1
|
Li B, Hu Z, Zhao Q, Heng J, Wang S, Khanal SK, Guo Z, Zhang J. Enhanced fluoride removal in a novel magnesium-carbon micro-electrolysis constructed wetland through accelerated electron transport and anodic sacrifice. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138062. [PMID: 40157187 DOI: 10.1016/j.jhazmat.2025.138062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
High fluoride (F-) content in the aquatic environment is a significant issue affecting public health. Constructed wetlands (CWs) are believed to have unique potential for alleviating F- pollution in the aquatic environment. In this study, magnesium (Mg) and iron/nitrogen co-doped biochar (FeNBC) was used as the filler of a novel micro-electrolysis constructed wetland (WNME). Compared with the control, WNME significantly enhanced the F- removal efficiency from 19.1 ± 7.3 % to 54.1 ± 8.3 %, in which 90.7 % of total F- removal in WNME was attributed to the micro-electrolysis filler. The enhancement was attributed to the co-doping of iron and nitrogen, which improved the surface morphology, element distribution, and electrochemical performance of FeNBC. This led to an increase in the potential of FeNBC by 9.8 %, thereby increasing the potential difference within the Mg-C micro-electrolysis system. The Mg2+ release from anodic sacrifice in WNME was promoted, which led to an increase in MgF2 as the precipitate. Micro-electrolysis promoted the enrichment of electrochemically active bacteria in WNME, resulting in enhanced electron transfer and high F- removal efficiency. This study provided new insights for F- removal in CWs and would shed light on the optimization of micro-electrolysis CWs for F- removal from the aqueous phase.
Collapse
Affiliation(s)
- Bingrui Li
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Qian Zhao
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jiayang Heng
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Shuo Wang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Zizhang Guo
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| |
Collapse
|
2
|
Zhou HZ, Wang BQ, Ma YH, Sun YY, Zhou HL, Song Z, Zhao Y, Chen W, Min J, Li JW, He T. The combination of metagenomics and metabolomics reveals the effect of nitrogen fertilizer application driving the remobilization of immobilization remediation cadmium and rhizosphere microbial succession in rice. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137117. [PMID: 39798310 DOI: 10.1016/j.jhazmat.2025.137117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
The remobilization of cadmium (Cd) in contaminated farmland soil due to nitrogen fertilizer addition has raised significant concerns regarding the effectiveness of immobilization remediation. This study investigated the effects of ammonia nitrogen (NH4+-N) and nitrogen (NO3--N) application (100 kg/ha) on the remobilization of immobilization of remediation Cd (bound to clay palygorskite) during various growth stages of rice through field experiments. Our findings revealed that increased organic acid secretion (e.g., benzoic acid and malic acid) from rice roots, induced by NH4+-N, significantly enhanced the NH4NO3-extractable Cd content. Consequently, the concentration of Cd in brown rice varied from 39.84 to 43.25 μg/kg to 78.31-90.44 μg/kg. While NO3--N exhibited a relatively weaker capacity for Cd remobilization (Cd content in brown rices: 50.17-65.23 μg/kg). Meanwhile, the organic acid secretion in roots inhibited the expression of most functional genes (e.g., nifK and napA), leading to shifts in microbial communities and functional metabolism (e.g., Cd2+ exporting). According to the results of metagenome-assembled genome (MAG) composition, specific MAGs with fewer functional annotations were enriched under NH4+-N treatment, may further increased risk of Cd exposure in rice by stimulating amt expression. Interaction analysis of metabolic products and microbial communities indicated acids linked to branched-chain amino acid (BCAA) metabolism and urea cycle might serve as a potentially key process influencing microbial dynamics.
