1
|
Rosario Rodero MD, Steyer JP, Pérez-Bernal MF, Verstraete W, Escudié R, Capson-Tojo G. Dinitrogen fixation by open purple non-sulfur bacteria cultures for protein production: Diazotrophy boosts photoheterotrophic uptake rates. BIORESOURCE TECHNOLOGY 2025; 430:132554. [PMID: 40250533 DOI: 10.1016/j.biortech.2025.132554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Purple non-sulfur bacteria (PNSB) offer a sustainable alternative to current inefficient protein production systems thanks to their high yields. This study explored the potential of specialized diazotrophic PNSB open cultures for protein production, benchmarking their performance against ammonium-grown PNSB and other diazotrophs. While diazotrophic yields (0.85-0.93 gCODbiomass·gCODsubstrate-1; COD being chemical oxygen demand) were slightly lower than non-diazotrophic (∼1.0), they were over double those of heterotrophic-diazotrophic rhizobacteria, with full N recovery as biomass (∼1.0 gNbiomass·gNfixed-1). Photoheterotrophic-diazotrophic uptake rates were the fastest ever reported for PNSB and any other diazotroph (e.g., 5.20 ± 0.83 vs. 2.64 ± 0.34 gCODsubstrate·gCODbiomass-1·d-1 for PNSB on NH4+). Optimal rates required high light intensities, aligning with diazotrophic energy demands. Photoheterotrophic-diazotrophic conditions were highly selective, enriching a specialized Rhodopseudomonas palustris strain. Biomass protein contents and essential amino acid metrics confirmed nutritional suitability for humans. This work lays the background for exploiting PNSB's potential to address global protein demands through sustainable nitrogen fixation.
Collapse
Affiliation(s)
- María Del Rosario Rodero
- INRAE, Univ Montpellier, LBE, 102 avenue des Étangs, 11100 Narbonne, France; Institute of Sustainable Processes, University of Valladolid 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | | | | | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent B-9000, Belgium
| | - Renaud Escudié
- INRAE, Univ Montpellier, LBE, 102 avenue des Étangs, 11100 Narbonne, France
| | - Gabriel Capson-Tojo
- INRAE, Univ Montpellier, LBE, 102 avenue des Étangs, 11100 Narbonne, France.
| |
Collapse
|
2
|
Su Y, Ren Y, Wang G, Li J, Zhang H, Yang Y, Pang X, Han J. Microalgae and microbial inoculant as partial substitutes for chemical fertilizer enhance Polygala tenuifolia yield and quality by improving soil microorganisms. FRONTIERS IN PLANT SCIENCE 2025; 15:1499966. [PMID: 39886683 PMCID: PMC11779722 DOI: 10.3389/fpls.2024.1499966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025]
Abstract
Excessive utilization of chemical fertilizers degrades the quality of medicinal plants and soil. Bio-organic fertilizers (BOFs) including microbial inoculants and microalgae have garnered considerable attention as potential substitutes for chemical fertilizer to enhance yield. In this study, a field experiment was conducted to investigate the effects of BOF partially substituting chemical fertilizer on the growth and quality of medicinal plant Polygala tenuifolia. The growth parameters, bioactive component contents, soil properties and composition of rhizosphere microorganisms were measured. The results indicated that substituting 40% of chemical fertilizer with microalgae showed the most pronounced growth-promoting effect, leading to a 29.30% increase in underground biomass and a 19.72% increase in 3,6'-disinapoylsucrose (DISS) content. Substituting 20% of chemical fertilizer with microalgae improved soil quality, significantly increasing soil organic matter content by 15.68% (p<0.05). Microalgae addition significantly affected the rhizosphere bacterial community composition of P. tenuifolia, reducing the relative abundance of Cladosporium by 33.33% and 57.93%, while increasing the relative abundance of Chloroflexi by 31.06% and 38.27%, under 20% and 40% chemical fertilizer reduction, respectively. The relative abundance of Chloroflexi positively correlated with both the underground biomass and DISS content (p<0.05), indicating that microalgae may stimulate Chloroflexi species associated with carbon cycling, thereby enhancing soil fertility, nutrient absorption, and ultimately leading to increased biomass accumulation and production of bioactive components in P. tenuifolia. In addition, there was no significant difference in underground growth and bioactive component contents between reduced chemical fertilizer dosage combined with solid microbial inoculant (SMI) and polyglutamic microbial inoculant (PMI), compared with 100% chemical fertilizer. Correlation analysis revealed that PMI could increase soil phosphorus availability through Streptomyces recruitment. In conclusion, our findings demonstrated that bio-organic fertilizers can partially substitute chemical fertilizer to improve soil properties and microorganisms, enhancing the growth and quality of P. tenuifolia. This provides a theoretical basis for increasing medicinal plant productivity