1
|
Della-Negra O, Camotti Bastos M, Barbieri MV, Bru-Adan V, Santa-Catalina G, Ait-Mouheb N, Chiron S, Patureau D. Temporal dynamic of soil microbial communities and antibiotic resistance markers exposed to increasing concentrations of sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125306. [PMID: 39537085 DOI: 10.1016/j.envpol.2024.125306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
The reuse of treated wastewater (TWW) for irrigation is widely applied to alleviate pressure on freshwater resources. However, TWW contains antibiotics that once in soils, can exert selective pressure, promoting the emergence and spread of antimicrobial resistance (AMR) in the environment. Current environmental risk assessments for antibiotic residues rely on indicators such as Predicted No Effect Concentrations (PNECs), usually determined in liquid media. These PNECs aim to predict antibiotic concentrations that may promote resistance in the environment. Given the complexity of soil matrices, few studies have established PNEC values for soil, which likely differ significantly from aquatic environments. To address this gap, we developed a simplified experimental model using soil microcosms irrigated with TWW and the antibiotic sulfamethoxazole (SMX) to estimate threshold concentrations favouring resistance transfer or/and emergence within the soil microbiome. We identified SMX concentrations between 0.01 and 0.1 mg/kgdry soil that likely increased the abundance of sulfonamide resistance genes in soil. A time window of 1-7 days post-exposure showed a temporary rise in sul1 and intl1 gene abundance (over 1 log/soil 16S rDNA), the appearance of SMX transformation products, and an increase in some Rhodocyclaceae. After 1.5 months of incubation and complete SMX transformation, the relative abundance of sul1 and intl1 remained about 0.5 log higher than in SMX-free controls and soils with SMX levels below 0.1 mg/kg dry soil. A persistent transformation product, 4-N-glucuronide-SMX, was also observed. Here, the estimated PNEC for SMX in soil, between 0.01 and 0.1 mg/kg, exceeds typical SMX concentrations found in soils exposed to TWW. This may suggest low impact on resistance selection for this compound in the context of TWW exposure. However further studies on other soils, water, and antibiotics need to be conducted to expand our knowledge on soil PNECs.
Collapse
Affiliation(s)
- Oriane Della-Negra
- INRAE, University of Montpellier, LBE, Av. des Étangs, 11100, Narbonne, France; UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093, Montpellier, cedex 5, France
| | - Marilia Camotti Bastos
- INRAE, University of Montpellier, LBE, Av. des Étangs, 11100, Narbonne, France; UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093, Montpellier, cedex 5, France
| | - Maria Vittoria Barbieri
- UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093, Montpellier, cedex 5, France
| | - Valérie Bru-Adan
- INRAE, University of Montpellier, LBE, Av. des Étangs, 11100, Narbonne, France
| | | | - Nassim Ait-Mouheb
- INRAE, University of Montpellier, UMR GEAU, 361 rue Jean-François Breton, 34196, Montpellier, France
| | - Serge Chiron
- UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093, Montpellier, cedex 5, France
| | - Dominique Patureau
- INRAE, University of Montpellier, LBE, Av. des Étangs, 11100, Narbonne, France.
| |
Collapse
|
2
|
Wang N, Xu Y, Peng L, Liang C, Song S, Quintana M. Biotic and abiotic removal of acetaminophen during sidestream partial nitritation processes: Underlying mechanisms and transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177836. [PMID: 39644630 DOI: 10.1016/j.scitotenv.2024.177836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Pharmaceutical residues in sidestream wastewater pose the hazardous threats to ecosystem and human health. In this work, the biotic and abiotic degradation of acetaminophen were investigated during the sidestream partial nitritation process. Results demonstrated that the abiotic removal efficiency of acetaminophen was positively correlated with nitrite concentration, whereas the biotransformation of acetaminophen was mainly dependent on metabolic types and free nitrous acid (FNA) concentrations. 91.6 % of acetaminophen, acting as the sole carbon and/or energy source to support the growth of ammonia-oxidizing bacteria (AOB) and heterotrophs, was removed by adsorption (6.2 %) and biotransformation (consisting of 49.4 % AOB-induced metabolism and 36.0 % heterotrophs-induced metabolism) when lacking nitrite and FNA. Increasing FNA from 0.03 mg N L-1 to 0.15 mg L-1 led to decrease in acetaminophen removal (from 78.8 % to 60.1 %) and ammonia oxidation, ascribed to the inhibitory effect of FNA on AOB activity. Nitro substitution occurred under AOB-induced cometabolism, while hydroxylation was conducted by heterotrophs. N-deacetylation, ring cleavage, hydroxylation, nitro-reduction, and deamination at lower FNA levels (0.03 mg N L-1) contributed to the formation of small molecular products, supporting the feasibility of sidestream partial nitritation in the effective elimination of acetaminophen. This work provides strategies for optimizing anti-inflammatory drugs removal via the regulation of FNA in the sidestream wastewater treatment process.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luís Potosí, Av, Sierra Leona 530, San Luis Potosí 78210, Mexico
| | - Yifeng Xu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China.