Collapse
Affiliation(s)
- Huan-Zhan Zhou
- Huangshan Observation and Research Station for Land-Water Resources, Huangshan 245400, China; Changsha Natural Resources Comprehensive Investigation Center, China Geological Survey, Changsha 410600, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Bu-Qing Wang
- Huangshan Observation and Research Station for Land-Water Resources, Huangshan 245400, China; Changsha Natural Resources Comprehensive Investigation Center, China Geological Survey, Changsha 410600, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yong-Hong Ma
- Huangshan Observation and Research Station for Land-Water Resources, Huangshan 245400, China; Changsha Natural Resources Comprehensive Investigation Center, China Geological Survey, Changsha 410600, China
| | - Yu-Ying Sun
- Hunan Water Planning and Design Institute Co., Ltd, Changsha 410008, China
| | - Huan-Lin Zhou
- Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Zhen Song
- Huangshan Observation and Research Station for Land-Water Resources, Huangshan 245400, China; Changsha Natural Resources Comprehensive Investigation Center, China Geological Survey, Changsha 410600, China
| | - Yuan Zhao
- Huangshan Observation and Research Station for Land-Water Resources, Huangshan 245400, China; Changsha Natural Resources Comprehensive Investigation Center, China Geological Survey, Changsha 410600, China
| | - Wei Chen
- Huangshan Observation and Research Station for Land-Water Resources, Huangshan 245400, China; Changsha Natural Resources Comprehensive Investigation Center, China Geological Survey, Changsha 410600, China
| | - Jie Min
- Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China
| | - Jing-Wen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Tao He
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, China.
| |
Collapse
|
3
|
Tian X, Wei X, Qin L, Zhang Y, Xiang Q, Zhao K, Yu X, Chen Q, Zhang L, Penttinen P, Gu Y. Buckwheat responds to co-exposure to PLA microplastics and Pb by regulating the synthesis of unsaturated fatty acids and jasmonates. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137066. [PMID: 39764956 DOI: 10.1016/j.jhazmat.2024.137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 03/12/2025]
Abstract
Polylactic acid (PLA) microplastics (MPs) and lead (Pb) co-contamination, an emerging co-contamination, may profoundly impact plant growth. We aimed to evaluate the effects of PLA-MPs and Pb on buckwheat growth and physiology and to elucidate the underlying molecular mechanisms through an integrated transcriptomic and metabolomic approach. PLA-MPs alone reduced buckwheat biomass by 26.0 %, while combined exposure to Pb and PLA-MPs (PLA-Pb) further exacerbated morphological impairments, decreasing biomass by 43.1 % and 50.4 % compared to the control. Antioxidant enzyme activities increased under Pb and PLA-Pb treatments. The analysis revealed 536 differentially expressed metabolites (DEMs) and 3229 differentially expressed genes (DEGs) in PLA-Pb vs. control, 168 DEMs and 1555 DEGs in PLA-Pb vs. PLA, and 196 DEMs and 4057 DEGs in PLA-Pb vs. Pb. Key DEGs involved in lignin biosynthesis, including caffeoyl-CoA-O-methyltransferase, cinnamoyl-CoA reductase, and catechol-O-methyltransferase, were upregulated, suggesting that buckwheat mitigates toxicity by enhancing cell wall modification. Similarly, DEGs and DEMs linked to jasmonate biosynthesis were enriched in the alpha-linolenic acid metabolic pathway, including allene oxide synthase, allene oxide cyclase, and 12-oxophytodienoate reductase, as well as methyl jasmonate. These results suggest that buckwheat counters PLA-MPs-Pb toxicity by enhancing oxidative stress responses and upregulating the synthesis of lignin and unsaturated fatty acids. In conclusion, this study provides novel insights into the molecular mechanisms of plant detoxification under PLA-MPs-Pb co-exposure, highlighting the need for ecological risk assessment of combined microplastic and heavy metal pollution.
