1
|
Gao Y, Li H, Zhang R, Zeng M, Hu J, Lu J, Ma J. Accelerated tetracycline hydrochloride mineralisation by Fe@CeO 2-x/MgO complex metal oxides via ozone-catalysed interfacial reactions: The role of oxygen vacancies and multivalent metal cycling. J Colloid Interface Sci 2025; 696:137885. [PMID: 40393134 DOI: 10.1016/j.jcis.2025.137885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
Heterogeneous catalytic ozonation (HCO) shows promising potential for degrading emerging contaminants, but its mineralisation rate needs further improvement due to insufficient electron transfer. To address this limitation, an efficient HCO system was developed by synthesising a Fe@CeO2-x/MgO multi-metal catalyst via an isomorphous substitution strategy, which was then coupled with ozone (O3) for efficient tetracycline hydrochloride (TCH) mineralisation. The results indicated that TCH mineralisation rate reached 0.0204 min-1 in the O3/0.5Fe@CeO2-x/MgO system, 2.43 fold times higher than that of O3 alone. This enhanced mineralisation performance can be attributed to iron substitution, introduction of numerous Lewis acid sites, and shortening of Ce-O bond length, which facilitated the migratory conversion between oxygen vacancies (OVs) and surface lattice oxygen, as well as improved adsorption and electron transfer between Fe@CeO2-x/MgO and O3. Mechanistic analysis revealed that OVs directly activate oxygen to form singlet oxygen and then reacted with O3 to generate superoxide radicals, that subsequently reacted with O3 to form hydroxyl radical (·OH) and recyclable OVs. In addition, O3 could oxidise Fe(Ⅱ) and Ce(Ⅲ) to obtain ·OH through electron transfer. Similarly, intermediate hydroperoxyl could reduce Fe(Ⅲ) and Ce(Ⅳ) to ensure continued free radical production. As a result of enhanced TCH mineralization performance, both toxicity of intermediates and disinfection by-products (DBPs) formation potential were gradually reduced. Notably, DBPs formation potential exhibited a positive linear correlation with total organic carbon. This study offers an effective HCO system to enhance TCH mineralisation through interfacial O3 catalysis rather than simple degradation, and this provided comprehensive insights to improve O3 utilisation and reduce energy consumption of catalytic ozonation processes.
Collapse
Affiliation(s)
- Yufei Gao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Heng Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Ruoyue Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Minxiang Zeng
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Jiaqi Hu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Jinfeng Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Zhang R, Zhou H, Shao T, Lian Q, Hu M, Mei J, Zuo S, Huang J, Tang Z, Xia D. High-Entropy Modulated High-Spin Localized Cobalt Sites Enhance Catalytic Ozonation for Efficient Odor Control. Angew Chem Int Ed Engl 2025:e202507109. [PMID: 40361285 DOI: 10.1002/anie.202507109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/15/2025]
Abstract
Catalytic ozonation technology is crucial for environmental remediation due to its exceptional efficiency and capability for complete mineralization of organic pollutants. However, hindered by spin-forbidden transitions, effective catalytic ozonation remains contingent upon the electronic properties and interfacial interactions of the catalyst. Recent studies identify interfacial atomic metal-oxygen species (*O) as a key descriptor in catalytic ozonation, determining the derivation of reactive species and subsEquationuent reactivity. Herein, we modulated the high-spin localized Co active sites in HE-Co3O4 via a high-entropy strategy, which selectively stabilizes *O surface species, thereby enhancing catalytic ozonation efficiency. HE-Co3O4 exhibits a five-fold higher degradation rate than Co3O4 for 50 ppm CH3SH elimination (63-fold the mass activity compared to commercial MnO2) while maintaining exceptional stability over 24 h at 298 K. Electron paramagnetic resonance (EPR) and magnetization hysteresis (M-H) measurements confirm the transition of Co3+ to high-spin states in HE-Co3O4. Density functional theory (DFT) calculations reveal that unpaired electrons enhance the hybridization of Co 3d with O 2p orbitals, thereby establishing a *O-mediated interfacial pathway. This mechanism is directly observed through in situ Raman spectroscopy. These findings provide insights into the targeted modulation of catalyst electronic structures for ozone-catalyzed environmental remediation.
