1
|
Pang E, Li S, Wu J, Chang Q, Li N, Hu S. Carbon-dot-induced oxygen vacancies in copper vanadate enabling persulfate photoactivation for tetracycline degradation. J Colloid Interface Sci 2025; 683:232-240. [PMID: 39673936 DOI: 10.1016/j.jcis.2024.12.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Synchronously creating oxygen vacancies (OVs) and an internal electric field (IEF) in photocatalysts could be an ideal strategy to facilitate photogenerated charge separation and surface reactions but remain unexplored for this use. In this work, we report that low-cost and multifunctional CDs can involve in the nucleation reaction of copper vanadates (CuVs) to create OVs and proper IEF at the interface by modulating the valence states of coppers under hydrothermal conditions. Thus, CDs synergistically serve as oxygen vacancy inducer and charge separator in CuVs to extract photogenerated carriers to trigger persulfate (PS) activation for the degradation of tetracycline hydrochloride (TC). It turns out that CDs-modulated CuVs exhibit the expected photocatalytic capacity to activate PS in water and enable TC decomposition efficiency approximately 8 times higher than CDs-free CuVs under visible light irradiation. Our investigations elucidate that the oxidative breakdown of TC is dominated by the active species cooperation of 1O2 with h+ and OH formed in photocatalytic reaction system.
Collapse
Affiliation(s)
- Ernan Pang
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, PR China
| | - Shijia Li
- Institute of Traffic Engineering, Shanxi Vocational University of Engineering Science and Technology, Taiyuan 030051, PR China
| | - Jie Wu
- State Key Laboratory of Coal and CBM Co-Mining, Jincheng 048012, PR China
| | - Qing Chang
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, PR China
| | - Ning Li
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, PR China
| | - Shengliang Hu
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
2
|
Chen Y, Qiu Y, Chen T, Wang H. An S-Scheme MOF-on-MXene Heterostructure for Enhanced Photocatalytic Periodate Activation. ACS NANO 2025; 19:6588-6600. [PMID: 39908079 DOI: 10.1021/acsnano.4c18864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Fully understanding the periodate (PI) activation system is still a great challenge, which calls for efficient heterogeneous catalysts with a sophisticated structure. Herein, we developed "MOF-on-MXene" heterostructures. By constructing S-scheme heterostructures MXene/Z67450, the internal electric field is generated via the Ti-O-Co bonds at the interface, favoring the excitation of the photogenerated electrons, providing a driving force for accelerating the charge transfer, and enhancing redox performances. Further contributed by the synergy of Ti-O-Co and Co-N4 bonds, the MXene/Z67450 composites exhibit enhanced ability for activating the periodate system to degrade organic pollutants via building a donor-catalyst-acceptor system. In the presence of periodate and light, MXene/Z67450 degraded ∼100% of tetracycline hydrochloride (TCH) in only 10 min. The active sites of the heterostructures can react with the periodate and give the intermediate MXene/Z67450-PI (*PI). As a result, it efficiently reduced the PI adsorption energy and promoted the decomposition of PI and the formation of holes/electrons, singlet oxygen (1O2) as well as hydroxyl radical (•OH). In addition, the MXene/Z67450 composites exhibit high stability, reusability, selectivity, and environmental robustness. Our study provides a research direction for rationally designing MXene-based heterojunctions and applying them in the periodate activation system.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yan Qiu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230026, People's Republic of China
| | - Hong Wang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
3
|
Li Y, Wang H, Liu J, Liu X, Guan J, Fu J, Li S. Synthesis of a novel Bi 19Cl 3S 27/Bi 2MoO 6 Z-type heterojunction for efficient photocatalytic removal of tetracycline antibiotic and Cr(VI): Intermediate toxicity and mechanism insight. ENVIRONMENTAL RESEARCH 2024; 263:120212. [PMID: 39442663 DOI: 10.1016/j.envres.2024.120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Novel Bi19Cl3S27/Bi2MoO6 (BCS/BMO) Z-type heterojunctions were synthesized using a straightforward hydrothermal method. Benefiting from the large specific surface area (62.41 m2/g) and the effective separation of photogenerated carriers facilitated by the Z-scheme heterojunction, the BCS/BMO exhibited remarkable improved photocatalytic tetracycline degradation and Cr(VI) reduction efficiency in comparison to BCS, BMO, and their physical mixture. Specifically, the photocatalytic degradation rate constants for TC and Cr(VI) are 0.0209 and 0.0218 min-1, respectively, which are 16.08 and 15.57 times those of BCS, 1.74 and 1.31 times those of BMO, and 2.4 and 1.73 times those of the physical mixture. Additionally, based on density functional theory (DFT) calculations and empirical data, three potential photocatalytic pathways of tetracycline were presented. This study presents a novel approach for designing and synthesizing high-efficiency Z-scheme photocatalysts for the degradation of TC and the reduction of Cr(VI) in wastewater.