Collapse
Affiliation(s)
- Xianrui Tian
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xieluyao Wei
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Leitao Qin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Wang F, Zhang Z, Zhang YT, Zhang M, Huang Y, Zhang X, Wu Q, Kong W, Jiang D, Mu J. DNA and RNA sequencing reveal the role of rare bacterial taxa in constructed wetlands: Insights into community activities, ecological functions, and assembly processes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117336. [PMID: 39546866 DOI: 10.1016/j.ecoenv.2024.117336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Microorganisms are essential for the functioning of constructed wetlands (CWs), yet the role of rare bacterial taxa in CWs remains poorly understood. In this study, the community structure, metabolic activities, ecological functions, and assembly processes of abundant and rare bacterial taxa in CWs were examined using DNA and RNA high-throughput sequencing. Our results revealed that Gammaproteobacteria, Alphaproteobacteria, Bacteroidia, and Actinobacteria exhibited high diversity and sequence abundance. Retention in CWs generally reduced the metabolic activities of bacterial communities, with intermediate and rare taxa showing significantly lower activity compared to those in the influent. Despite their low abundance, functional groups involved in nitrogen and phosphorus removal exhibited high metabolic activities, highlighting their crucial role in these processes. Co-occurrence network analysis showed that non-rare taxa interacted more frequently with rare taxa than with conspecifics, and that keystone species included comparable numbers of both abundant and rare species. These highlight the importance of rare taxa in ecological functions and maintaining the stability of bacterial community structure in CWs. The assembly of bacterial communities was driven by both deterministic and stochastic processes, with stochastic processes predominantly shaping the rare taxa and deterministic processes primarily influencing the abundant taxa. Overall, this study provides novel insights into bacterial community structure, metabolic activity, and assembly processes in CWs, particularly the ecological roles of rare taxa.
Collapse
Affiliation(s)
- Feipeng Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Zhi Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yu Ting Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Mingdong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yaling Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Xiaoyun Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Qi Wu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weimao Kong
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Degang Jiang
- Island Research Center, Ministry of Natural Resources, Pingtan 350400, China.
| | - Jingli Mu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
5
|
Long Y, Yu G, Wang J, Zheng D. Cadmium removal by constructed wetlands containing different substrates: performance, microorganisms and mechanisms. BIORESOURCE TECHNOLOGY 2024; 413:131561. [PMID: 39362346 DOI: 10.1016/j.biortech.2024.131561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
This study compared the cadmium (Cd) removal performance of constructed wetlands (CWs), including gravel (G-CW), magnetite (M-CW), coconut shell (C-CW) and biochar (B-CW). C-CW exhibited superior removal efficiencies for Cd compared to other CWs, with efficiencies of 93.18 %.C-CW benefited from the rich organic matter of coconut shells and enhanced DO consumption levels, which facilitated microbial and plant removal of Cd. The total accumulation of Cd in the substrate increased from 9.16 mg/kg to 30.66 mg/kg. Concurrently, the percentage of Cd in the organic matter-bound and residue states increased from 20.52 % to 37.56 %, which effectively reduced the bioavailability of Cd. All CWs can ensure that the plant antioxidant system is not subjected to Cd stress. Saccharimonadales and Micropruina became the dominant genera in all CWs, exhibiting a high tolerance to Cd. This study provides new understanding and theoretical support for selecting substrates to effectively treat heavy metals wastewater with CWs.
Collapse
Affiliation(s)
- Yuannan Long
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China.
| | - Jianwu Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China
| | - Dian Zheng
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China
| |
Collapse
|
6
|
Cheng Q, Tian H, Zuo Y, Nengzi L, Du E, Peng M, Cheng X. Influence of temperature on performance and mechanism of advanced synergistic nitrogen removal in lab-scale denitrifying filter with biogenic manganese oxides. CHEMOSPHERE 2024; 359:142269. [PMID: 38719129 DOI: 10.1016/j.chemosphere.2024.142269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/06/2024] [Accepted: 05/05/2024] [Indexed: 06/05/2024]
Abstract
Temperature is a significant operational parameter of denitrifying filter (DF), which affects the microbial activity and the pollutants removal efficiency. This study investigated the influence of temperature on performance of advanced synergistic nitrogen removal (ASNR) of partial-denitrification anammox (PDA) and denitrification, consuming the hydrolytic and oxidation products of refractory organics in the actual secondary effluent (SE) as carbon source. When the test water temperature (TWT) was around 25, 20, 15 and 10 °C, the filtered effluent total nitrogen (TN) was 1.47, 1.70, 2.79 and 5.52 mg/L with the removal rate of 93.38%, 92.25%, 87.33% and 74.87%, and the effluent CODcr was 8.12, 8.45, 10.86 and 12.29 mg/L with the removal rate of 72.41%, 66.17%, 57.35% and 51.87%, respectively. The contribution rate of PDA to TN removal was 60.44%∼66.48%, and 0.77-0.96 mg chemical oxygen demand (CODcr) was actually consumed to remove 1 mg TN. The identified functional bacteria, such as anammox bacteria, manganese oxidizing bacteria (MnOB), hydrolytic bacteria and denitrifying bacteria, demonstrated that TN was removed by the ASNR, and the variation of the functional bacteria along the DF layer revealed the mechanism of the TWT affecting the efficiency of the ASNR. This technique presented a strong adaptability to the variation of the TWT, therefore, it has broad application prospect and superlative application value in advanced nitrogen removal of municipal wastewater.
