1
|
Liu Q, Liu C, Wang S, Zhang L, Sun H, Liao X. Differing envelope composition of Gram-negative and Gram-positive bacteria controls the adhesion and bactericidal performance of nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137663. [PMID: 39987735 DOI: 10.1016/j.jhazmat.2025.137663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/18/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Zero-valent-iron (nZVI) is a candidate antimicrobial agent, and previous works revealed its varying inactivation performance on Gram-negative (G-) and Gram-positive (G+) bacteria, but the underlying mechanism remains ambiguous. Herein, we reported the easier inactivation of Escherichia coli (G-, E. coli) than Staphylococcus aureus (G+, S. aureus) by nZVI, and revealed the key role of cell-nZVI adsorption. nZVI adhered more massively on E. coli surface than on S. aureus, and subsequently led to more pronounced membrane damage of E. coli. Investigations of pH, zeta potential, and ionic strength ruled out the essential contribution of nZVI-bacteria electrostatic interaction due to the different surface charges of E. coli and S. aureus. Three-dimensional excitation emission matrix suggested that the extracellular polymeric substances of E. coli suffered more severe damage by nZVI and lead to greater exposure of membrane. Infrared spectra indicated that nZVI strongly bound with the membrane proteins of E. coli and destroyed the membrane components. By contrast, the bonding between nZVI and S. aureus was minimal because of the dominant multi-layered peptidoglycan. The enhanced nZVI adsorption and membrane disruption would result in magnified reactive oxygen species (ROS) generation and oxidative stress of E. coli. Moreover, the catalase activity normalized by ROS concentration of S. aureus was 14.9-fold higher than that of E. coli after nZVI treatment, suggesting the stronger antioxidative capability of S. aureus. Our findings highlight that the different envelope compositions and antioxidant capacities between G- and G+ bacteria were responsible for their varying susceptibility to nZVI.
Collapse
Affiliation(s)
- Qianhui Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Congcong Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Shaohui Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Xiaomei Liao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
2
|
Zhang X, Liu Y, Liu R, Qiu Y, Zhang B, Zhao N, He R. Effects of bicarbonate on electro-bioremediation of phenanthrene-contaminated groundwater. ENVIRONMENTAL RESEARCH 2025; 279:121859. [PMID: 40379006 DOI: 10.1016/j.envres.2025.121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Electro-bioremediation under anaerobic conditions is an effective approach for refractory organic matter removal in groundwater. Bicarbonate (HCO3-) is an inorganic carbon source and electron acceptor in groundwater, however, the influencing mechanism of HCO3- on pollutant removal of electro-bioremediation remains unclear. Herein, the effects of HCO3- concentration on electro-bioremediation of phenanthrene (PHE)-contaminated groundwater were investigated. HCO3- could facilitate the PHE degradation while an HCO3- concentration of higher than 1000 mg L-1 had a significant inhibition effect. Among the HCO3- concentration of 100-5000 mg L-1, the highest PHE degradation efficiency of 75.04-80.18 % was achieved in the electro-biochemical reactor with 500 mg L-1 HCO3-. The PHE removal efficiency was negatively correlated with the current density during the electro-bioremediation process, due to the effect of HCO3- concentrations on the electrolyte conductivity in the reactors. The electro-bioremediation process could increase the richness of diversity of microbes. Methanomethylovorans and the PHE-degrading bacteria including Pelolinea, Clostridium sensu stricto 5, Diaphorobacter, Methyloversatilis and Flavobacterium were the main microbes involved in PHE degradation. Of them, Methanomethylovorans was significantly positively correlated with the PHE removal efficiency. The potential metabolic function analysis revealed that the bacterial chemotaxis, flagellar assembly, carbohydrate metabolism and ABC transporters were prompted with the addition of HCO3-, while they were inhibited with the increasing HCO3- concentration. These findings suggested that electro-bioremediation technology was suitable for the remediation of polycyclic aromatic hydrocarbons such as PHE-contaminated groundwater in low bicarbonate areas.
Collapse
Affiliation(s)
- Xin Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yue Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Rongrong Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yiting Qiu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Bohan Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
3
|
Wei S, Chen S, Yan H, Zhang X, Gao X, Cui Z, Huang Y. A sensitive PnpR-based biosensor for p-nitrophenol detection. Int J Biol Macromol 2025; 289:138840. [PMID: 39694387 DOI: 10.1016/j.ijbiomac.2024.138840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
A common aromatic and phenolic pollutant, p-nitrophenol (PNP), is widely used in various industry and has serious risk to the environmental health. Biosensors have been extensively employed as an alternative technology for pollutants monitoring. By mining the new sensing elements, more specific biosensors could be characterized for highly sensitive detection. Herein, the PnpR transcription factor was identified to activate the transcription of pnpC1 by binding to PpnpC1 promoter region in P. putida DLL-E4, and PNP was recognized as its specific inducer. The PnpR-based biosensor for detection of PNP was developed, demonstrating adequate sensitivity in a liquid solution with satisfactory specificity. The biosensor was optimized by adopting a transcriptional amplifier, which increased the maximum output by 149-fold, and improved the detection limit by 100-fold, from 1 mg/L to 10 μg/L. These biosensors had a linear range of 5-80 mg/L and 0.01-1.0 mg/L for PNP determination, respectively. Then, the agarose gel entrapment-based biosensor was constructed and allowed a good of PNP detection in the range of 5-60 mg/L in M9 solid agar within 70 min, and a detection sensitive of 16.8 mg/kg in soil. The good performance of the biosensor suggested its potential application of high-efficient and on-site detection in environmental matrices.
