1
|
Ulhassan Z, Ali S, Kaleem Z, Shahbaz H, He D, Khan AR, Salam A, Hamid Y, Sheteiwy MS, Zhou W, Huang Q. Effects of Nanosilica Priming on Rapeseed ( Brassica napus) Tolerance to Cadmium and Arsenic Stress by Regulating Cellular Metabolism and Antioxidant Defense. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4518-4533. [PMID: 39937631 DOI: 10.1021/acs.jafc.4c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The mechanisms by which seed-primed silicon dioxide nanoparticles (nSi) alleviated arsenic (As) and cadmium (Cd) toxicity in Brassica napus L. remain unclear. A pot study examined the physico-biochemical, cellular, and molecular responses of B. napus exposed to Cd (10 mg/kg soil) and As (50 mg/kg soil) doses with or without nSi priming. The results showed that nSi priming improved photosynthesis, seedling biomass, and metabolite accumulation, and restored the cell structure. Upon Cd and As stress, nSi diminished oxidative stress by downplaying H2O2 (24-32%) and O2•- (29-36%), MDA, and activating antioxidant defenses. Also, nSi relieved Cd and As accumulation (27-36%) by enhancing root-vacuolar sequestration (upregulating BnHMA3, BnPCs, and BnABCC1), cell wall chelation, and downregulating root transporters (BnNRAMP5, BnIRTI, BnHMA2, BnHMA4, BnPHT1.1, and BnPHT1.4). Our findings revealed that nSi priming effectively enhanced canola tolerance to Cd and As toxicity by strengthening multiple oxidative defense mechanisms and limiting their accumulation.
Collapse
Affiliation(s)
- Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Hafsah Shahbaz
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di He
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Ali Raza Khan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abdul Salam
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Yasir Hamid
- Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al-Ain, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Wei TL, Wang ZH, Pei MS, Liu HN, Guo DL. Mechanisms of Cadmium stress response in watermelon: Insights from physiological, transcriptomic, and metabolic analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109017. [PMID: 39121518 DOI: 10.1016/j.plaphy.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Cadmium (Cd) contamination of soil may lead to Cd stress for plants, which significantly hinders plant growth and development, posing a risk to human health through the consumption of Cd-contaminated foods. Watermelon (Citrullus lanatus), a widely consumed fruit, is particularly affected by Cd stress globally, yet the mechanisms underlying its response are not well understood. Here, we subjected watermelon seedlings to simulated Cd stress treatment and explored the physiological, transcriptomic, and metabolic response. Our findings revealed that Cd stress treatment led to increased accumulation of reactive oxygen species (ROS) in watermelon leaves. Transcriptome sequencing unveiled a multitude of osmotic and oxidative stress-responsive genes, including peroxidase (POD), MYB, voltage-dependent anion channel (SLAC1), and ABC transporter. KEGG enrichment analysis highlighted the predominant enrichment of Cd stress-responsive genes in pathways such as glutathione (GSH) metabolism, MAPK signaling, and biosynthesis of secondary metabolites. Within the GSH metabolism pathway, several glutathione S-transferase (GST) genes were up-regulated, alongside phytochelatin synthetase (PCS) genes involved in phytochelatin synthesis. In the MAPK signaling pathway, genes associated with ABA and ethylene signal transduction showed up-regulation following Cd stress. Metabolomic analysis demonstrated that Cd stress enhanced the production of amino acids, phenolamines, and esters. Overall, our study elucidates that watermelon responds to Cd stress by activating its antioxidant system, GSH metabolism pathway, MAPK signal pathway, and biosynthesis of key metabolites. These findings offer valuable insights for the remediation of heavy metal pollution in soil affecting plant life.