Collapse
Affiliation(s)
- Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Hui Tian
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Yanting Zuo
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Lichao Nengzi
- Academy of Environmental and Economics Sciences, Xichang University, Xichang, 615000, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Xiuwen Cheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Huang JW, Sun YY, Li QS, Zhou HZ, Li YH, Fan XX, Wang JF. Increased risk of heavy metal accumulation in mangrove seedlings in coastal wetland environments due to microplastic inflow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123927. [PMID: 38582184 DOI: 10.1016/j.envpol.2024.123927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The recovery phase of mangrove seedlings in coastal wetland ecosystems can be negatively affected by exposure to external pollutants. This study aimed to investigate the impact of microplastics (MPs) influx, specifically polystyrene (PS) and polymethyl methacrylate (PMMA), on the growth of Aegiceras corniculatum seedlings and their accumulation of heavy metals (HMs). PS and PMMA significantly increased HMs accumulation (up to 21.0-548%), particularly in the roots of seedlings, compared to the control treatment (CK). Additionally, elevated activities of malondialdehyde and catalase enzymes were observed in the leaves of seedlings, while peroxidase enzyme activity decreased. Topological analysis of the root sediment microbiota coexistence network revealed that the modularization data increased from 0.69 (CK treatment) to 1.07 (PS treatment) and 5.11 (PMMA treatment) under the combined stress of MPs and HMs. This suggests that the introduction of MPs intensifies microbial modularization. The primary cause of increased HMs accumulation in plants is the MPs input, which influences the secretion of organic acids by plants and facilitates the shift of HMs in sediment to bioavailable states. Furthermore, changes in microbial clustering may also contribute to the elevated HMs accumulation in plants. This study provides valuable insights into the effects of external pollutants on mangrove seedlings and offers new perspectives for the preservation and restoration of mangrove coastal wetlands.
Collapse
Affiliation(s)
- Jia-Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou, 510632, China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou, 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou, 510632, China
| | - Huan-Zhan Zhou
- Changsha Natural Resources Comprehensive Investigation Center, China Geological Survey, 410600, China
| | - Yi-Hao Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Xiang-Xiang Fan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou, 510632, China
| | - Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Wang JF, Huang JW, Cai ZX, Li QS, Sun YY, Zhou HZ, Zhu H, Song XS, Wu HM. Differential Nitrous oxide emission and microbiota succession in constructed wetlands induced by nitrogen forms. ENVIRONMENT INTERNATIONAL 2024; 183:108369. [PMID: 38070437 DOI: 10.1016/j.envint.2023.108369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 01/25/2024]
Abstract
Nitrous oxide (N2O) emission during the sewage treatment process is a serious environmental issue that requires attention. However, the N2O emission in constructed wetlands (CWs) as affected by different nitrogen forms in influents remain largely unknown. This study investigated the N2O emission profiles driven by microorganisms in CWs when exposed to two typical nitrogen sources (NH4+-N or NO3--N) along with different carbon source supply (COD/N ratios: 3, 6, and 9). The results showed that CWs receiving NO3--N caused a slight increase in total nitrogen removal (by up to 11.8 %). This increase was accomplished by an enrichment of key bacteria groups, including denitrifiers, dissimilatory nitrate reducers, and assimilatory nitrate reducers, which enhanced the stability of microbial interaction. Additionally, it led to a greater abundance of denitrification genes (e.g., nirK, norB, norC, and nosZ) as inferred from the database. Consequently, this led to a gradual increase in N2O emission from 66.51 to 486.77 ug-N/(m2·h) as the COD/N ratio increased in CWs. Conversely, in CWs receiving NH4+-N, an increasing influent COD/N ratio had a negative impact on nitrogen biotransformation. This resulted in fluctuating trend of N2O emissions, which decreased initially, followed by an increase at later stage (with values of 122.87, 44.00, and 148.59 ug-N/(m2·h)). Furthermore, NH4+-N in the aquatic improved the nitrogen uptake by plants and promoted the production of more root exudates. As a result, it adjusted the nitrogen-transforming function, ultimately reducing N2O emissions in CWs. This study highlights the divergence in microbiota succession and nitrogen transformation in CWs induced by nitrogen form and COD/N ratio, contributing to a better understanding of the microbial mechanisms of N2O emission in CWs with NH4+-N or NO3--N at different COD/N ratios.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jia-Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ze-Xiang Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huan-Zhan Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xin-Shan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201600, China