Collapse
Affiliation(s)
- Rumeng Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Hao Zhou
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Tao Shao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Qiyu Lian
- Innovation Center of Yangtze RiverDelta, Zhejiang University, Future Water Laboratory Zhejiang, Jiaxing, CN, 510275, P.R. China
| | - Mengliang Hu
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107, P.R. China
| | - Ji Mei
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Shulin Zuo
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Jiahao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P.R. China
| |
Collapse
|
3
|
Zheng X, Hu B, Yuan K, Wu T, Yan X. Designing CuO@rGO-MoS 2 Nanocomposite with Bird's-Nest Like Structure as Peroxymonosulfate Activator for the Efficient Degradation of Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9769-9783. [PMID: 40227089 DOI: 10.1021/acs.langmuir.5c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A straightforward, single-stage hydrothermal approach was utilized to synthesize a unique CuO@rGO-MoS2 nanocomposite, featuring a nest-mimicking architecture. It has highly efficient heterogeneous catalyzed property that can catalyze and activate the peroxymonosulfate (PMS) by means of radical (•OH, SO4•-, and O2•-) and nonradical (1O2) pathways to generate ROS for the rapid degradation of the organic dye rhodamine B (Rh.B). Graphene oxide, which has high specific surface, serves as an excellent carrier which achieves a homogeneous dispersion of the main catalyst component and gives a series of oxygen-containing functional groups that become active centers for nonradical route activation. Through experimental and DFT calculation, it was revealed that MoS2 as a cocatalyst accelerated the redox cycle of the Cu active center during the activation of PMS via catalysis, further enhancing the catalytic activity of the nanocomposites. And thus the CuO@rGO-MoS2/PMS system with bird's-nest like structure achieves rapid degradation of Rh.B in a short period, and the decomposition efficiency of Rh.B reaches 99% within 30 min duration of the reaction. Besides, this system exhibits excellent resistance to environmental interference, demonstrating commendable degradation efficiency across broad pH spectrum (pH 5-11) and high levels of common interfering ions (Cl-, NO3-, SO42-, etc.). To conclude, this study tried to propose and validate a catalyst design idea based on catalytic activation of peroxymonosulfate by selecting appropriate main catalysts, cocatalysts, and catalyst carriers to achieve improved catalytic performance and stability of the catalysts, and the synthesized catalysts CuO@rGO-MoS2 by this design strategy have shown good degradation performances in real wastewater.
Collapse
Affiliation(s)
- Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Bangyang Hu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Kexin Yuan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ting Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiluan Yan
- College of Pharmacy, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Zhao X, Zhang Z. Heterogeneous Peroxymonosulfate-Based Advanced Oxidation Mechanisms: New Wine in Old Bottles? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5913-5924. [PMID: 40101212 DOI: 10.1021/acs.est.4c11311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Heterogeneous persulfate-based advanced oxidation processes (PS-AOPs) have been gaining significant attention in water/wastewater treatment; however, the elucidation of mechanisms in PS-AOPs has become increasingly complex as the understanding of potential reactive pathways expands and the rigor of corresponding characterizations intensifies. As such, accurately illustrating system mechanisms with a robust and convincing methodology is crucial, while the influence of substrates must not be overlooked. In this Perspective, established techniques and critical issues are systematically compiled to serve as practical guidelines. Additionally, a newly proposed pathway, the direct oxidation transfer process (DOTP), is discussed in comparison to conventional mineralization processes by reactive oxidative species (ROS) in PS-AOPs. Overall, the investigation of PS-AOP mechanisms across various heterogeneous systems remains contentious and calls for standardization, for which this work aims to serve as a valuable reference.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Membrane & Nanotechnology-Enabled Water Treatment Centre, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Centre, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Lin X, Zhang W, Xiong J, Huang Z, Gan T, Hu H, Qin Y, Zhang Y. Polarized electric field induced by piezoelectric effect of ozone micro-nano bubbles/spontaneously polarized ceramic to boost ozonolysis for efficient fruit sterilization. Food Chem 2025; 466:142191. [PMID: 39591780 DOI: 10.1016/j.foodchem.2024.142191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Ozone (O3) treatment is an environmentally friendly fruit sterilization strategy. However, the low O3 utilization rate and long-term oxidation lead to O3 waste and fruit damage, respectively. Herein, a sterilization system based on the synergy of O3 micro-nano bubbles (OMNB) and spontaneously polarized ceramic (SPC) was developed to piezoelectrically catalyze ozonolysis for efficient fruit sterilization. OMNB/SPC showed excellent sterilizing activity with 7 lg CFU/mL of E. coli and S. aureus inactivation within 20 min, together with significantly improved fruit quality in Kyoho grapes preservation. The excellent sterilizing performance of OMNB/SPC is attributed to that the piezoelectric SPC (d33 = 103.4 pm/V) formed a strong polarized electric field and rich reactive oxygen species (ROS) under OMNB collapse resulting in O3 absorption/decomposition. The electric field and rich ROS caused membranes in-situ electroporation and irreversible inactivation to the microorganisms on fruits successively. This system is important for more efficient long-term preservation of fruits.
