1
|
Zhang W, Song J, Zhao M, Zhou J, Zhao Y, Yang G, Xu Z. Mechanisms of BpTT2 overexpression in enhancing cadmium tolerence of Broussonetia papyrifera. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126210. [PMID: 40194651 DOI: 10.1016/j.envpol.2025.126210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/07/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The development of cadmium-resistant plants has become a promising green biotechnology in the field of soil heavy metal remediation due to its advantages of low cost, wide adaptability and no secondary pollutants, it is the key to realize the application of this technology. In this study, we clarified the role of BpTT2 in Broussonetia papyrifera in response to Cd stress. Under the induction of 500 μmol/L CdCl2, the anti-Cd ability of BpTT2-overexpressed B. papyrifera was enhanced, and the accumulation of Cd was significantly reduced (P < 0.05). The plant height, biomass and total chlorophyll content of BpTT2-overexpressed B. papyrifera were significantly higher than those of non-transgenic lines (P < 0.001). Moreover, more substances related to ROS accumulation, such as MDA and H2O2, were detected in non-transgenic lines. Transcriptome sequencing showed that the AUX/IAA signal transduction gene (ARF5), ABA signal transduction genes (PP2C and SNRK2), protein kinase-related genes (PHOT1, WAKL4, PK1 and MPK3), ROS accumulation-related genes (RbohD and CAT1), and TFs family genes highly sensitive to Cd stress were significantly up-regulated in BpTT2-overexpressed B. papyrifera (P < 0.01). Notably, these genes regulate multiple signaling cascades simultaneously in the same protein family, which not only regulate plant signal transduction pathways, but also participate in the scavenging ROS and the feedback regulation of H2O2 signal. This study confirmed that the overexpression of BpTT2 can enhance the remediation effect of B. papyrifera on soil Cd pollution, which has important significance for better utilization of phytoremediation technology to treat heavy metal pollution.
Collapse
Affiliation(s)
- Wan Zhang
- College of Social Development, Hunan Woman's University, Changsha, 410004, China; Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiayi Song
- College of Forestry, Northwest A & F University, Yangling, 712100, China
| | - Minghao Zhao
- College of Forestry, Northwest A & F University, Yangling, 712100, China
| | - Jiakang Zhou
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Guiyan Yang
- College of Forestry, Northwest A & F University, Yangling, 712100, China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China; College of Forestry, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Ma J, Pan Y, Huang W, Fan Z, Liu S, Huang Y, Yao S, Hao C, Jiang Q, Li T. Overexpression of tae-miR9670 enhances cadmium tolerance in wheat by targeting mTERFs without yield penalty. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136448. [PMID: 39522224 DOI: 10.1016/j.jhazmat.2024.136448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) is a widely distributed heavy metal that poses significant hazards to both crop productivity and human health. MicroRNAs (miRNAs) play pivotal roles in plant growth, development and responses to environmental stresses, yet little is known about their roles in regulating Cd tolerance in wheat. In this study, we identified tae-miR9670, a Triticeae-specific miRNA, as responsive to Cd exposure in wheat through miRNAome analysis. Tae-miR9670 can target genes that encode mitochondrial transcription termination factors (mTERFs), mediating their mRNA cleavage and suppressing their expression. Overexpression of tae-miR9670 significantly enhanced Cd tolerance in wheat seedlings, as demonstrated by increased biomass and reduced levels of malondialdehyde (MDA), H2O2, and Cd content. Consequently, multiple downstream genes involved in ROS scavenging, detoxification and heavy metal transport were upregulated in tae-miR9670 overexpression plants. Moreover, the grain Cd content in mature plants overexpressing tae-miR9670 was reduced by over 60 % compared to wild-type controls. Our results also indicated that overexpressing tae-miR9670 in wheat preserved yield-related traits, thereby overcoming the trade-off between stress resistance and grain yield. Overall, our findings provide new insights into the role of tae-miR9670 in Cd tolerance in wheat and its potential application in breeding low-Cd cultivars.