Collapse
Affiliation(s)
- Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Ze-Hang Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
3
|
Zhang B, Li Z, Feng Y, Qaharaduqin S, Liu W, Yan Y. Impact of Cd and Pb on the photosynthetic and antioxidant systems of Hemerocallis citrina Baroni as revealed by physiological and transcriptomic analyses. PLANT CELL REPORTS 2024; 43:226. [PMID: 39227493 DOI: 10.1007/s00299-024-03312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
KEY MESSAGE Cd induces photosynthetic inhibition and oxidative stress damage in H. citrina, which mobilizes the antioxidant system and regulates the expression of corresponding genes to adapt to Cd and Pb stress. Cd and Pb are heavy metals that cause severe pollution and are highly hazardous to organisms. Physiological measurements and transcriptomic analysis were combined to investigate the effect of 5 mM Cd or Pb on Hemerocallis citrina Baroni. Cd significantly inhibited H. citrina growth, while Pb had a minimal impact. Both Cd and Pb suppressed the expression levels of key chlorophyll synthesis genes, resulting in decreased chlorophyll content. At the same time, Cd accelerated chlorophyll degradation. It reduced the maximum photochemical efficiency of photosystem (PS) II, damaging the oxygen-evolving complex and leading to thylakoid dissociation. In contrast, no such phenomena were observed under Pb stress. Cd also inhibited the Calvin cycle by down-regulating the expression of Rubisco and SBPase genes, ultimately disrupting the photosynthetic process. Cd impacted the light reaction processes by damaging the antenna proteins, PS II and PS I activities, and electron transfer rate, while the impact of Pb was weaker. Cd significantly increased reactive oxygen species and malondialdehyde accumulation, and inhibited the activities of antioxidant enzymes and the expression levels of the corresponding genes. However, H. citrina adapted to Pb stress by the recruitment of antioxidant enzymes and the up-regulation of their corresponding genes. In summary, Cd and Pb inhibited chlorophyll synthesis and hindered the light capture and electron transfer processes, with Cd exerting great toxicity than Pb. These results elucidate the physiological and molecular mechanisms by which H. citrina responds to Cd and Pb stress and provide a solid basis for the potential utilization of H. citrina in the greening of heavy metal-polluted lands.
Collapse
Affiliation(s)
- Boxue Zhang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zebin Li
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuwei Feng
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Sunara Qaharaduqin
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Liu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Yongqing Yan
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Ahmed T, Shou L, Guo J, Noman M, Qi Y, Yao Y, Masood HA, Rizwan M, Ali MA, Ali HM, Li B, Qi X. Modulation of rhizosphere microbial community and metabolites by bio-functionalized nanoscale silicon oxide alleviates cadmium-induced phytotoxicity in bayberry plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173068. [PMID: 38723965 DOI: 10.1016/j.scitotenv.2024.173068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Cadmium (Cd) is an extremely toxic heavy metal that can originate from industrial activities and accumulate in agricultural soils. This study investigates the potential of biologically synthesized silicon oxide nanoparticles (Bio-SiNPs) in alleviating Cd toxicity in bayberry plants. Bio-SiNPs were synthesized using the bacterial strain Chryseobacterium sp. RTN3 and thoroughly characterized using advanced techniques. A pot experiment results demonstrated that Cd stress substantially reduced leaves biomass, photosynthesis efficiency, antioxidant enzyme activity, and induced oxidative damage in bayberry (Myrica rubra) plants. However, Bio-SiNPs application at 200 mg kg-1 significantly enhanced plant biomass, chlorophyll content (26.4 %), net photosynthetic rate (8.6 %), antioxidant enzyme levels, and mitigated reactive oxygen species production under Cd stress. Bio-SiNPs modulated key stress-related phytohormones by increasing salicylic acid (13.2 %) and abscisic acid (13.7 %) contents in plants. Bio-SiNPs augmented Si deposition on root surfaces, preserving normal ultrastructure in leaf cells. Additionally, 16S rRNA gene sequencing demonstrated that Bio-SiNPs treatment favorably reshaped structure and abundance of specific bacterial groups (Proteobacteria, Actinobacteriota, and Acidobacteriota) in the rhizosphere. Notably, Bio-SiNPs application significantly modulated the key metabolites (phenylacetaldehyde, glycitein, maslinic acid and methylmalonic acid) under both normal and Cd stress conditions. Overall, this study highlights that bio-nanoremediation using Bio-SiNPs enhances tolerance to Cd stress in bayberry plants by beneficially modulating biochemical, microbial, and metabolic attributes.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Linfei Shou
- Station for the Plant Protection & Quarantine and Control of Agrochemicals Zhejiang Province, Hangzhou 310004, China
| | - Junning Guo
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Md Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | | |
Collapse
|
5
|
Wang J, Wu H, Wang Y, Ye W, Kong X, Yin Z. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1274-1294. [PMID: 38578151 DOI: 10.1111/jipb.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.