under chemical fertilizer reduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Sun T, Huo H, Zhang Y, Xie Y, Li Y, Pan K, Zhang F, Liu J, Tong Y, Zhang W, Chen L. Engineered Cyanobacteria-Based Living Materials for Bioremediation of Heavy Metals Both In Vitro and In Vivo. ACS NANO 2024; 18:17694-17706. [PMID: 38932609 DOI: 10.1021/acsnano.4c02493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The pollution caused by heavy metals (HMs) represents a global concern due to their serious environmental threat. Photosynthetic cyanobacteria have a natural niche and the ability to remediate HMs such as cadmium. However, their practical application is hindered by a low tolerance to HMs and issues related to recycling. In response to these challenges, this study focuses on the development and evaluation of engineered cyanobacteria-based living materials for HMs bioremediation. Genes encoding phytochelatins (PCSs) and metallothioneins (MTs) were introduced into the model cyanobacterium Synechocystis sp. PCC 6803, creating PM/6803. The strain exhibited improved tolerance to multiple HMs and effectively removed a combination of Cd2+, Zn2+, and Cu2+. Using Cd2+ as a representative, PM/6803 achieved a bioremediation rate of approximately 21 μg of Cd2+/OD750 under the given test conditions. To facilitate its controllable application, PM/6803 was encapsulated using sodium alginate-based hydrogels (PM/6803@SA) to create "living materials" with different shapes. This system was feasible, biocompatible, and effective for removing Cd2+ under simulated conditions of zebrafish and mice models. Briefly, in vitro application of PM/6803@SA efficiently rescued zebrafish from polluted water containing Cd2+, while in vivo use of PM/6803@SA significantly decreased the Cd2+ content in mice bodies and restored their active behavior. The study offers feasible strategies for HMs bioremediation using the interesting biomaterials of engineered cyanobacteria both in vitro and in vivo.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People's Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huaishu Huo
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People's Republic of China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People's Republic of China
| | - Yize Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Kungang Pan
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People's Republic of China
| | - Fenfang Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People's Republic of China
| | - Jing Liu
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People's Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People's Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People's Republic of China
| |
Collapse
|
4
|
Zhou X, Liang B, Zhang T, Xiong Q, Ma X, Chen L. Co-inoculation of fungi and desert cyanobacteria facilitates biological soil crust formation and soil fertility. Front Microbiol 2024; 15:1377732. [PMID: 38650889 PMCID: PMC11033444 DOI: 10.3389/fmicb.2024.1377732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
The inoculation of cyanobacteria for enriching soil nutrients and forming biological soil crusts (BSCs) is considered an effective means to restore degraded soil. However, there are limited studies on the application of co-inoculation of fungi and cyanobacteria for degraded soil remediation. In this study, a high exopolysaccharide-secreting fungi Zh2 was isolated from lichen BSCs in Hobq Desert, and co-inoculated with a cyanobacterial strain identified as Phormidium tenue in different proportions to form BSCs on sand during a 35 days incubation period. Results revealed significant differences in crust biomass and soil properties among crusts with different cyanobacterial/fungal inoculation ratios. Microbial biomass, soil nutrient content and enzyme activities in crusts co-inoculated with cyanobacteria and fungi were higher than those inoculated with cyanobacteria and fungi alone. The inoculation of cyanobacteria contributed to the fulvic-like accumulation, and the inoculated fungi significantly increased the humic-like content and soil humification. Redundancy analysis showed that the inoculation of cyanobacteria was positively correlated with the activities of urease and phosphatase, and the content of fulvic-like. Meanwhile, the inoculation of fungi was positively correlated with the contents of total carbon, total nitrogen and humic-like, the activities of catalase and sucrase. Cyanobacteria and fungi play distinct roles in improving soil fertility and accumulating dissolved organic matter. This study provides new insights into the effects of cyanobacteria and fungi inoculations on the formation and development of cyanobacterial-fungus complex crusts, offering a novel method for accelerating induced crust formation on the surface of sand.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| | - Bin Liang
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Tian Zhang