| | - Hai-Ming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
9
|
Wang JF, Cai ZX, Li YH, Sun YY, Wu HM, Song XS, Zhu H. Microbiota and genetic potential for reducing nitrous oxide emissions by biochar in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166489. [PMID: 37611707 DOI: 10.1016/j.scitotenv.2023.166489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The denitrification process in constructed wetlands (CWs) is responsible for most of the nitrous oxide (N2O) emissions, which is an undesired impact on the ecology of sewage treatment systems. This study compared three types of CWs filled with gravel (CW-B), gravel mixed with natural pyrite (CW-BF), or biochar (CW-BC) to investigate their impact on microbiota and genetic potential for N2O generation during denitrification under varying chemical oxygen demand (COD) to nitrate (NO3--N) ratios. The results showed that natural pyrite and biochar were superior in enhancing COD (90.6-91.2 %) and NO3--N removal (90.0-93.5 %) in CWs with a COD/NO3--N ratio of 9. The accumulation of NO2--N during the denitrification process was the primary cause of N2O emission, with the fluxes ranging from 95.6-472.0 μg/(m2·h) in CW-B, 92.9-400 μg/(m2·h) in CW-BF, and 54.0-293.3 μg/(m2·h) in CW-BC. The addition of biochar significantly reduced N2O emissions during denitrification, while natural pyrite had a lesser inhibitory effect on N2O emissions. The three types of substrates also influenced the structure of microbiota in the biofilm, with natural pyrite enriched nitrogen transformation microorganisms, especially for denitrifiers. Notably, biochar significantly enhanced the abundance of nosZ and the ratio of nosZ/(norB + norC), which are critical factors in reducing N2O emissions from CWs. Overall, the results suggest that the biochar-induced changes in microbiota and genetic potential during denitrification play a significant role in preventing N2O production in CWs, especially when treating sewage with a relatively high COD/NO3--N ratio.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Ze-Xiang Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Yi-Hao Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, PR China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Hai-Ming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xin-Shan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201600, PR China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| |
Collapse
|
10
|
Jiang W, Chen R, Lyu J, Qin L, Wang G, Chen X, Wang Y, Yin C, Mao Z. Remediation of the microecological environment of heavy metal-contaminated soil with fulvic acid, improves the quality and yield of apple. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132399. [PMID: 37647659 DOI: 10.1016/j.jhazmat.2023.132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The excessive application of chemical fertilizers and pesticides in apple orchards is responsible for high levels of manganese and copper in soil, and this poses a serious threat to soil health. We conducted a three-year field experiment to study the remediation effect and mechanism of fulvic acid on soil with excess manganese and copper. The exogenous application of fulvic acid significantly reduced the content of manganese and copper in soil and plants; increased the content of calcium; promoted the growth of apple plants; improved the fruit quality and yield of apple; increased the content of chlorophyll; increased the activity of superoxide dismutase, peroxidase, and catalase; and reduced the content of malondialdehyde. The number of soil culturable microorganisms, soil enzyme activity, soil microbial community diversity, and relative abundance of functional bacteria were increased, and the detoxification of the glutathione metabolism function was enhanced. The results of this study provide new insights that will aid the remediation of soil with excess manganese and copper using fulvic acid.
Collapse
Affiliation(s)
- Weitao Jiang
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Ran Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Jinhui Lyu
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Lei Qin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Gongshuai Wang
- College of Forestry Engineering Shandong Agriculture and Engineering University, Ji'nan, Shandong 250000, PR China
| | - Xuesen Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Yanfang Wang
- College of Chemistry and Material Science Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengmiao Yin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China.
| | - Zhiquan Mao
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China.
| |
Collapse
|