Collapse
Affiliation(s)
- Xiangxuan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wuxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jie Xiong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yuben Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| |
Collapse
|
6
|
Bing J, Wang Y, Zou Y, Zhang H, Chou Z, Cheng W, Xiao X. Catalytic ozonation of dimethyl phthalate by Ti-MCM-41 in water. RSC Adv 2025; 15:2106-2114. [PMID: 39845117 PMCID: PMC11753080 DOI: 10.1039/d4ra07901a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
A Ti-MCM-41 mesoporous molecular sieve catalyst was prepared by a hydrothermal method. Nitrogen adsorption desorption, XRD, TEM and SEM characterization results showed that the catalyst had a large specific surface area, a regular hexagonal pore structure, and titanium doping was uniformly dispersed in MCM-41 molecular sieves. The amount of titanium doping, reaction temperature, and the initial solution pH had important effects on the catalytic ozonation of dimethyl phthalate (DMP) by Ti-MCM-41. In comparison to ozonation alone and MCM-41/O3, Ti-MCM-41/O3 exhibited the most effective degradation and mineralization of DMP, with a Si/Ti ratio of 80, a reaction temperature of 25 °C, and an initial solution pH of 5.4. Ozonation alone, MCM-41/O3, and Ti-MCM-41/O3 removed 94%, 96%, and 100% of DMP after 15 min of reaction. At 60 min of reaction, the TOC removal rate of the Ti-MCM-41/O3 process reached 36%, which was 2.4 times that of the O3 process and 1.9 times that of the MCM-41/O3 process. The experimental results of initial solution pH and hydroxyl radical capture showed that Ti-MCM-41 had the highest catalytic activity near the zero-charge point, and hydroxyl radicals were active oxygen species. Ti-MCM-41 catalytic ozonation of DMP had synergistic effects and is a promising environmental catalytic material.
Collapse
Affiliation(s)
- Jishuai Bing
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
| | - Yaoting Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
| | - Yiming Zou
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
| | - Zhiling Chou
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
| | - Weixiang Cheng
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Lianyungang Environmental Science and Technology Service Center Lianyungang 222005 China
| | - Xin Xiao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development Lianyungang 222005 China
| |
Collapse
|
7
|
Jiang C, Wang D, Li M, Yang L, Liu X, Yang G, Xing B, Wang Y, Zhang F. High-Efficiency Catalytic Ozonation Degradation of Ni Complex Wastewater Using Mn-N Codoped Active Carbon Catalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:292-300. [PMID: 39754292 DOI: 10.1021/acs.langmuir.4c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
With the rapid development of electroless nickel (Ni) plating industry, a large amount of Ni complex wastewater is inevitably produced, which is a serious threat to the ecological environment. Herein, a novel Mn-N codoped active carbon (Mn-N@AC) catalyst with high catalytic ozonation ability was synthesized by the impregnation precipitation method and was characterized by BET, XRD, Raman, SEM, FTIR, and TPR. Meanwhile, Mn-N@AC showed excellent catalytic ozonation ability, stability, and applicability. When Ni-EDTA (TOC = 400, Ni = 58.05 mg/L) was used as simulated wastewater, the removal efficiency of TOC and total Ni reached 97.8 and 92.7%, respectively, and after three cycles, the TOC removal efficiency was still up to 93.6%. When Ni-EDTA wastewater was replaced with Ni-citrate, Ni-tartaric, and Ni-malate, the TOC removal efficiency remained above 93%. In addition, mechanistic insights by quenching experiments and EPR verified the high removal efficiency of TOC mainly attributed to indirect oxidation of ·OH and ·O2-, and the potential mechanism was proposed. The work provides insights into the deep removal of Ni complex wastewater by catalytic ozonation with low cost and high efficiency.