Collapse
Affiliation(s)
- Yuanfei Li
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China
| | - Huanli Wang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China.
| | - Jiayuan Liu
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China
| | - Xiaodong Liu
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China
| | - Jing Guan
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China.
| | - Jingchuan Fu
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China
| | - Shijie Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.
| |
Collapse
|
4
|
Pourmadadi M, Aghababaei N, Abdouss M. Photocatalytic activation of peroxydisulfate by UV-LED through rGO/g-C 3N 4/SiO 2 nanocomposite for ciprofloxacin removal: Mineralization, toxicity, degradation pathways, and application for real matrix. CHEMOSPHERE 2024; 359:142374. [PMID: 38763393 DOI: 10.1016/j.chemosphere.2024.142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
If trace amounts of antibiotics remain in the environment, they can lead to microbial pathogens becoming resistant to antibiotics and putting ecosystem health at risk. For instance, ciprofloxacin (CIP) can be found in surface and ground waters, suggesting that conventional water treatment technologies are ineffective at removing it. Now, a rGO/g-C3N4/SiO2 nanocomposite was synthesized in this study to activate peroxydisulfate (PDS) under UVA-LED irradiation. UVA-LED/rGO-g-C3N4-SiO2/PDS system performance was evaluated using Ciprofloxacin as an antibiotic. Particularly, rGO/g-C3N4/SiO2 showed superior catalytic activity for PDS activation to remove CIP. Operational variables, reactive species determination, and mechanisms were investigated. 0.85 mM PDS and 0.3 g/L rGO/g-C3N4/SiO2 eliminated 99.63% of CIP in 35 min and mineralized 59.78% in 100 min at pH = 6.18. By scavenging free radicals, bicarbonate ions inhibit CIP degradation. According to the trapping experiments, superoxide (O2•-) was the main active species rather than sulfate (SO4•-) and hydroxyl radicals (•OH). RGO/g-C3N4/SiO2 showed an excellent recyclable capability of up to six cycles. The UVA-LED/rGO-g-C3N4-SiO2/PDS system was also tested under real conditions. The system efficiency was reasonable. By calculating the synergistic factor (SF), this work highlights the benefit of combining composite, UVA-LED, and PDS. UVA-LED/rGO-g-C3N4-SiO2/PDS had also been predicted to be an eco-friendly process based on the results of the ECOSAR program. Consequently, this study provides a novel and durable nanocomposite with supreme thermal stability that effectively mitigates environmental contamination by eliminating antibiotics from wastewater.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC, 1983963113, Iran
| | - Nafiseh Aghababaei
- Department of Chemical Engineering, Tafresh University, Tafresh, 39518 79611, Iran.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, 15875-4413, Tehran, Iran.
| |
Collapse
|
5
|
Jiang L, Li W, Wang H, Yang J, Chen H, Wang X, Yuan X, Wang H. Non-radical activation of low additive periodate by carbon-doped boron nitride for acetaminophen degradation: Significance of high-potential metastable intermediates. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133806. [PMID: 38430599 DOI: 10.1016/j.jhazmat.2024.133806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/28/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Metal-free environmental-friendly and cost-effective catalysts for periodate (PI) activation are crucial to popularize their application for micropollutant removal in water. Herein, we report that carbon-doped boron nitride (C-BN) can efficiently activate PI to degrade acetaminophen under very low oxidant doses (40 μM) and over a relatively wide pH range (3-9). As expected, the significant reduction in periodate addition is likely to be due to the higher chemical utilization efficiency achieved by a non-radical oxidation pathway. This involved two main mechanisms, the electron transfer process mediated by the high-potential metastable C-BN-900-PI* complex and singlet oxygen. In this case, the CO groups and defects on the C-BN surface were identified as key active sites for PI activation. Notably, the prepared C-BN-900 had good cycling performance and the degradation efficiency is recovered after simple annealing. The existence of HCO3- and HA significantly inhibited the reaction, whereas Cl-, SO42-, and NO3- had little effect on the degradation of ACE. Overall, this study provides a new alternative method to regulate the non-radical pathway of boron nitride/periodate system.
