1
|
Lu J, Wang R, Hu M, Cai K, Du X, Cheng J, Hu H, Zhou H, Xu B. Bifunctional photocatalyst/hydrogel composites: Synergistic effects and degradation mechanisms for the degradation of benzo(a)pyrene in smoked sausages. Food Chem 2025; 463:141468. [PMID: 39369606 DOI: 10.1016/j.foodchem.2024.141468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Benzo(a)pyrene (B(a)P) is a structurally stable and carcinogenic compound, and B(a)P deposition and transport from smoking environment particulates to smoked meat products is a global challenge. In this study, a novel photosensitive bifunctional composite gel (ST/SiO2-Mn) was successfully synthesized as a reliable material for reducing PM2.5-B(a)P in the smoke environment. B(a)P removal experiments demonstrated that the adsorption and filtration properties of the gel effectively reduced the emission of PM2.5-B(a)P in smoke environment. The ST/SiO2-Mn gel removed 88.5 % of PM2.5-B(a)P in 240 min, which further led to a 59.7 % decrease in B(a)P on the sausage surface. In addition, photocatalytic experiments demonstrated that the ST/SiO2-Mn composite could effectively remove B(a)P, and 50 μg/mL B(a)P could be completely degraded within 20 min. Free radical trapping experiments showed that superoxide radicals (•O2-) contributed significantly to the degradation process. In conclusion, this study provides valuable insights for effective PM2.5-B(a)P degradation without increasing economic burden.
Collapse
Affiliation(s)
- Jingnan Lu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Ran Wang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Manzi Hu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Kezhou Cai
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xinglan Du
- Liaocheng Inspection and Examination Center, Shandong, Liaocheng 252000, China
| | - Jieshun Cheng
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Haimei Hu
- Changhong Meiling Co., Hefei 230009, China
| | - Hui Zhou
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China.
| | - Baocai Xu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Luo S, Fan S, Yuan J, Xiao J, Sun X, Wang L, Zhang Y, Zhang Z, Fu X, Dai W. Regulation of electron density in Pt nanoparticles via bimetallic metal-organic frameworks for enhancing photothermal catalysis of toluene decomposition. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136561. [PMID: 39571375 DOI: 10.1016/j.jhazmat.2024.136561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/27/2024] [Accepted: 11/16/2024] [Indexed: 01/26/2025]
Abstract
Volatile Organic Compounds (VOCs) are omnipresent in the sphere of human industrial, harboring latent adverse consequences for health and the ecological system. The photothermal catalytic oxidation of VOCs is an advanced integrated technology that harnesses the combined effects of light and heat energy to enhance the efficiency of VOCs degradation. Herein, a bimetallic Metal-Organic Framework (MOF) was synthesized with the incorporation of Ce into the UiO-66-NH2(Zr) (i.e., UNH(Zr)), UiO-66-NH2(Zr2Ce) (i.e., UNH(Z2C)), which was achieved with Ce atom substituting for a portion of Zr atom within the Zr-oxo clusters. Pt nanoparticles (NPs) are integrated with MOFs to form composites using the dual-solvent method. Ce-oxo fulfills a bifunctional role: it not only facilitates the enhancement of the ligand-to-metal charge transfer (LMCT), but also establishes interaction with Pt NPs. Ce-oxo mediates an enhancement of electron density on Pt NPs. This phenomenon enhances the adsorption and activation of oxygen, significantly boosting the photocatalytic performance for toluene degradation, as demonstrated by a reduction of 30 ℃ for complete mineralization of toluene as compared to that of Pt@UiO-66-NH2(Zr) (i.e., PUNH(Zr)). This study potentially offers new insights into the relationship between electron transfer effects in bimetallic MOF-based catalysts and their efficient catalytic performance for VOCs degradation.
Collapse
Affiliation(s)
- Songyu Luo
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Shipeng Fan
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jie Yuan
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianyu Xiao
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xu Sun
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liang Wang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yongfan Zhang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zizhong Zhang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Xianzhi Fu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenxin Dai
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China.