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Qiao Xiong
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Xiao Ma
- Huangshi Key Laboratory of Prevention and Control of Soil Pollution, College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, China
| | - Lanzhou Chen
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Hossain MS, Okino T. Cyanoremediation of heavy metals (As(v), Cd(ii), Cr(vi), Pb(ii)) by live cyanobacteria ( Anabaena variabilis, and Synechocystis sp.): an eco-sustainable technology. RSC Adv 2024; 14:10452-10463. [PMID: 38567320 PMCID: PMC10986677 DOI: 10.1039/d4ra00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
The cyanoremediation technique for heavy metal (HM) removal from wastewater using live cyanobacteria is promising to reduce the pollution risk both for the environment and human health. In this study, two widely recognized freshwater cyanobacteria, Anabaena variabilis and Synechocystis sp., were used to explore their efficacy in HM (As(v), Cd(ii), Cr(vi), Pb(ii)) removal. The different optimum adsorption conditions were pH 8 and 7.5 for A. variabilis and Synechocystis sp., respectively, but the temperature (25 °C) and contact time (48 hours) were the same for both strains. Under these specified conditions, A. variabilis exhibited the capability to remove 25% of As(v), 78% of Cd(ii), 54% of Cr(vi), and 17% of Pb(ii), whereas Synechocystis sp. removed 77% of As(v), 57% of Cd(ii), 91% of Cr(vi), and 77% of Pb(ii) at different initial concentrations. Metal diversity interfered negatively with cyanobacterial growth, especially Cd(ii) and As(v), as measured by OD730, dry biomass, chlorophyll a, and carotenoid production for both strains. Fourier transform infrared spectrum (FT-IR) analysis revealed the existence of diverse surface binding sites for HM adsorption, stemming from proteins and polysaccharides. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) confirmed the presence of HMs on the surface of the cyanobacterial cells. Finally, the zeta potential results indicating alterations in the surface negative charges elucidated the adsorption mechanisms involved in the HM removal by both cyanobacteria. These results provided a comprehensive understanding of the HM adsorption mechanism by cyanobacteria, offering valuable theoretical insights that can be extrapolated to enhance our comprehension of the cyanoremediation mechanisms by various other cyanobacterial strains.
Collapse
Affiliation(s)
- Md Sabbir Hossain
- Graduate School of Environmental Science, Hokkaido University Sapporo 060-0810 Japan
- Department of Environmental Science and Technology, Jashore University of Science and Technology Jashore-7408 Bangladesh
| | - Tatsufumi Okino
- Graduate School of Environmental Science, Hokkaido University Sapporo 060-0810 Japan
- Faculty of Environmental Earth Science, Hokkaido University Sapporo 060-0810 Japan
| |
Collapse
|
6
|
Hazaimeh M. Phycoremediation of heavy metals and production of biofuel from generated algal biomass: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109955-109972. [PMID: 37801245 DOI: 10.1007/s11356-023-30190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Due to human activity and natural processes, heavy metal contamination frequently affects the earth's water resources. The pollution can be categorized as resistant and persistent since it poses a significant risk to terrestrial and marine biological systems and human health. Because of this, several appeals and demands have been made worldwide to try and clean up these contaminants. Through bioremediation, algal cells are frequently employed to adsorb and eliminate heavy metals from the environment. Bioremediation is seen as a desirable strategy with few adverse effects and low cost. Activities and procedures for bioremediation involving algal cells depend on various environmental factors, including salinity, pH, temperature, the concentration of heavy metals, the amount of alga biomass, and food availability. Additionally, the effectiveness of removing heavy metals from the environment by assessing how environmental circumstances affect algal activities. The main issues discussed are (1) heavy metal pollution of water bodies, the role of algal cells in heavy metal removal, the methods by which algae cells take up and store heavy metals, and the process of turning the algae biomass produced into biofuel. (2) To overcome the environmental factors and improve heavy metals bioremediation, many strategies are applied, such as immobilizing the cells, consortium culture, and using dry mass rather than living cells. (3) The processes for converting produced algal biomass into biofuels like biodiesel and biomethanol. The present study discusses the life cycle assessment and the limitations of biofuel products from algae biomass.
Collapse
Affiliation(s)
- Mohammad Hazaimeh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, ah-11952, Saudi Arabia.
| |
Collapse
|