Collapse
Affiliation(s)
- Shuxin Wei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sibo Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Hang Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoran Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyue Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Yao B, Liu M, Yu L, Ni Q, Yuan C, Hu X, Feng H, Zhang J, Chen Y. Mechanism of biochar in alleviating the inhibition of anaerobic digestion under ciprofloxacin press. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135949. [PMID: 39341191 DOI: 10.1016/j.jhazmat.2024.135949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The antibiotic ciprofloxacin (CIP), detected in various aqueous environments, has broad-spectrum antimicrobial properties that can severely affect methanogenic performance in anaerobic systems. In this study, a novel strategy to alleviate the inhibition of AD performance under CIP press with the direct addition of biochar (BC) prepared from corn stover was proposed and the corresponding alleviation mechanism was investigated. When the dosage of BC was 5 and 20 g/L, the cumulative methane production in AD could reach 317.9 and 303.0 mL/g COD, and the CIP degradation efficiencies reached 94.1 % and 96.6 %, significantly higher than those of 123.0 mL/g COD and 81.2 % in the Control system. BC avoided excessive reactive oxygen species in anaerobic systems and induced severe oxidative stress response, while protecting the cell membrane and cell wall of microorganisms. Microorganisms could consume and utilize more organic extracellular polymeric substances for their growth and metabolism. When BC was involved in AD, fewer toxic intermediates were generated during CIP biodegradation, reducing acute and chronic toxicity in anaerobic systems. Microbial diversity suggested that BC could enrich functional microorganisms involved in direct interspecies electron transfer like Methanosaeta, norank_f_Bacteroidetes_vadinHA17, JGI-0000079-D21 and Syntrophomonas, thus facilitating the methanogenic process and CIP degradation. Genetic analyses showed that BC could effectively upregulate functional genes related to the conversion of butyrate-to-acetate and acetyl-to-methane under CIP stress, while functional gene abundance associated with CIP degradation enhanced partially, about encoding translocases, oxidoreductases, lyases, and ligases. Therefore, BC can be added to AD under CIP press to address its inhibited methanogenic performance.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Liqiang Yu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Qianhan Ni
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Changjie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haoran Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621900, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
He H, Zeng Y, Dong H, Cui P, Lu W, Xu H, Qiu B, Sun D, Ma J, Dang Y. Enrichment of Methanothrix species via riboflavin-loaded granular activated carbon in anaerobic digestion of high-concentration brewery wastewater amidst continuous inoculation of Methanosarcina barkeri. WATER RESEARCH 2024; 268:122739. [PMID: 39504698 DOI: 10.1016/j.watres.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Effective treatment of high-concentration brewery wastewater through anaerobic digestion (AD) has always been a challenging issue. Enhancing direct interspecies electron transfer (DIET) was demonstrated to increase methane production during AD under high organic loading rate (OLR). Herein, the feasibility of enhancing DIET with the addition of riboflavin-loaded granular activated carbon (RF-GAC) as well as co-addition with Methanosarcina barkeri (Rf-GAC+M.barkeri) was investigated (M.barkeri is well-known to be capable of DIET with electroactive bacteria). During the whole process, the Rf-GAC and the Rf-GAC+M.barkeri group both achieved average COD removal rates above 97 %, which was 14 % higher than that of the control. The average methane production in the Rf-GAC group and the Rf-GAC+M.barkeri group respectively reached 0.334 ± 0.02 L(stp)/g COD and 0.345 ± 0.02 L(stp)/g COD, 1.35 and 1.39 times higher than the 0.247 ± 0.03 L(stp)/g COD reached by the control. The control reactor deteriorated at an OLR of 12 kg COD/(m3·d), whereas the Rf-GAC and the Rf-GAC+M.barkeri group maintained stable as the OLR reached as high as 17.5 kg COD/(m3·d) and the volatile fatty acids concentration was consistently below 10 mM. The RF-GAC performed better than Rf-GAC+M.barkeri in enriching Methanothrix, whose relative abundance was 60.6 % in the former group. Metabolic pathway analysis revealed the addition of RF-GAC upregulated genes related to DIET in Methanothrix species, including hdrA and fpoD. Furthermore, Methanothrix remained the dominant archaea even continuously inoculating pure strains of M.barkeri during the entire operational period. Pure culture experiments proved that GAC inhibited M.barkeri growth. The results of this study can be optimized for practical application of AD treating high-concentration brewery wastewater.