| |
Collapse
|
3
|
Bai X, Qi X, Liu Y, Sun J, Shen T, Pan L. Photothermal Catalytic Degradation of VOCs: Mode, System and Application. Chem Asian J 2025; 20:e202400993. [PMID: 39466004 DOI: 10.1002/asia.202400993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
Human production and living processes emit excessive VOCs into the atmosphere, posing significant threats to both human health and the environment. The photothermal catalytic oxidation process is an organic combination of photocatalysis and thermocatalysis. Utilizing photothermal catalytic degradation of VOCs can achieve better catalytic activity at lower temperatures, resulting in more rapid and thorough degradation of these compounds. Photothermal catalysis has been increasingly applied in the treatment of atmospheric VOCs due to its many advantages. A brief introduction on the three modes of photothermal catalysis is presented. Depending on the main driving force of the reactions, they can be categorized into thermal-assisted photocatalysis (TAPC), photo-assisted thermal catalysis (PATC) and photo-driven thermal catalysis (PDTC). The commonly used catalyst design methods and reactor types for photothermal catalysis are also briefly introduced. This paper then focuses on recent developments in specific applications for photothermal catalytic oxidation of different types of VOCs and their corresponding principles. Finally, the problems and challenges facing VOC degradation through this method are summarized, along with prospects for future research.
Collapse
Affiliation(s)
- Xiang Bai
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Xinyu Qi
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Yunchao Liu
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Tingting Shen
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Lijun Pan
- Shandong Wanjia Environmental Engineering Co., Ltd, Jinan, 250013, China
| |
Collapse
|
4
|
Gao Q, Jin X, Zhang X, Li J, Liu P, Li P, Luo X, Gong W, Xu D, Dewil R, Liang H, Van der Bruggen B. Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136333. [PMID: 39486327 DOI: 10.1016/j.jhazmat.2024.136333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/07/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation.
Collapse
Affiliation(s)
- Qieyuan Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; State Key Laboratory of Coking Coal Resources Green Exploitation, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Xinyao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xi Zhang
- Department of Chemical Engineering, KU Leuven, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Junwei Li
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Peng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peijie Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Raf Dewil
- Department of Chemical Engineering, KU Leuven, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
5
|
Yu G, Wang J, Xiong Q, Xu Y, Xuan S, Leung KCF, Fang Q. Dipolar-hollowed α-Fe 2O 3@Au/Polydopamine nanospindle for photothermal-photodynamic coupling antibacterial and drug-delivery. Int J Biol Macromol 2024; 281:136615. [PMID: 39414200 DOI: 10.1016/j.ijbiomac.2024.136615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
With the prevalence of drug-resistant bacteria and the waning effects of antibiotics, nanoplatform has become an effective strategy for fighting infections. This work reports a dipolar-hollowed α-Fe2O3@Au/Polydopamine (PDA) nanospindle which possesses both photothermal-photodynamic (PTT-PDT) coupling antibacterial and drug carrying performance. Firstly, the spindle type α-Fe2O3@Au/PDA particle was prepared by a simple one-step strategy and then the dipolar-hollow structure was obtained by controlling etching the inside α-Fe2O3 core with hydrochloric acid. After further loading the photosensitizer zinc phthalocyanine (ZnPc), the dipolar-hollowed α-Fe2O3@Au/PDA-ZnPc nanospindles were obtained. Owing to the dipolar-hollowed interior, the nanospindles are also effective in carrying antitumor drug doxorubicin (DOX) and shows a good drug loading-release behavior. The dipolar-hollowed α-Fe2O3@Au/PDA nanospindles exhibits a high antibacterial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) under near-infrared (NIR) and Xenon lamp irradiation. When α-Fe2O3@Au/PDA-ZnPc nanospindles concentration was increased to 100 μg/mL, the antibacterial rate was close to 100 %. In comparison to the original α-Fe2O3@Au/PDA nanospindles, the product achieved a lower effective antibacterial temperature. This triple-mode therapy (PTT/PDT/Drug) provides an interesting design idea for anisotropic therapeutic nanoplatform which can be applied in low-temperature antibacterial and drug delivery.
Collapse
Affiliation(s)
- Guangjin Yu
- Department of Chirurgery, Affiliated Hospital 1, Anhui Medical University, Hefei 230032, PR China; Department of Hepatobiliary Surgery, Dongcheng branch of the First Affiliated Hospital of Anhui Medical University (Feidong People's Hospital), Hefei 230027, PR China
| | - Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Qingshan Xiong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China; Anhui Provincial Key Laboratory of Aerosol Analysis, Regulation and Biological Effect, Hefei 230000, PR China.
| | - Ken Cham-Fai Leung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon, Hong Kong.
