, adsorption-desorption cycle experiments proved the excellent reusability of the material. Subsequently, the material was utilized as a filler in the PRB for the remediation of Cr(VI)-contaminated soil using electrokinetic-permeable reactive barrier (EK-PRB) technology. The results show that compared with traditional electrokinetic remediation, the use of PANI/MCM-41 as an active filler can enlarge the current during remediation and enhance the conductivity of soil, which increases the removal rates of total Cr and Cr(VI) in soil (17.4% and 10.2%).
Collapse
Affiliation(s)
- Yanzhi Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingchen Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Wenlou Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jiacheng Jin
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Fan Dong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhipeng Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xin Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Min Shao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yushan Wan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
7
|
Zhu F, Yang Y, Ren W, Iribagiza RM, Wang W. Coupling electrokinetic remediation with flushing using green tea synthesized nano zero-valent iron/nickel to remediate Cr (VI). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9691-9707. [PMID: 37812370 DOI: 10.1007/s10653-023-01767-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
This study focuses on a flushing-electrokinetic remediation technology of hexavalent chromium from the chromium slag dump site. A suspension of nanoscale zero-valent iron/nickel fabricated from green tea (GT-nZVI/Ni), was employed as an eluent to degrade Cr (VI) and enhance the remediation effectiveness of a single EK. The removal efficiency of Cr (VI) was compared under different voltages, electrode spacings and pH values of the anolyte. The results demonstrated that the combined flushing and EK achieved a removal rate of Cr (VI) in the soil throughout all the experiments ranging from 83.08 to 96.97% after 120 h. The optimal result was obtained when the voltage was 28 V, the pH value of anolyte was 3 and the electrode spacing was 15 cm. The removal of Cr (VI) reached 91.49% and the energy consumption was 0.32606 kW·h·g-1. The underlying mechanisms responsible for the removal of Cr (VI) by GT-nZVI/Ni flushing-EK primarily involved electromigration, reduction and adsorption co-precipitation processes. The fractionation analysis of Cr (VI) concentration in the soil after remediation showed that the presence of GT-nZVI/Ni facilitated the conversion of Cr (VI) into oxidizable and residual states with low mobility and toxicity. The results of toxicity characteristic leaching procedure (TCLP) indicated that the leaching concentration of Cr (VI) was below 1 mg·L-1, complying with the standards set by the Environmental Protection Agency. Additionally, the phytotoxicity testing revealed that the germination index (GI) of the remediated soil reached 54.75%, indicating no potential harm to plants.
Collapse
Affiliation(s)
- Fang Zhu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Yue Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Wentao Ren
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Rose Marie Iribagiza
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Weitao Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| |
Collapse
|
8
|
Wang Z, He X, Li X, Chen L, Tang T, Cui G, Zhang Q, Liu Y. Long-term stability and toxicity effects of three-dimensional electrokinetic remediation on chromium-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122461. [PMID: 37689131 DOI: 10.1016/j.envpol.2023.122461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
The three-dimensional electrokinetic remediation (3D EKR) achieved efficient removal of chromium (Cr) from the soil through mechanisms including electromigration, electroosmosis, and redox reactions. In this study, the long-term stability, leaching toxicity, bioavailability, and phytotoxicity of Cr in remediated soils were systematically analyzed to comprehensively evaluate the effectiveness of the 3D EKR method. The results showed that the concentration of hexavalent chromium (Cr (VI)) in the leachate of the 3D EKR system with sulfidated nano-scale zerovalent iron (S-nZVI) was more than 40% lower than those of the other 3D electrode groups, and the time required to reach the level III standard of groundwater quality criterion in China (0.05 mg/L, GB/T 14848-2017) was significantly shortened. The stabilization of Cr(VI) in contaminated soil after 3D EKR was maintained for 300 pore volumes (PVs), indicating that the treated Cr(VI) had good long-term stability. The leaching toxicity and bioaccessibility of Cr were assessed by the synthetic precipitation leaching procedure (SPLP), the toxicity characteristic leaching procedure (TCLP), and the physiologically based extraction test (PBET). The concentration of Cr(VI) in the SPLP, TCLP, and PBET leachates of the S-nZVI group decreased by more than 25% compared to the other 3D electrode groups, corresponding to the decrease in leaching toxicity and bioavailability of the treated Cr during the 15-day remediation period. In addition, the germination rate of wheat seeds and the average biomass of wheat seedlings in the S-nZVI group under alkaline conditions (EE) were higher than those in the non-polluting group (Blank-OH), indicating that the remediated soil had no obvious toxicity to wheat. In summary, 3D EKR achieved a satisfactory and stable remediation effect on Cr-contaminated soil, especially when using S-nZVI as the 3D electrode.
Collapse
Affiliation(s)
- Zheng Wang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China.
| | - Xiao He
- China MCC5 Group Corp. Ltd., Chengdu, 610063, China
| | - Xin Li
- Ecological Environment Consulting Department, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, China
| | - Liuzhou Chen
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Guodong Cui
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Qiming Zhang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China.
| |
Collapse
|
9
|
Hu W, Cheng WC, Wang Y, Wen S, Xue ZF. Applying a nanocomposite hydrogel electrode to mitigate electrochemical polarization and focusing effect in electrokinetic remediation of a Cu- and Pb-contaminated loess. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122039. [PMID: 37336350 DOI: 10.1016/j.envpol.2023.122039] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Inappropriate handling of copper (Cu) and lead (Pb)-containing wastewater resulting from metallurgical and smelting industries in Northwest China encourages their migration to surrounding environments. Their accumulation causes damage to liver and kidney function. The electrokinetic (EK) technology is considered to be an alternative to traditional remediation technologies because of its great maneuverability. The EK remediation is accompanied by the electrode polarization and the focusing effect toward affecting removal efficiency. In this study, a nanocomposite hydrogel (NCH) electrode was proposed and applied to the EK remediation of Cu- and Pb-contaminated loess. The mechanical, adsorption capacity, adsorption kinetics, and electrochemical properties of the NCH electrode were investigated in detail, followed by microscopic analyses of Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Raman spectrometer. Results showed that the enhancement of the mechanical properties of the NCH electrode was attributed to the crosslinks of graphene nanoparticles, calcium alginate, and hydrogen bonds, while the Cu or Pb adsorption by the NCH electrode was in a chemisorption manner. The second layer formation might address the increase in adsorption capacity with increasing temperature. These results highlight the relative merits of the NCH electrode and verify the potential of applying the NCH electrode to the EK remediation of Cu- and Pb-contamianted loess.
Collapse
Affiliation(s)
- Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yihan Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Shaojie Wen
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
10
|
Qu Z, Huang L, Guo M, Sun T, Xu X, Gao Z. Application of novel polypyrrole/melamine foam auxiliary electrode in promoting electrokinetic remediation of Cr(VI)-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162840. [PMID: 36924972 DOI: 10.1016/j.scitotenv.2023.162840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Zhengjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Lihui Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Mengmeng Guo
- Jinan Ecological and Environmental Monitoring Center, Jinan 250000, China
| | - Ting Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoshen Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics of Shandong University, Qingdao 266237, China
| |
Collapse
|