Collapse
Affiliation(s)
- Caiyi Jiang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| | - Dongzheng Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
- National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| | - Min Li
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Li Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xingyong Liu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
- Meishan Vocational and Technical College, Meishan, Sichuan 620010, China
- National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| | - Guo Yang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
- National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| | - Bo Xing
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
- National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| | - Yi Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
- National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| | - Fuping Zhang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
- National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| |
Collapse
|
8
|
Xie X, Wang J, Guo X, Sun J, Wang X, Duo Wu W, Wu L, Wu Z. Comparative study on CeO 2 catalysts with different morphologies and exposed facets for catalytic ozonation: performance, key factor and mechanism insight. J Colloid Interface Sci 2024; 673:847-859. [PMID: 38908284 DOI: 10.1016/j.jcis.2024.06.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
Morphology and facet effects of metal oxides in heterogeneous catalytic ozonation (HCO) are attracting increasing interests. In this paper, the different HCO performances for degradation and mineralization of phenol of seven ceria (CeO2) catalysts, including four with different morphologies (nanorod, nanocube, nanooctahedron and nanopolyhedron) and three with the same nanorod morphology but different exposed facets, are comparatively studied. CeO2 nanorods with (110) and (100) facets exposed show the best performance, much better than that of single ozonation, while CeO2 nanocubes and nanooctahedra show performances close to single ozonation. The underlying reason for their different HCO performances is revealed using various experimental and density functional theory (DFT) calculation results and the possible catalytic reaction mechanism is proposed. The oxygen vacancy (OV) is found to be pivotal for the HCO performance of the different CeO2 catalysts regardless of their morphology or exposed facet. A linear correlation is discerned between the rate of catalytic decomposition of dissolved ozone (O3) and the density of Frenkel-type OV. DFT calculations and in-situ spectroscopic studies ascertain that the existence of OV can boost O3 activation on both the hydroxyl (OH) and Ce sites of CeO2. Conversely, various facets without OV exhibit similar O3 adsorption energies. The OH group plays an important role in activating O3 to produce hydroxyl radical (∙OH) for improved mineralization. This work may offer valuable insights for designing Facet- and OV-regulated catalysts in HCO for the abatement of refractory organic pollutants.
Collapse
Affiliation(s)
- Xianglin Xie
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiaren Wang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xingchen Guo
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jinqiang Sun
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xiaoning Wang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Winston Duo Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Lei Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, PR China.
| | - Zhangxiong Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
9
|
Shao S, Cheng T, Cheng Y, Chen B. Effect of impregnation strategy on structural characteristics of Ce-Mn/Al 2O 3 and its catalytic ozonation of benzoic acid. RSC Adv 2024; 14:30990-31002. [PMID: 39351416 PMCID: PMC11440235 DOI: 10.1039/d4ra06148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Ce-Mn binary oxides supported on Al2O3 (Ce-Mn/Al2O3), with enhanced activity and stability for catalytic ozonation of benzoic acid, were synthesized using a facile impregnation method. The competitive synergetic effects between cerium and manganese significantly influenced the structural characteristics and catalytic performance of the catalysts depending on the impregnation sequence. Catalysts prepared via the one-step impregnation process exhibited a higher concentration of homogeneous Ce3+ species on the catalyst surface. This led to an increase in surface oxygen vacancies, thereby enhancing catalytic activity. In contrast, the two-step impregnation process resulted in fewer oxygen vacancies due to reduced competitive effects between cerium and manganese. Overall, the optimized Ce-Mn/Al2O3 catalysts demonstrated improved catalytic performance in ozonation reactions, highlighting the importance of impregnation method and calcination conditions in tailoring catalyst properties for enhanced activity and stability. Oxygen vacancies play a crucial role as active sites for ozone adsorption and dissociation into *O2 and *O, facilitated by the reduction of Mn4+ to Mn3+ and the oxidation of Ce3+ to Ce4+. This process forms an electron closed loop that maintains electron balance. The synergistic interactions between cerium and manganese enable rapid electron transfer between Ce4+ and Mn3+, facilitating the regeneration of Ce3+ and Mn4+. Due to the increase of the dual redox conjugate pairs and the surface reactive oxygen species, the catalytic ozonation activity and stability of Ce-Mn/Al2O3 was enhanced.