Collapse
Affiliation(s)
- Hao He
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - He Dong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Cui
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wenduo Lu
- Beijing Drainage Management Center, Beijing 101117, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd, Shanghai 201800, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Junyi Ma
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Xia L, Cheng L, Xi W, Zhang X, Shi X. Distinct influence of model electron shuttles on anaerobic mononitrophenols reduction in aquatic environments by Shewanella oneidensis MR-1. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135348. [PMID: 39079298 DOI: 10.1016/j.jhazmat.2024.135348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The environmental fate and risks of mononitrophenols (mono-NPs), the simplest nitrophenols (NPs) often found in aquatic environments, are profoundly influenced by anaerobic bioreduction and co-existing electron shuttles (ESs), but little is known about the underlying mechanisms. Here, we elucidate the pathways of anaerobic mono-NPs bioreduction by Shewanella oneidensis MR-1 and assess the effect of model ESs on these processes. We found that all three mono-NPs isomers could be readily reduced to their corresponding aminophenols by S. oneidensis MR-1 under anaerobic conditions. CymA, a core component of the Mtr respiratory pathway, performs a dynamic role in these bioreduction, which is highly dependent on the bioreduction kinetics. The exogenous addition of quinones was found to accelerate the mono-NPs bioreduction through interactions with key outer-membrane proteins (e.g., OmcA and MtrC), and all these processes matched well to linear free energy relationships (LFERs). Surprisingly, adding riboflavin did not influence the bioreduction of all three mono-NPs isomers, which may be due to the contribution of OmcA and MtrC to these bioreduction processes and their downregulated expression. This study enhances our understanding of the environmental fate of mono-NPs and their bioconversion processes, providing valuable insights for the bioremediation of nitrophenol-contaminated sites.
Collapse
Affiliation(s)
- Lisong Xia
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Lei Cheng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Wenni Xi
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Xiliang Zhang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Xianyang Shi
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
7
|
Dinari M, Golshadi Z, Asadi P, Norton AE, Reid KR, Karimi B. Recent Progress on Covalent Organic Frameworks Supporting Metal Nanoparticles as Promising Materials for Nitrophenol Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1458. [PMID: 39269120 PMCID: PMC11397240 DOI: 10.3390/nano14171458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
With the utilization of nitrophenols in manufacturing various materials and the expansion of industry, nitrophenols have emerged as water pollutants that pose significant risks to both humans and the environment. Therefore, it is imperative to convert nitrophenols into aminophenols, which are less toxic. This conversion process is achieved through the use of noble metal nanoparticles, such as gold, silver, copper, and palladium. The primary challenge with noble metal nanoparticles lies in their accumulation and deactivation, leading to a decrease in catalyst activity. Covalent organic frameworks (COFs) are materials characterized by a crystalline structure, good stability, and high porosity with active sites. These properties make them ideal substrates for noble metal nanoparticles, enhancing catalytic activity. This overview explores various articles that focus on the synthesis of catalysts containing noble metal nanoparticles attached to COFs as substrates to reduce nitrophenols to aminophenols.