| | - Qunling Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
6
|
Yue C, Zhou H, Chen L, Wang H, Wu X, Yan Q, Zhang H, Yang S. Efficient visible light-driven photodegradation of glyphosate utilizing Bi 2WO 6 with oxygen vacancies: Performance, mechanism, and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123876. [PMID: 38552773 DOI: 10.1016/j.envpol.2024.123876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Global environmental deterioration poses a major risk to ecological security and human health, and emerging technologies are urgently needed to deal with it. Therefore, the exploitation of photocatalysts with favorable activity for efficient degradation of pesticide contaminants is one of the strategies to achieve environmental remediation. Herein, oxygen vacancy-rich Bi2WO6 (Ov-BWO) was prepared through a solvothermal method utilizing ethylene glycol (EG), which exhibited excellent photocatalytic efficiency in photodegradation of glyphosate. The formation of oxygen vacancies (Ovs) in Ov-BWO was demonstrated utilizing XPS and EPR. PL, TRPL, photocurrent tests, and EIS analyses revealed that Ovs accelerated effective transfer of photogenerated charge, extended lifetime of charge carriers, promoted production of active species and significantly improved the photocatalytic performance. Compared with the low-activity Bi2WO6 (BWO, 59.6%), Ov-BWO showed outstanding photocatalytic activity, achieving a degradation efficiency of 91% for glyphosate at 120 min of visible light irradiation. Moreover, Ov-BWO also displayed outstanding recyclable stability after four repeated uses. Based on the characterization of photoelectric properties, a feasible photocatalytic reaction was put forth, along with glyphosate degradation pathways. Furthermore, the degradation intermediates of glyphosate were analyzed in detail employing HPLC-MS. The toxicity assessment indicated that degraded products had been proven to be non-toxic to the ecological system. This work presents the potential of photocatalysts with Ovs for the photodegradation of pesticides, providing a viable strategy for environmental renovation.
Collapse
Affiliation(s)
- Caiyan Yue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Heng Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Long Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hao Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xu Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Qiong Yan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Heng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
7
|
Wang H, Zhao Q, Li D, Zhang Z, Liu Y, Guo X, Li X, Liu Z, Wang L, Ma J, He H. Boosting Photothermocatalytic Oxidation of Toluene Over Pt/N-TiO 2: The Gear Effect of Light and Heat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7662-7671. [PMID: 38578018 DOI: 10.1021/acs.est.3c10459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Photothermal catalysis is extremely promising for the removal of various indoor pollutants owing to its photothermal synergistic effect, while the low light utilization efficiency and unclear catalytic synergistic mechanism hinder its practical applications. Here, nitrogen atoms are introduced, and Pt nanoparticles are loaded on TiO2 to construct Pt/N-TiO2-H2, which exhibits 3.5-fold higher toluene conversion rate than the pure TiO2. Compared to both photocatalytic and thermocatalytic processes, Pt/N-TiO2-H2 exhibited remarkable performance and stability in the photothermocatalytic oxidation of toluene, achieving 98.4% conversion and 98.3% CO2 yield under a light intensity of 260 mW cm-2. Furthermore, Pt/N-TiO2-H2 demonstrated potential practical applicability in the photothermocatalytic elimination of various indoor volatile organic compounds. The synergistic effect occurs as thermocatalysis accelerates the accumulation of carboxylate species and the degradation of aldehyde species, while photocatalysis promotes the generation of aldehyde species and the consumption of carboxylate species. This ultimately enhances the photothermocatalytic process. The photothermal synergistic effect involves the specific conversion of intermediates through the interplay of light and heat, providing novel insights for the design of photothermocatalytic materials and the understanding of photothermal mechanisms.