Collapse
Affiliation(s)
- Shengjuan Shao
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology Taiyuan 030008 China
| | - Ting Cheng
- School of Chemistry and Chemical Engineering, North University of China Taiyuan Shanxi 030051 China
| | - Yifan Cheng
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology Taiyuan 030008 China
| | - Bingxin Chen
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology Taiyuan 030008 China
| |
Collapse
|
10
|
Hu R, Li JY, Yu Q, Yang SQ, Ci X, Qu B, Yang L, Liu ZQ, Liu H, Yang J, Sun S, Cui YH. Catalytic ozonation of reverse osmosis concentrate from coking wastewater reuse by surface oxidation over Mn-Ce/γ-Al 2O 3: Effluent organic matter transformation and its catalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134363. [PMID: 38663291 DOI: 10.1016/j.jhazmat.2024.134363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
Degradation of organics in high-salinity wastewater is beneficial to meeting the requirement of zero liquid discharge for coking wastewater treatment. Creating efficient and stable performance catalysts for high-salinity wastewater treatment is vital in catalytic ozonation process. Compared with ozonation alone, Mn and Ce co-doped γ-Al2O3 could remarkably enhance activities of catalytic ozonation for chemical oxygen demand (COD) removal (38.9%) of brine derived from a two-stage reverse osmosis treatment. Experimental and theoretical calculation results indicate that introducing Mn could increase the active points of catalyst surface, and introducing Ce could optimize d-band electronic structures and promote the electron transport capacity, enhancing HO• bound to the catalyst surface ([HO•]ads) generation. [HO•]ads plays key roles for degrading the intermediates and transfer them into low molecular weight organics, and further decrease COD, molecular weights and number of organics in reverse osmosis concentrate. Under the same reaction conditions, the presence of Mn/γ-Al2O3 catalyst can reduce ΔO3/ΔCOD by at least 37.6% compared to ozonation alone. Furthermore, Mn-Ce/γ-Al2O3 catalytic ozonation can reduce the ΔO3/ΔCOD from 2.6 of Mn/γ-Al2O3 catalytic ozonation to 0.9 in the case of achieving similar COD removal. Catalytic ozonation has the potential to treat reverse osmosis concentrate derived from bio-treated coking wastewater reclamation.
Collapse
Affiliation(s)
- Rui Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jia-Ying Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiyi Yu
- China United Engineering Corporation Limited, Hangzhou 310052, PR China
| | - Sui-Qin Yang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Xinbo Ci
- Hebei Think-do Water Treatment Technology Co., Ltd., Shijiazhuang 050035, PR China
| | - Bing Qu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liwei Yang
- Shandong Zhangqiu Blower Co., Ltd., Jinan 250200, PR China
| | - Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Hongquan Liu
- Hebei Think-do Water Treatment Technology Co., Ltd., Shijiazhuang 050035, PR China
| | - Jingjing Yang
- Key Laboratory of Suzhou Sponge City Technology, Suzhou University of Science and Technology, Suzhou 215009, PR China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
11
|
Mahmood Z, Garg S, Yuan Y, Xie L, Wang Y, Waite TD. Performance evaluation and optimization of a suspension-type reactor for use in heterogeneous catalytic ozonation. WATER RESEARCH 2024; 254:121410. [PMID: 38471200 DOI: 10.1016/j.watres.2024.121410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/30/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Packed fixed-bed reactors are traditionally used for heterogeneous catalytic ozonation. However, a high solid-to-liquid requirement, poor ozone dissolution, ineffective utilization of catalyst surface area, and production of large amounts of catalyst waste impede application of such reactors. In this study, we designed a suspension catalytic ozonation reactor and compared the performance of this reactor with that of a traditional fixed-bed catalytic ozonation reactor employing oxalic acid (OA) as the target contaminant. Our results showed that total O3 dissolved into the suspension reactor (117-134 mg.L-1) was much higher compared to that measured in the fixed-bed reactor (53 mg.L-1) due to a higher O3(g) interphase mass transfer rate in the suspension reactor. In accordance with the higher O3(g) interphase mass transfer, we observed a much higher proportional OA removal (32 %) compared to that achieved in the fixed-bed reactor (10%) employing an Fe-oxide catalyst supported on Al2O3 (Fe-oxide@Al2O3) in both reactors. Use of a double-layered Cu-Al hydroxide (Cu-Al LDHs) catalyst in the suspension reactor further enhanced the performance with nearly 90 % OA removal observed. Given the superior performance of the suspension reactor, we investigated the impact of operating conditions (catalyst dosage, hydraulic retention time and ozone dosage) employing Cu-Al LDHs as the catalyst. We also developed a mathematical kinetic model to describe the performance of the suspension reactor and, through use of the kinetic model, showed that O3(g) interphase transfer rate was the rate-limiting step in OA removal. Thus, improvement in ozone gas diffuser design is required to improve the performance of the suspension reactor. Overall, the present study demonstrated that suspension reactors were more effective than fixed-bed reactors for oxidation of surface-active organic compounds such as OA due to the higher ozone interphase mass transfer rate and effective utilization of the catalyst surface area that can be achieved. As such, further research on suspension reactor design and development of catalysts suitable for use in suspension reactors should facilitate large-scale application of catalytic ozonation processes by the wastewater treatment industry.