| | - Lai Peng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, Guangdong, China
| | - Chuanzhou Liang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Shaoxian Song
- Instituto de Metalurgia, Universidad Autónoma de San Luís Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| | - Mildred Quintana
- Facultad de Ciencias, Universidad Autónoma de San Luís Potosí, Av. Parque Chapultepec 1570, San Luis Potosi 78210, Mexico
| |
Collapse
|
3
|
Su Q, Domingo-Félez C, Zhi M, Jensen MM, Xu B, Ng HY, Smets BF. Formation and Fate of Reactive Nitrogen during Biological Nitrogen Removal from Water: Important Yet Often Ignored Chemical Aspects of the Nitrogen Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22480-22501. [PMID: 39671298 DOI: 10.1021/acs.est.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Hydroxylamine, nitrous acid, and nitric oxide are obligate intermediates or side metabolites in different nitrogen-converting microorganisms. These compounds are unstable and susceptible to the formation of highly reactive nitrogen species, including nitrogen dioxide, dinitrogen trioxide, nitroxyl, and peroxynitrite. Due to the high reactivity and cytotoxicity, the buildup of reactive nitrogen can affect the interplay of microorganisms/microbial processes, stimulate the reactions with organic compounds like organic micropollutants (OMP) and act as the precursors of nitrous oxide (N2O). However, there is little understanding of the occurrence and significance of reactive nitrogen during biological nitrogen conversions in engineered water systems. In this review, we evaluate the formation and fate of reactive nitrogen produced by microorganisms involved in biological nitrogen removal (BNR) processes, i.e., nitritation/nitrification, denitratation/denitrification, anammox, and the combined processes. While the formation of reactive nitrogen intermediates is entirely controlled by microbial activities, the consumption can be either biological or purely chemical. Changes in environmental conditions, such as redox transition, pH, and substrate availability, can imbalance the production and consumption of these reactive intermediates, thus leading to the transient accumulation of species. Based on previous experimental evidence, environmental relevance of reactive nitrogen in BNR systems, particularly related to abiotic N2O production and OMP transformation, is demonstrated.
Collapse
Affiliation(s)
- Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Carlos Domingo-Félez
- James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Mei Zhi
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
| | - Marlene Mark Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - Barth F Smets
- Center for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Lu X, Li Y, Zhou H, Li S, Wei W, Lv G, Yang G, Deng S, Lai B, Peng J. Hydroxylamine-induced activation of permanganate for enhanced oxidation of sulfamethoxazole: Mechanism and products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175101. [PMID: 39074757 DOI: 10.1016/j.scitotenv.2024.175101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Recently, many reagents have been introduced to accelerate the formation of highly reactive intermediate Mn species from permanganate (KMnO4), thereby improving the oxidation activity of KMnO4 towards pollutants. However, most studies have mainly focused on sulfur-containing reducing agents (e.g., bisulfite and sodium sulfite), with little attention paid to nitrogen-containing reducing agents. This study found that hydroxylamine (HA) and hydroxylamine derivatives (HAs) can facilitate KMnO4 in pollutant removal. Taking sulfamethoxazole (SMX) as a target contaminant, the effect of pH, SMX concentration, KMnO4 and HA dosages, and the molar ratio of HA and KMnO4 on the degradation of SMX in the KMnO4/HA process was systematically investigated. Quenching experiments and probe analysis revealed MnO2-catalyzed KMnO4 oxidation, Mn(III) and reactive nitrogen species as the primary active species responsible for SMX oxidation in the KMnO4/HA system. Proposed transformation pathways of SMX in the KMnO4/HA system mainly involve hydroxylation and cleavage reactions. The KMnO4/HA system was more conducive to selective oxidation of SMX, 2,4-dichlorophenol, and several other pollutants, but reluctant to bisphenol S (BPS). Overall, this study proposed an effective system for eliminating pollutants, while providing mechanistic insight into HA-driven KMnO4 activation for environmental remediation.