Collapse
Affiliation(s)
- Jianhui Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yuxue Pan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weihua Huang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhiyao Fan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Shujuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yilin Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shixiang Yao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qiyan Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Lin M, Liu H, Liu B, Li X, Qian W, Zhou D, Jiang J, Zhang Y. Transcriptome-wide m 6A methylation profile reveals tissue specific regulatory networks in switchgrass (Panicum virgatum L.) under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134904. [PMID: 38996680 DOI: 10.1016/j.jhazmat.2024.134904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
The heavy metal cadmium (Cd), known for its high toxicity, poses a grave threat to human health through the food chain. N6-methyladenosine (m6A), the most abundant internal modification, regulates plant adaptation to various adversities, yet the panorama of m6A modifications in switchgrass under cadmium stress remains elusive. This study examines the physiological responses of switchgrass roots and shoots exposed to 50 μM CdCl2, alongside an overview of transcriptome-wide m6A methylation patterns. After cadmium treatment, methylation modifications are primarily enriched near stop codons and the 3'UTR region, with a negative correlation between m6A modification and gene expression levels. In shoots, approximately 58 % of DEGs with m6A modifications show upregulation in expression and decrease in m6A peaks, including zinc transporter 4-like (ZIP4). In roots, about 43 % of DEGs with m6A modifications exhibit downregulation in expression and increase in m6A peaks, such as the ABC transporter family member (ABCG25). We further validate the m6A enrichment, gene expression and mRNA stability of ZIP4 in response to Cd treatment. The results suggest that the negative correlation of m6A enrichment and gene expression is due to altered mRNA stability. Our study establishes an m6A regulatory network governing cadmium transport in switchgrass roots and shoots, offering new avenues for candidate gene manipulation in phytoremediation applications of heavy metal pollution.
Collapse
Affiliation(s)
- Mengzhuo Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bowen Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenwu Qian
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Die Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jishan Jiang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Peroni P, Liu Q, Lizarazu WZ, Xue S, Yi Z, Von Cossel M, Mastroberardino R, Papazoglou EG, Monti A, Iqbal Y. Biostimulant and Arbuscular Mycorrhizae Application on Four Major Biomass Crops as the Base of Phytomanagement Strategies in Metal-Contaminated Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1866. [PMID: 38999706 PMCID: PMC11244479 DOI: 10.3390/plants13131866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Using contaminated land to grow lignocellulosic crops can deliver biomass and, in the long term, improve soil quality. Biostimulants and microorganisms are nowadays an innovative approach to define appropriate phytomanagement strategies to promote plant growth and metal uptake. This study evaluated biostimulants and mycorrhizae application on biomass production and phytoextraction potential of four lignocellulosic crops grown under two metal-contaminated soils. Two greenhouse pot trials were setup to evaluate two annual species (sorghum, hemp) in Italy and two perennial ones (miscanthus, switchgrass) in China, under mycorrhizae (M), root (B2) and foliar (B1) biostimulants treatments, based on humic substances and protein hydrolysates, respectively, applied both alone and in combination (MB1, MB2). MB2 increased the shoot dry weight (DW) yield in hemp (1.9 times more), sorghum (3.6 times more) and miscanthus (tripled) with additional positive effects on sorghum and miscanthus Zn and Cd accumulation, respectively, but no effects on hemp metal accumulation. No treatment promoted switchgrass shoot DW, but M enhanced Cd and Cr shoot concentrations (+84%, 1.6 times more, respectively) and the phytoextraction efficiency. Root biostimulants and mycorrhizae were demonstrated to be more efficient inputs than foliar biostimulants to enhance plant development and productivity in order to design effective phytomanagement strategies in metal-contaminated soil.
Collapse
Affiliation(s)
- Pietro Peroni
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (P.P.); (R.M.); (A.M.)
| | - Qiao Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Q.L.); (S.X.); (Z.Y.)
| | - Walter Zegada Lizarazu
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (P.P.); (R.M.); (A.M.)
| | - Shuai Xue
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Q.L.); (S.X.); (Z.Y.)
| | - Zili Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Q.L.); (S.X.); (Z.Y.)
| | - Moritz Von Cossel
- Department of Biobased Resources in the Bioeconomy (340b), Institute of Crop Science, University of Hohenheim, Fruwirthstr 23, 70599 Stuttgart, Germany
| | - Rossella Mastroberardino
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (P.P.); (R.M.); (A.M.)
| | - Eleni G. Papazoglou
- Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Andrea Monti
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (P.P.); (R.M.); (A.M.)
| | - Yasir Iqbal
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Q.L.); (S.X.); (Z.Y.)