Collapse
Affiliation(s)
- Zarak Mahmood
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China
| | - Shikha Garg
- Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, Sydney 2052, Australia
| | - Yuting Yuan
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China
| | - Ling Xie
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China
| | - Yuan Wang
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China; Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, Sydney 2052, Australia
| | - T David Waite
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China; Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
12
|
Zhang Y, Guan Z, Liao X, Huang Y, Huang Z, Mo Z, Yin B, Zhou X, Dai W, Liang J, Sun S. Defluorination of perfluorooctanoic acid and perfluorooctane sulfonic acid by heterogeneous catalytic system of Fe-Al 2O 3/O 3: Synergistic oxidation effects and defluorination mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169675. [PMID: 38211856 DOI: 10.1016/j.scitotenv.2023.169675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
In this study, catalytic ozonation by Fe-Al2O3 was used to investigate the defluorination of PFOA and PFOS, assessing the effects of different experimental conditions on the defluorination efficiency of the system. The oxidation mechanism of the Fe-Al2O3/O3 system and the specific degradation and defluorination mechanisms for PFOA and PFOS were determined. Results showed that compared to the single O3 system, the defluorination rates of PFOA and PFOS increased by 2.32- and 5.92-fold using the Fe-Al2O3/O3 system under optimal experimental conditions. Mechanistic analysis indicated that in Fe-Al2O3, the variable valence iron (Fe) and functional groups containing C and O served as important reaction sites during the catalytic process. The co-existence of 1O2, OH, O2- and high-valence Fe(IV) constituted a synergistic oxidation system consisting of free radicals and non-radicals, promoting the degradation and defluorination of PFOA and PFOS. DFT theoretical calculations and the analysis of intermediate degradation products suggested that the degradation pathways of PFOA and PFOS involved Kolbe decarboxylation, desulfonation, alcoholization and intramolecular cyclization reactions. The degradation and defluorination pathways of PFOA and PFOS consisted of the stepwise removal of -CF2-, with PFOS exhibiting a higher defluorination rate than PFOA due to its susceptibility to electrophilic attack. This study provides a theoretical basis for the development of heterogeneous catalytic ozonation systems for PFOA and PFOS treatment.
Collapse
Affiliation(s)
- Yumin Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhijie Guan
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenhua Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihua Mo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Baixuan Yin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingfan Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wencan Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
13
|
Yin X, Zhang J, Chen S, Li W, Zhu H, Wei K, Zhang Y, Chen H, Han W. Electric field-enhanced heterogeneous catalytic ozonation (EHCO) process for sulfadiazine removal: The role of cathodic reduction. CHEMOSPHERE 2024; 351:141226. [PMID: 38228193 DOI: 10.1016/j.chemosphere.2024.141226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
In this work, an electric field-enhanced heterogeneous catalytic ozonation (EHCO) was systematically investigated using a prepared FeOx/PAC catalyst. The EHCO process exhibited high sulfadiazine (SDZ) and TOC removal efficiency compared with electrocatalysis (EC) and heterogeneous catalytic ozonation (HCO) process. Almost 100% of SDZ was removed within 2 min, and the TOC removal reached approximately 85% within 60 min. Quenching experiments and EPR analysis suggested that the prominent SDZ and TOC removal performance is supported by the enhanced ·OH generation ability. Further study proved that H2O2 formed by O2 electrochemical reduction, peroxone reaction and electrochemical reduction of ozone contributed to improving ·OH generation. Furthermore, the EHCO system showed satisfactory stability and recyclability compared to conventional HCO systems, and the SDZ and TOC removal rates were maintained at ≥95% and ≥70% in 16 consecutive recycles, respectively. Meanwhile, XPS analysis and Boehm's titration for the FeOx/PAC catalyst used in HCO and EHCO process confirmed that the external electron supply could restrain the oxidation of surface functional groups of PAC and maintain a balance of the Fe(II)/Fe(III) ratio, which proved the critical role of cathode reduction in catalyst in situ regeneration during long consecutive recycles. In addition, the EHCO system could achieve more than 80% SDZ removal within 2 min in different water matrices. These results confirmed that the EHCO process has a wide application perspective for refractory organics removal in actual wastewater.