Collapse
Affiliation(s)
- Xiaohui Lu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanjun Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide SA5005, Australia
| | - Siyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Wei
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochun Lv
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Shihuai Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jiali Peng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Kaiser T, Fundneider T, Lackner S. Biodegradation kinetics of organic micropollutants in biofilters for advanced wastewater treatment - Impact of operational conditions and biomass origin on removal. WATER RESEARCH X 2024; 24:100235. [PMID: 39114807 PMCID: PMC11304067 DOI: 10.1016/j.wroa.2024.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Biofiltration processes are often part of advanced wastewater treatment (aWWT) technologies for the removal of organic micropollutants (OMP) from conventional wastewater treatment plant (WWTP) effluents. Although biological effects are not always the main focus of these technologies (e.g. filtration through granular activated carbon), they have been shown to contribute significantly to total OMP removal. While OMP biodegradation kinetics in conventional biological wastewater treatment are well researched, no systematic comparison to biomass from aWWT is available. This biomass faces different growth conditions and higher OMP concentrations relative to the background organic matter. Adaptation to these conditions could be possible and could lead to faster OMP biodegradation kinetics, which would show in a larger pseudo first-order biodegradation kinetic constant kbiol. In this work, kbiol values for biomass obtained from aWWT biofilters were determined by evaluating OMP removals measured in lab-scale biofilters using a mechanistic model of the experimental setup. A comparison to kbiol values from literature for conventional wastewater treatment (with nutrient removal) revealed similar OMP biodegradation kinetics without any advantages of biomass from aWWT. A conceptual evaluation of influencing factors on OMP removal in biofilters showed that operational parameters (such as the biomass concentration or the empty bed contact time) and the affinity of OMPs to adsorb on biomass have a significant additional effect on biological OMP removal. Therefore, kbiol values alone are not sufficient to estimate biological OMP removal in biofilters and further information about the system is required.
Collapse
Affiliation(s)
- Tobias Kaiser
- Technical University of Darmstadt, Institute IWAR, Chair of Water and Environmental Biotechnology, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| | - Thomas Fundneider
- Technical University of Darmstadt, Institute IWAR, Chair of Water and Environmental Biotechnology, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
- Mecana AG, Industriestrasse 39, 8864 Reichenburg, Switzerland
| | - Susanne Lackner
- Technical University of Darmstadt, Institute IWAR, Chair of Water and Environmental Biotechnology, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| |
Collapse
|
6
|
Matesun J, Petrik L, Musvoto E, Ayinde W, Ikumi D. Limitations of wastewater treatment plants in removing trace anthropogenic biomarkers and future directions: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116610. [PMID: 38909392 DOI: 10.1016/j.ecoenv.2024.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/31/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
This review highlights the limitations faced by conventional wastewater treatment plants (WWTPs) in effectively removing contaminants of emerging concern (CECs), heavy metals (HMs), and Escherichia coli (E. coli). This emphasises the limitations of current treatment methods and advocates for innovative approaches to enhance the removal efficiency. By following the PRISMA guidelines, the study systematically reviewed relevant literature on detecting and remedying these pollutants in wastewater treatment facilities. Conventional wastewater treatment plants struggle to eliminate CECs, HMs, and E. coli owing to their small size, persistence, and complex nature. The review suggests upgrading WWTPs with advanced tertiary processes to significantly improve contaminant removal. This calls for cost-effective treatment parameters and standardised assessment techniques to enhance the fate of MPs in WWTPs and WRRFs. It recommends integrating insights from mass-balance model studies on MPs in WWTP to overcome modelling challenges and ensure model reliability. In conclusion, this review underscores the urgent need for advancements in wastewater treatment processes to mitigate the environmental impact of trace anthropogenic biomarkers. Future efforts should focus on conducting comprehensive studies, implementing advanced treatment methods, and optimising management practices in WWTPs and WRRFs.