Collapse
Affiliation(s)
- Longbo Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Wenqin Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hui Wang
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Jinjuan Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoyun Chen
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Xinyu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
6
|
Zhao Y, Sun M, Zhou F, Xu G. Ultratrace Aromatic Anhydride Dopant as Intermediate Island to Promote Charge Transfer of Graphitic Carbon Nitride for Enhancing the Photocatalytic Degradation of Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1858-1868. [PMID: 38182430 DOI: 10.1021/acs.langmuir.3c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
In this work, 0.75 wt ‰ 2,3-pyridinedicarboxylic anhydride (PDA) as a novel dopant was utilized to obtain modified graphitic carbon nitride with ultratrace doping (3MCN-PDA3) by facile thermal polymerization. Characterization of the microstructure, surface state, and porosity properties of the samples indicated that 3MCN-PDA3 has a thinner sheet-like, larger-scale, and tighter lamellar stacking structure than that of pristine graphitic carbon nitride (3MCN). Based on photo/electrochemical analysis, the PDA dopant formed an extended coplanar conjugated system by anhydride-amine thermal condensation with heptazine rings, and the channels of amide covalent bonds and superconjugation of the solitary pair of electrons of the nitrogen atoms of PDA synergistically promoted the charge transport performance of 3MCN-PDA3. Under visible light, the photodegradation efficiency of Rhodamine B (RhB) over 3MCN-PDA3 reached 92.4% in 60 min and realized almost entire removal in 200 min (99.2%), 1.43 times that of 3MCN. Furthermore, the experimental results and generalized density theory calculations confirmed that PDA acts as an intermediate molecular island and constructs an efficient carrier transfer pathway between different heptazine units. The results indicate that PDA is a promising candidate to enhance the charge transfer performance through ultratrace doping in the large-scale preparation and application of the graphitic carbon nitride photocatalyst.
Collapse
Affiliation(s)
- Yuren Zhao
- School of Environment and Chemical Engineering, Shenyang University of Technology, Shenliao West Road 111, Economic & Technological Development Zone, 110870 Shenyang, P. R. China
| | - Mingyue Sun
- School of Environment and Chemical Engineering, Shenyang University of Technology, Shenliao West Road 111, Economic & Technological Development Zone, 110870 Shenyang, P. R. China
| | - Fang Zhou
- School of Environment and Chemical Engineering, Shenyang University of Technology, Shenliao West Road 111, Economic & Technological Development Zone, 110870 Shenyang, P. R. China
| | - Ge Xu
- School of Environment and Chemical Engineering, Shenyang University of Technology, Shenliao West Road 111, Economic & Technological Development Zone, 110870 Shenyang, P. R. China
| |
Collapse
|
7
|
Weng Z, Lin Y, Han B, Zhang X, Guo Q, Luo Y, Ou X, Zhou Y, Jiang J. Donor-acceptor engineered g-C 3N 4 enabling peroxymonosulfate photocatalytic conversion to 1O 2 with nearly 100% selectivity. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130869. [PMID: 36709733 DOI: 10.1016/j.jhazmat.2023.130869] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Singlet oxygen (1O2) is a thrilling active species for selectively oxidating organic substances. However, the efficient and selective generation of 1O2 maintains a great challenge. Here, we develop a donor-acceptor structured g-C3N4 by covalently engineering benzenetricarboxaldehyde (BTA) onto the fringe of g-C3N4. The g-C3N4-BTA exerts high-efficiency 1O2 generation with nearly 100% selectivity via peroxymonosulfate (PMS) photocatalytic activation upon visible light illumination, exhibiting obviously boosted efficiency for selective elimination of atrazine (ATZ). The consequences of experiments and theoretical calculations demonstrate that BTA units serve as electron-withdrawing sites to trap photogenerated electrons and facilitate the adsorption of PMS on the electron-deficient heptazine rings of g-C3N4. As such, PMS can be in-situ oxidated by the photogenerated holes to selectively produce 1O2. Besides, the g-C3N4-BTA/PMS system delivers high stability and strong resistance to the coexisting organic ions and natural organic matter, demonstrating great potential for selectively removing targeted organic contaminants with high efficiency.
Collapse
Affiliation(s)
- Zonglin Weng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yuanfang Lin
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Xinfei Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yu Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xinwen Ou
- Department of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, PR China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|