Collapse
Affiliation(s)
- Xu Yin
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Jie Zhang
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Siru Chen
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Wei Li
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Hongwei Zhu
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Kajia Wei
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China.
| | - Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Haoming Chen
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Weiqing Han
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China.
| |
Collapse
|
14
|
Franco Peláez D, Rodríguez S JL, Poznyak T, Martínez Gutiérrez H, Andraca Adame JA, Lartundo Rojas L, Ramos Torres CJ. Efficient catalytic activity of NiO and CeO 2 films in benzoic acid removal using ozone. RSC Adv 2024; 14:3923-3935. [PMID: 38283593 PMCID: PMC10813819 DOI: 10.1039/d3ra07316e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
This research focuses on the synthesis of NiO and CeO2 thin films using spray pyrolysis for the removal of benzoic acid using ozone as an oxidant. The results indicate that the addition of CeO2 films significantly enhances the mineralization of benzoic acid, achieving a rate of over 80% as the CeO2 films react with ozone to produce strong oxidant species, such as hydroxyl radicals, superoxide radicals, and singlet oxygen as demonstrated by the presence of quenchers in the reaction system. The difference in catalytic activity between NiO and CeO2 films was analyzed via XPS technique; specifically, hydroxyl oxygen groups in the CeO2 film were greater in number than those in the NiO film, thus benefitting catalytic oxidation as these species are considered active oxidation sites. The effects of nozzle-substrate distances and deposition time during the synthesis of the films on benzoic acid removal efficiency were also explored. Based on XRD characterization, it was established that the NiO and CeO2 films were polycrystalline with a cubic structure. NiO spherical nanoparticles were well-distributed on the substrate surface, while some pin holes and overgrown clusters were observed in the CeO2 films according to the SEM results. The stability of the CeO2 films after five consecutive cycles confirms their reusability. The retrieval of films is easy because it does not require additional separation methods, unlike the catalyst in powder form. The obtained results indicate that the CeO2 films have potential application in pollutant removal from water through catalytic ozonation.
Collapse
Affiliation(s)
- Daynahi Franco Peláez
- Laboratorio de Investigación en Ingeniería Química Ambiental, ESIQIE-Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| | - Julia Liliana Rodríguez S
- Laboratorio de Investigación en Ingeniería Química Ambiental, ESIQIE-Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| | - Tatyana Poznyak
- Laboratorio de Investigación en Ingeniería Química Ambiental, ESIQIE-Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| | - Hugo Martínez Gutiérrez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| | - J Alberto Andraca Adame
- Departamento Ciencias Básicas, UPIIH-Instituto Politécnico Nacional México City 42050 Mexico
| | - Luis Lartundo Rojas
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| | - Claudia Jazmín Ramos Torres
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional Zacatenco Ciudad de México 07738 Mexico
| |
Collapse
|
15
|
Sharma VK, Ma X, Zboril R. Single atom catalyst-mediated generation of reactive species in water treatment. Chem Soc Rev 2023; 52:7673-7686. [PMID: 37855667 DOI: 10.1039/d3cs00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Water is one of the most essential components in the sustainable development goals (SDGs) of the United Nations. With worsening global water scarcity, especially in some developing countries, water reuse is gaining increasing acceptance. A key challenge in water treatment by conventional treatment processes is the difficulty of treating low concentrations of pollutants (micromolar to nanomolar) in the presence of much higher levels of inorganic ions and natural organic matter (NOM) in water (or real water matrices). Advanced oxidation processes (AOPs) have emerged as an attractive treatment technology that generates reactive species with high redox potentials (E0) (e.g., hydroxyl radical (HO˙), singlet oxygen (1O2), sulfate radical (SO4˙-), and high-valent metals like iron(IV) (Fe(IV)), copper(III) (Cu(III)), and cobalt(IV) (Co(IV))). The use of single atom catalysts (SACs) in AOPs and water treatment technologies has appeared only recently. This review introduces the application of SACs in the activation of hydrogen peroxide and persulfate to produce reactive species in treatment processes. A significant part of the review is devoted to the mechanistic aspects of traditional AOPs and their comparison with those triggered by SACs. The radical species, SO4˙- and HO˙, which are produced in both traditional and SACs-activated AOPs, have higher redox potentials than non-radical species, 1O2 and high-valent metal species. However, SO4˙- and HO˙ radicals are non-selective and easily affected by components of water while non-radicals resist the impact of such constituents in water. Significantly, SACs with varying coordination environments and structures can be tuned to exclusively generate non-radical species to treat water with a complex matrix. Almost no influence of chloride, carbonate, phosphate, and NOM was observed on the performance of SACs in treating pollutants in water when nonradical species dominate. Therefore, the appropriately designed SACs represent game-changers in purifying water vs. AOPs with high efficiency and minimal interference from constituents of polluted water to meet the goals of water sustainability.