Collapse
Affiliation(s)
- Jie Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wang
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| |
Collapse
|
6
|
Ghouri F, Sarwar S, Sun L, Riaz M, Haider FU, Ashraf H, Lai M, Imran M, Liu J, Ali S, Liu X, Shahid MQ. Silicon and iron nanoparticles protect rice against lead (Pb) stress by improving oxidative tolerance and minimizing Pb uptake. Sci Rep 2024; 14:5986. [PMID: 38472251 PMCID: PMC10933412 DOI: 10.1038/s41598-024-55810-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Lead (Pb) is toxic to the development and growth of rice plants. Nanoparticles (NPs) have been considered one of the efficient remediation techniques to mitigate Pb stress in plants. Therefore, a study was carried out to examine the underlying mechanism of iron (Fe) and silicon (Si) nanoparticle-induced Pb toxicity alleviation in rice seedlings. Si-NPs (2.5 mM) and Fe-NPs (25 mg L-1) were applied alone and in combination to rice plants grown without (control; no Pb stress) and with (100 µM) Pb concentration. Our results revealed that Pb toxicity severely affected all rice growth-related traits, such as inhibited root fresh weight (42%), shoot length (24%), and chlorophyll b contents (26%). Moreover, a substantial amount of Pb was translocated to the above-ground parts of plants, which caused a disturbance in the antioxidative enzyme activities. However, the synergetic use of Fe- and Si-NPs reduced the Pb contents in the upper part of plants by 27%. It reduced the lethal impact of Pb on roots and shoots growth parameters by increasing shoot length (40%), shoot fresh weight (48%), and roots fresh weight (31%). Both Si and Fe-NPs synergistic application significantly elevated superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione (GSH) concentrations by 114%, 186%, 135%, and 151%, respectively, compared to plants subjected to Pb stress alone. The toxicity of Pb resulted in several cellular abnormalities and altered the expression levels of metal transporters and antioxidant genes. We conclude that the synergistic application of Si and Fe-NPs can be deemed favorable, environmentally promising, and cost-effective for reducing Pb deadliness in rice crops and reclaiming Pb-polluted soils.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Samreen Sarwar
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Thiruvengadam R, Easwaran M, Rethinam S, Madasamy S, Siddiqui SA, Kandhaswamy A, Venkidasamy B. Boosting plant resilience: The promise of rare earth nanomaterials in growth, physiology, and stress mitigation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108519. [PMID: 38490154 DOI: 10.1016/j.plaphy.2024.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Rare earth elements (REE) have been extensively used in a variety of applications such as cell phones, electric vehicles, and lasers. REEs are also used as nanomaterials (NMs), which have distinctive features that make them suitable candidates for biomedical applications. In this review, we have highlighted the role of rare earth element nanomaterials (REE-NMs) in the growth of plants and physiology, including seed sprouting rate, shoot biomass, root biomass, and photosynthetic parameters. In addition, we discuss the role of REE-NMs in the biochemical and molecular responses of plants. Crucially, REE-NMs influence the primary metabolites of plants, namely sugars, amino acids, lipids, vitamins, enzymes, polyols, sorbitol, and mannitol, and secondary metabolites, like terpenoids, alkaloids, phenolics, and sulfur-containing compounds. Despite their protective effects, elevated concentrations of NMs are reported to induce toxicity and affect plant growth when compared with lower concentrations, and they not only induce toxicity in plants but also affect soil microbes, aquatic organisms, and humans via the food chain. Overall, we are still at an early stage of understanding the role of REE in plant physiology and growth, and it is essential to examine the interaction of nanoparticles with plant metabolites and their impact on the expression of plant genes and signaling networks.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Senthil Rethinam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Sivagnanavelmurugan Madasamy