Collapse
Affiliation(s)
- Huihui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Daiqiang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhilin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Criminology, People's Public Security University of China, Beijing 100038, China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueli Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xiaotong Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhi Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lian Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Li Y, Zhang Q, Chong Y, Huang WH, Chen CL, Jin X, Chen G, Fan Z, Qiu Y, Ye D. Efficient Photothermal Catalytic Oxidation Enabled by Three-Dimensional Nanochannel Substrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5153-5161. [PMID: 38456428 DOI: 10.1021/acs.est.3c09077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Photothermal catalysis exhibits promising prospects to overcome the shortcomings of high-energy consumption of traditional thermal catalysis and the low efficiency of photocatalysis. However, there is still a challenge to develop catalysts with outstanding light absorption capability and photothermal conversion efficiency for the degradation of atmospheric pollutants. Herein, we introduced the Co3O4 layer and Pt nanoclusters into the three-dimensional (3D) porous membrane through the atomic layer deposition (ALD) technique, leading to a Pt/Co3O4/AAO monolithic catalyst. The 3D ordered nanochannel structure can significantly enhance the solar absorption capacity through the light-trapping effect. Therefore, the embedded Pt/Co3O4 catalyst can be rapidly heated and the O2 adsorbed on the Pt clusters can be activated to generate sufficient O2- species, exhibiting outstanding activity for the diverse VOCs (toluene, acetone, and formaldehyde) degradation. Optical characterization and simulation calculation confirmed that Pt/Co3O4/AAO exhibited state-of-the-art light absorption and a notable localized surface plasmon resonance (LSPR) effect. In situ diffuse reflectance infrared Fourier transform spectrometry (in situ DRIFTS) studies demonstrated that light irradiation can accelerate the conversion of intermediates during toluene and acetone oxidation, thereby inhibiting byproduct accumulation. Our finding extends the application of AAO's optical properties in photothermal catalytic degradation of air pollutants.
Collapse
Affiliation(s)
- Yifei Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Qianpeng Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Yanan Chong
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan
| | - Xiaojing Jin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, P. R. China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Daiqi Ye
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China
| |
Collapse
|
9
|
Wang C, Su S, Li Q, Lv X, Xu Z, Chen J, Jia H. Monolithic Catalyst of Ni Foam-Supported MnO x for Boosting Magnetocaloric Oxidation of Toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1410-1419. [PMID: 38158605 DOI: 10.1021/acs.est.3c09541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Catalytic oxidation has been considered an effective technique for volatile organic compound degradation. Development of metal foam-based monolithic catalysts coupling electromagnetic induction heating (EMIH) with efficiency and low energy is critical yet challenging in industrial applications. Herein, a Mn18.2-NF monolithic catalyst prepared by electrodeposition exhibited superior toluene catalytic activity under EMIH conditions, and the temperature of 90% toluene conversion decreased by 89 °C compared to that in resistance furnace heating. Relevant characterizations proved that the skin effect induced by EMIH encouraged activation of gaseous oxygen, leading to superior low-temperature redox properties of Mn18.2-NF under the EMIH condition. In situ Fourier transform infrared spectroscopy results showed that skin effect-induced activation of oxidizing species further accelerated the conversion of intermediates. As a result, the Mn18.2-NF monolithic catalyst under EMIH demonstrated remarkable performance for the toluene oxidation, surpassing the conventional nonprecious metal catalyst and other reported monolithic catalysts.
Collapse
Affiliation(s)
- Chunqi Wang
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuangyong Su
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiang Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelong Lv
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Xu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Chen
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wang B, Liang Y, Tong K, Ma H, Zhang Z, Fan W, Xuan Y, Zhang K, Yun Y, Wang D, Luan T. What is the role of interface in the catalytic elimination of multi-carbon air pollutants? CHEMOSPHERE 2023; 338:139547. [PMID: 37467856 DOI: 10.1016/j.chemosphere.2023.139547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/10/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Multi-carbon air pollutants pose serious hazards to the environment and health, especially soot and volatile organic compounds (VOCs). Catalytic oxidation is one of the most effective technologies for eliminating them. The oxidation of soot and most hydrocarbon VOCs begins with C-H (or edge-CH) activation, so this commonality can be targeted to design active sites. Rationally designed interface nanostructures optimize metal-support interactions (MSIs), providing suitable active sites for C-H activation. Meanwhile, the interfacial reactant spillover facilitates the further decomposition of activated intermediates. Thus, rationally exploiting interfacial effects is critical to enhancing catalytic activity. In this review, we analyzed recent advances in the following aspects: I. Understanding of the interface effects and design; II. Optimization of the catalyst-reactant contact, metal-support interface, and MSIs; III. Design of the interfacial composition and perimeter. Based on the analysis of the advances and current status, we provided challenges and opportunities for the rational design of interface nanostructures and interface-related stability. Meanwhile, a critical outlook was given on the interfacial sites of single-atom catalysts (SACs) for specific activation and catalytic selectivity.
Collapse
Affiliation(s)
- Bin Wang
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| | - Yanjie Liang
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| | - Kangbo Tong
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Hongyuan Ma
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| | | | - Wenjie Fan
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| | - Yue Xuan
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| | - Kaihang Zhang
- School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA, 30332, USA
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Dong Wang
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China.
| | - Tao Luan
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| |
Collapse
|