Collapse
Affiliation(s)
- Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, Texas 77843, USA.
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.
- Nanotechnology Centre, for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
16
|
Li X, Chen W, Liu D, Liao G, Wang J, Tang Y, Li L. Enhancing water purification through F and Zn-modified Fe-MCM-41 catalytic ozonation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132357. [PMID: 37625293 DOI: 10.1016/j.jhazmat.2023.132357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
Due to its low interfacial electron migration ability and highly hydrophilic, Fe-MCM-41 (FeM) had poor activity and stability during catalytic ozonation. To this end, the secondary metal Zn and Si-F group were introduced into the framework of FeM to create surface potential difference and hydrophobic sites. Comparative characterizations showed that there existed rich acid sites with great potential difference on F-Fe-Zn-MCM-41 (FFeZnM). Additionally, because of the existence of hydrophobic and electron-withdrawing Si-F unit, the electron migration ability, hydrophobicity and acidity of FFeZnM were enhanced. The greater O3 mass transfer was induced by Si-F group and O3 was directly activated at Fe and Zn Lewis acid sites into •OH, •O2- and 1O2. With •OH acting as main species, FFeZnM/O3 achieved the superior IBP removal (93.4%, 30 min) and TOC removal (46.6%, 120 min) over those of sole O3 and F-FeM/O3 processes, respectively. HCO3-, Cl-, NO3- and SO42- hindered IBP degradation by FFeZnM/O3, but high concentration humic acid (HA) exhibited promotion by forming HA-IBP complex. IBP degradation by FFeZnM/O3 was enhanced with tap water, river water, and effluent from the secondary sedimentation tank of the sewage plant acting as medium. This study proposed an innovative approach to catalyst design for catalytic ozonation.
Collapse
Affiliation(s)
- Xukai Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; School of Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Dongpo Liu
- School of Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Gaozu Liao
- School of Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Jing Wang
- School of Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Yiming Tang
- School of Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Laisheng Li
- School of Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China.
| |
Collapse
|
17
|
Ren T, Ouyang C, Zhou Z, Chen S, Yin M, Huang X, Zhang X. Mn-doped carbon-Al 2SiO 5 fibers enable catalytic ozonation for wastewater treatment: Interface modulation and mass transfer enhancement. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132307. [PMID: 37647666 DOI: 10.1016/j.jhazmat.2023.132307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
Heterogeneous catalytic ozonation is an efficient approach to remove hazardous and refractory organic contaminants in wastewater. It is crucial to design an ozone catalyst with high catalytic activity, high mass transfer and facile separation properties. Herein, easily separable aluminosilicate (Al2SiO5) fibers were developed as carriers and after interface modulation, Mn-doped carbon-Al2SiO5 (Mn-CAS) fibrous catalysts were proposed for catalytic ozonation. The growth of carbon shells on Al2SiO5 fiber surface and the introduction of metal Mn provided abundant Lewis acid sites to catalyze ozone. The Mn-CAS fiber/O3 system exhibited superior reactivity to degrade oxalic acid with a rate constant of 0.034 min-1, which was about 19 times as high as Al2SiO5/O3. For coal gasification wastewater treatment, Mn-CAS fibers also demonstrated high catalytic activity and stability and the COD removal was over 56%. Computational fluid dynamic simulations proved the high mass transfer properties of fibrous catalysts. Hydroxyl radicals (•OH) were identified as the predominant active species for organic degradation. Particularly, the catalytic pathways of O3 to •OH on Mn-O4 sites were revealed by theoretical calculations. This work provides a novel fibrous catalyst with high reactivity and mass transfer as well as easy separation characteristics for catalytic ozonation and wastewater purification.
Collapse
Affiliation(s)
- Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Changpei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuoyong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuning Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengxi Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|