Collapse
Affiliation(s)
- Joshua Matesun
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Leslie Petrik
- Environmental and NanoScience Research Group, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Eustina Musvoto
- TruSense Consulting Services (Pty) Ltd, 191 Hartley Street Pretoria, South Africa
| | - Wasiu Ayinde
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - David Ikumi
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| |
Collapse
|
7
|
Kamal N, Saha AK, Singh E, Pandey A, Bhargava PC. Biodegradation of ciprofloxacin using machine learning tools: Kinetics and modelling. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134076. [PMID: 38565014 DOI: 10.1016/j.jhazmat.2024.134076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Recently, the rampant administration of antibiotics and their synthetic organic constitutes have exacerbated adverse effects on ecosystems, affecting the health of animals, plants, and humans by promoting the emergence of extreme multidrug-resistant bacteria (XDR), antibiotic resistance bacterial variants (ARB), and genes (ARGs). The constraints, such as high costs, by-product formation, etc., associated with the physico-chemical treatment process limit their efficacy in achieving efficient wastewater remediation. Biodegradation is a cost-effective, energy-saving, sustainable alternative for removing emerging organic pollutants from environmental matrices. In view of the same, the current study aims to explore the biodegradation of ciprofloxacin using microbial consortia via metabolic pathways. The optimal parameters for biodegradation were assessed by employing machine learning tools, viz. Artificial Neural Network (ANN) and statistical optimization tool (Response Surface Methodology, RSM) using the Box-Behnken design (BBD). Under optimal culture conditions, the designed bacterial consortia degraded ciprofloxacin with 95.5% efficiency, aligning with model prediction results, i.e., 95.20% (RSM) and 94.53% (ANN), respectively. Thus, befitting amendments to the biodegradation process can augment efficiency and lead to a greener solution for antibiotic degradation from aqueous media.
Collapse
Affiliation(s)
- Neha Kamal
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Amal Krishna Saha
- Indian Mine Planners and Consultants, GE-61, Rajdanga, Kolkata, West Bengal, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
8
|
Lv JL, Min D, Cheng ZH, Zhang JX, Li WW, Mu Y, Liu SJ, Liu DF. Direct ammonia oxidation (Dirammox) is favored over cell growth in Alcaligenes ammonioxydans HO-1 to deal with the toxicity of ammonium. Biotechnol Bioeng 2024; 121:980-990. [PMID: 38088435 DOI: 10.1002/bit.28623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 02/20/2024]
Abstract
Bacteria capable of direct ammonia oxidation (Dirammox) play important roles in global nitrogen cycling and nutrient removal from wastewater. Dirammox process, NH3 → NH2 OH → N2 , first defined in Alcaligenes ammonioxydans HO-1 and encoded by dnf gene cluster, has been found to widely exist in aquatic environments. However, because of multidrug resistance in Alcaligenes species, the key genes involved in the Dirammox pathway and the interaction between Dirammox process and the physiological state of Alcaligenes species remain unclear. In this work, ammonia removal via the redistribution of nitrogen between Dirammox and microbial growth in A. ammonioxydans HO-1, a model organism of Alcaligenes species, was investigated. The dnfA, dnfB, dnfC, and dnfR genes were found to play important roles in the Dirammox process in A. ammonioxydans HO-1, while dnfH, dnfG, and dnfD were not essential genes. Furthermore, an unexpected redistribution phenomenon for nitrogen between Dirammox and cell growth for ammonia removal in HO-1 was revealed. After the disruption of the Dirammox in HO-1, more consumed NH4 + was recovered as biomass-N via rapid metabolic response and upregulated expression of genes associated with ammonia transport and assimilation, tricarboxylic acid cycle, sulfur metabolism, ribosome synthesis, and other molecular functions. These findings deepen our understanding of the molecular mechanisms for Dirammox process in the genus Alcaligenes and provide useful information about the application of Alcaligenes species for ammonia-rich wastewater treatment.