| |
Collapse
|
5
|
Yang M, Chen S, Geng J, Gao S, Chen S, Li H. Comprehensive analysis of the Spartina alterniflora WD40 gene family reveals the regulatory role of SaTTG1 in plant development. FRONTIERS IN PLANT SCIENCE 2024; 15:1390461. [PMID: 38863548 PMCID: PMC11165199 DOI: 10.3389/fpls.2024.1390461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
Introduction The WD40 gene family, prevalent in eukaryotes, assumes diverse roles in cellular processes. Spartina alterniflora, a halophyte with exceptional salt tolerance, flood tolerance, reproduction, and diffusion ability, offers great potential for industrial applications and crop breeding analysis. The exploration of growth and development-related genes in this species offers immense potential for enhancing crop yield and environmental adaptability, particularly in industrialized plantations. However, the understanding of their role in regulating plant growth and development remains limited. Methods In this study, we conducted a comprehensive analysis of WD40 genes in S. alterniflora at the whole-genome level, delving into their characteristics such as physicochemical properties, phylogenetic relationships, gene architecture, and expression patterns. Additionally, we cloned the TTG1 gene, a gene in plant growth and development across diverse species. Results We identified a total of 582 WD40 proteins in the S. alterniflora genome, exhibiting an uneven distribution across chromosomes. Through phylogenetic analysis, we categorized the 582 SaWD40 proteins into 12 distinct clades. Examining the duplication patterns of SaWD40 genes, we observed a predominant role of segmental duplication in their expansion. A substantial proportion of SaWD40 gene duplication pairs underwent purifying selection through evolution. To explore the functional aspects, we selected SaTTG1, a homolog of Arabidopsis TTG1, for overexpression in Arabidopsis. Subcellular localization analysis revealed that the SaTTG1 protein localized in the nucleus and plasma membrane, exhibiting transcriptional activation in yeast cells. The overexpression of SaTTG1 in Arabidopsis resulted in early flowering and increased seed size. Discussion These outcomes significantly contribute to our understanding of WD40 gene functions in halophyte species. The findings not only serve as a valuable foundation for further investigations into WD40 genes in halophyte but also offer insights into the molecular mechanisms governing plant development, offering potential avenues in molecular breeding.
Collapse
Affiliation(s)
- Maogeng Yang
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
| | - Shoukun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
| | - Jiahui Geng
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
| | - Shuqiang Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
| | - Shihua Chen
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
| |
Collapse
|
6
|
Anwar A, Wang Y, Chen M, Zhang S, Wang J, Feng Y, Xue Y, Zhao M, Su W, Chen R, Song S. Zero-valent iron (nZVI) nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133829. [PMID: 38394894 DOI: 10.1016/j.jhazmat.2024.133829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Cadmium (Cd) pollution threatens plant physiological and biochemical activities and crop production. Significant progress has been made in characterizing how nanoparticles affect Cd stress tolerance; however, the molecular mechanism of nZVI nanoparticles in Cd stress remains largely uncharacterized. Plants treated with nZVI and exposed to Cd had increased antioxidant capacity and reduced Cd accumulation in plant tissues. The nZVI treatment differentially affected the expression of genes involved in plant environmental responses, including those associated with the ERF transcription factor. SlEFR1 was upregulated by Cd stress in nZVI-treated plants when compared with the control and the predicted protein-protein interactions suggested SlERF1 interacts with proteins associated with plant hormone signaling pathway and related to stress. Yeast overexpressing SlEFR1 grew faster after Cd exposure and significantly had higher Cd stress tolerance when compared with empty vector controls. These results suggest that nZVI induces Cd stress tolerance by activating SlERF1 expression to improve plant growth and nutrient accumulation. Our study reveals the molecular mechanism of Cd stress tolerance for improved plant growth and will support new research on overcoming Cd stress and improving vegetable crop production.
Collapse
Affiliation(s)
- Ali Anwar
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yudan Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mengqing Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shuaiwei Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jinmiao Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yunqiang Feng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanxu Xue
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mingfeng Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Li C, Zhang J, Li Q, Chen Z, Hou X, Zhao C, Guo Q. IlNRAMP5 is required for cadmium accumulation and the growth in Iris lactea under cadmium exposures. Int J Biol Macromol 2023; 253:127103. [PMID: 37769763 DOI: 10.1016/j.ijbiomac.2023.127103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Iris lactea is potentially applied for remediating Cd-contaminated soils due to the strong ability of Cd uptake and accumulation. However, its molecular mechanism underlying Cd uptake pathway remains unknown. Here, we report a member of NRAMP (Natural Resistance-Associated Macrophage Protein) family, IlNRAMP5, is involved in Cd/Mn uptake and the growth in I. lactea response to Cd. IlNRAMP5 was localized onto the plasma membrane, and was induced by Cd. It was expressed in the root cortex rather than the central vasculature, and in leaf vascular bundle and mesophyll cells. Heterologous expression in yeast showed that IlNRAMP5 could transport Cd and Mn, but not Fe. Knockdown of IlNRAMP5 triggered a significant reduction in Cd uptake, further diminishing the accumulation of Cd. In addition, silencing IlNRAMP5 disrupted Mn homeostasis by lowering Mn uptake and Mn allocation, accompanied by remarkably inhibiting photosynthesis under Cd conditions. Overall, the findings suggest that IlNRAMP5 plays versatile roles in Cd accumulation by mediating Cd uptake, and contributes to maintain the growth via modulating Mn homeostasis in I. lactea under Cd exposures. This would provide a mechanistic understanding Cd phytoremediation efficiency in planta.
Collapse
Affiliation(s)
- Cui Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jia Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qidong Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhimin Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xincun Hou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunqiao Zhao
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiang Guo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|