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Anandhi Kandhaswamy
- Post Graduate Research Department of Microbiology, Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous), Perambalur, 621212, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
8
|
Yan J, Wu X, Li T, Fan W, Abbas M, Qin M, Li R, Liu Z, Liu P. Effect and mechanism of nano-materials on plant resistance to cadmium toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115576. [PMID: 37837699 DOI: 10.1016/j.ecoenv.2023.115576] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Cadmium (Cd), one of the most toxic heavy metals, has been extensively studied by environmental scientists because of its detrimental effects on plants, animals, and humans. Increased industrial activity has led to environmental contamination with Cd. Cadmium can enter the food chain and pose a potential human health risk. Therefore, reducing the accumulation of Cd in plant species and enhancing their detoxification abilities are crucial for remediating heavy metal pollution in contaminated areas. One innovative technique is nano-phytoremediation, which employs nanomaterials ranging from 1 to 100 nm in size to mitigate the accumulation and detrimental effects of Cd on plants. Although extensive research has been conducted on using nanomaterials to mitigate Cd toxicity in plants, it is important to note that the mechanism of action varies depending on factors such as plant species, level of Cd concentration, and type of nanomaterials employed. This review aimed to consolidate and organize existing data, providing a comprehensive overview of the effects and mechanisms of nanomaterials in enhancing plant resistance to Cd. In particular, its deep excavation the mechanisms of detoxification heavy metals of nanomaterials by plants, including regulating Cd uptake and distribution, enhancing antioxidant capacity, regulating gene expression, and regulating physiological metabolism. In addition, this study provides insights into future research directions in this field.
Collapse
Affiliation(s)
- Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Tong Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China.
| |
Collapse
|
9
|
Vishwakarma V, Ogunkunle CO, Rufai AB, Okunlola GO, Olatunji OA, Jimoh MA. Nanoengineered particles for sustainable crop production: potentials and challenges. 3 Biotech 2023; 13:163. [PMID: 37159590 PMCID: PMC10163185 DOI: 10.1007/s13205-023-03588-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/23/2023] [Indexed: 05/11/2023] Open
Abstract
Nanoengineered nanoparticles have a significant impact on the morphological, physiology, biochemical, cytogenetic, and reproductive yields of agricultural crops. Metal and metal oxide nanoparticles like Ag, Au, Cu, Zn, Ti, Mg, Mn, Fe, Mo, etc. and ZnO, TiO2, CuO, SiO2, MgO, MnO, Fe2O3 or Fe3O4, etc. that found entry into agricultural land, alter the morphological, biochemical and physiological system of crop plants. And the impacts on these parameters vary based on the type of crop and nanoparticles, doses of nanoparticles and its exposure situation or duration, etc. These nanoparticles have application in agriculture as nanofertilizers, nanopesticides, nanoremediator, nanobiosensor, nanoformulation, phytostress-mediator, etc. The challenges of engineered metal and metal oxide nanoparticles pertaining to soil pollution, phytotoxicity, and safety issue for food chains (human and animal safety) need to be understood in detail. This review provides a general overview of the applications of nanoparticles, their potentials and challenges in agriculture for sustainable crop production.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, 203201 India
| | - Clement Oluseye Ogunkunle
- Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, 240003 Nigeria
- Department of Plant Biology, Osun State University, Osogbo, Nigeria
| | | | | | | | | |
Collapse
|