Collapse
Affiliation(s)
- Jun-Lu Lv
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Zhou-Hua Cheng
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Jia-Xin Zhang
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Cao Y, Huang R, Li T, Pan D, Shao S, Wu X. Effect of antibiotics on the performance of moving bed biofilm reactor for simultaneous removal of nitrogen, phosphorus and copper(II) from aquaculture wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115590. [PMID: 37839187 DOI: 10.1016/j.ecoenv.2023.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Co-existence of NO3--N, antibiotics, phosphorus (P), and Cu2+ in aquaculture wastewater has been frequently detected, but simultaneous removal and relationship between enzyme and pollutants removal are far from satisfactory. In this study, simultaneous removal of NO3--N, P, antibiotics, and Cu2+ by moving bed biofilm reactor (MBBR) was established. About 95.51 ± 3.40% of NO3--N, 61.24 ± 3.51% of COD, 18.74 ± 1.05% of TP, 88% of Cu2+ were removed synchronously in stage I, and antibiotics removal in stages I-IV was 73.00 ± 1.32%, 79.53 ± 0.88%, 51.07 ± 3.99%, and 33.59 ± 2.73% for tetracycline (TEC), oxytetracycline (OTC), chlortetracycline hydrochloride (CTC), sulfamethoxazole (SMX), respectively. The removal kinetics and toxicity of MBBR effluent were examined, indicating that the first order kinetic model could better reflect the removal of NO3--N, TN, and antibiotics. Co-existence of multiple antibiotics and Cu2+ was the most toxicity to E. coli growth. Key enzyme activity, reactive oxygen species (ROS) level, and its relationship with TN removal were investigated. The results showed that enzymes activities were significantly different under the co-existence of antibiotics and Cu2+. Meanwhile, different components of biofilm were extracted and separated, and enzymatic and non-enzymatic effects of biofilm were evaluated. The results showed that 70.00%- 94.73% of Cu2+ was removed by extracellular enzyme in stages I-V, and Cu2+ removal was mainly due to the action of extracellular enzyme. Additionally, microbial community of biofilm was assessed, showing that Proteobacteria, Bacteroidetes, and Gemmatimonadetes played an important role in the removal of NO3--N, Cu2+, and antibiotics at the phylum level. Finally, chemical bonds of attached and detached biofilm were characterized by X-ray photoelectron spectroscopy (XPS), and effect of nitrogen (N) and P was proposed under the co-existence of antibiotics and Cu2+. This study provides a theoretical basis for further exploring the bioremediation of NO3--N, Cu2+, and antibiotics in aquaculture wastewater.
Collapse
Affiliation(s)
- Ying Cao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Ruiheng Huang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Tenghao Li
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
10
|
Ding R, Yang R, Fu Z, Zhao W, Li M, Yu G, Ma Z, Zong H. Changes in pH and Nitrite Nitrogen Induces an Imbalance in the Oxidative Defenses of the Spotted Babylon ( Babylonia areolata). Antioxidants (Basel) 2023; 12:1659. [PMID: 37759962 PMCID: PMC10526028 DOI: 10.3390/antiox12091659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
In order to reveal the acute toxicity and physiological changes of the spotted babylon (Babylonia areolata) in response to environmental manipulation, the spotted babylon was exposed to three pH levels (7.0, 8.0 and 9.0) of seawater and four concentrations of nitrite nitrogen (0.02, 2.7, 13.5 and 27 mg/L). The activities of six immunoenzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (AKP) and peroxidase (POD), were measured. The levels of pH and nitrite nitrogen concentrations significantly impacted immunoenzyme activity over time. After the acute stress of pH and nitrite nitrogen, the spotted babylon appeared to be unresponsive to external stimuli, exhibited decreased vigor, slowly climbed the wall, sank to the tank and could not stand upright. As time elapsed, with the extension of time, the spotted babylon showed a trend of increasing and then decreasing ACP, AKP, CAT and SOD activities in order to adapt to the mutated environment and improve its immunity. In contrast, POD and GSH-PX activities showed a decrease followed by an increase with time. This study explored the tolerance range of the spotted babylon to pH, nitrite nitrogen, and time, proving that external stimuli activate the body's immune response. The body's immune function has a specific range of adaptation to the environment over time. Once the body's immune system was insufficient to adapt to this range, the immune system collapsed and the snail gradually died off. This study has discovered the suitable pH and nitrite nitrogen ranges for the culture of the spotted babylon, and provides useful information on the response of the snail's immune system.
Collapse
Affiliation(s)
- Ruixia Ding
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Rui Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Wang Zhao
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Minghao Li
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Humin Zong
- National Marine Environmental Center, Dalian 116023, China
| |
Collapse
|