Collapse
Affiliation(s)
- Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Zaynab Golshadi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Amie E Norton
- Department of Entomology, Kansas State University, 123 W Waters Hall, 1603 Old Claflin Place, Manhattan, KS 66503, USA
| | - Katelyn R Reid
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Benson Karimi
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
8
|
Wang Y, Bai Y, Su J, Xu L, Ren Y, Ren M, Hou C, Cao M. Enhanced denitrification and p-nitrophenol removal performance via hydrophilic sponge carriers fixed with dual-bacterial: Optimization, performance, and enhancement mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134922. [PMID: 38885589 DOI: 10.1016/j.jhazmat.2024.134922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Effective treatment of industrial wastewater containing complex pollutants, such as nitrate (NO3--N) and organic pollutants, remains a significant challenge to date. Here, a strain Nocardioides sp. ZS2 with denitrification and degradation of p-nitrophenol (PNP) was isolated and its culture conditions were optimized by kinetic analysis. Hydrophilic sponge carriers were prepared using polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), and chitosan (CS) to construct bioreactors. Furthermore, to further enhance the PNP degradation and denitrification performance of bioreactors, Pseudomonas stutzeri GF2 with denitrification capability was introduced. The results revealed that the removal efficiencies of PNP and NO3--N reached 97.9 % and 91.9 %, respectively, when hydraulic retention time (HRT) of 6 h, C/N of 2.0, and pH of 6.5. The bioreactor exhibited stable denitrification performance even with fluctuations in the influent PNP concentration. The potential functional prediction results revealed that the abundance of amino acids, fatty acids, and carbohydrates increased as the influent C/N decreased, reflecting a tendency of the microbial community to adjust carbon source utilization to maintain cell growth, metabolic balance, and resist adverse C/N environments. This research provides new insights into the effective removal of organic pollutants and NO3--N in wastewater treatment.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Meng Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
9
|
Tang R, Zhang M, Li X. A novel strategy combining hydrogenotrophic methanogens' bioaugmentation and biochar biostimulation for simultaneous polycyclic aromatic hydrocarbon biodegradation and bioenergy recovery. RSC Adv 2024; 14:23710-23719. [PMID: 39077318 PMCID: PMC11284627 DOI: 10.1039/d4ra03732d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
A novel strategy combining bioaugmentation using methanogenic archaea and biostimulation using biochar was proposed for the first time to obtain simultaneous improvement of mixed PAHs' anaerobic biodegradation and bioenergy production. The results showed that the addition of PHAs immediately resulted in inhibition in methane production and accumulation of VFA, indicating that PHAs are more toxic to methanogens than the acetogenic bacteria. The coupling of biochar with hydrogenotrophic methanogen alleviated the inhibitory effects of PAHs, allowing the anaerobic fermentation system to recover its methane production capability rapidly. Compared to the Fe3+ + bioaugmentation group, the biochar + bioaugmentation group exhibited a 7.5% higher restored cumulative methane production. This coupling strategy ultimately facilitated the degradation of most PAHs, achieving a removal rate of over 90%. Moreover, the coupled biochar and bioaugmentation induced significant changes in the archaeal community structure. Direct interspecies electron guilds (i.e., Streptococcus and Methanosarcina) were enriched in the presence of biochar and bioaugmentation, responsible for prominent PAH removal and methane recovery. This study demonstrated the feasibility of simultaneous PAH biodegradation and bioenergy production using electron acceptor and enriched microorganisms.
Collapse
Affiliation(s)
- Rui Tang
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture) No. 17 Qinghua Donglu, Haidian District Beijing 100083 People's Republic of China +86 (10) 62737858 +86 (10) 62737858
| | - Min Zhang
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture) No. 17 Qinghua Donglu, Haidian District Beijing 100083 People's Republic of China +86 (10) 62737858 +86 (10) 62737858
| | - Xin Li
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture) No. 17 Qinghua Donglu, Haidian District Beijing 100083 People's Republic of China +86 (10) 62737858 +86 (10) 62737858
| |
Collapse
|
10
|
Wang T, Deng L, Tan C, Hu J, Prasad Singh R. Reaction mechanisms of chlorinated disinfection byproducts formed from nitrophenol compounds with different structures during chlor(am)ination and UV/post-chlor(am)ination. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134544. [PMID: 38733788 DOI: 10.1016/j.jhazmat.2024.134544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Nitrophenol compounds (NCs) have high formation potentials of disinfection byproducts (DBPs) in water disinfection processes, however, the reaction mechanisms of DBPs formed from different NCs are not elucidated clearly. Herein, nitrobenzene, phenol, and six representative NCs were used to explore the formation mechanisms of chlorinated DBPs (Cl-DBPs) during chlor(am)ination and UV/post-chlor(am)ination. Consequently, the coexistence of nitro and hydroxy groups in NCs facilitated the electrophilic substitution to produce intermediates of Cl-DBPs, and the different positions of nitro and hydroxy groups also induced different yields and formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Besides, the amino, chlorine, and methyl groups significantly influenced the formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Furthermore, the total Cl-DBPs yields from the six NCs followed a decreasing order of 2-chloro-3-nitrophenol, 3-nitrophenol, 2-methyl-3-nitrophenol, 2-amino-4-nitrophenol, 2-nitrophenol, and 4-nitrophenol during chlorination and UV/post-chlorination. However, the total Cl-DBPs yields from the six NCs during chloramination and UV/post-chloramination followed a quite different order, which might be caused by additional reaction mechanisms, e.g., nucleophilic substitution or addition might occur to NCs in the presence of monochloramine (NH2Cl). This work can offer deep insights into the reaction mechanisms of Cl-DBPs from NCs during the chlor(am)ination and UV/post-chlor(am)ination processes.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
11
|
Chi Q, Wang J, Tu Y, Xu J, Pan L, Shen J. Effects of nitrate reduction on the biotransformation of 1H-1,2,4-triazole: Mechanism and community evolution. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134329. [PMID: 38640679 DOI: 10.1016/j.jhazmat.2024.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Due to the refractory of 1 H-1,2,4-triazole (TZ), conventional anaerobic biological treatment technology is usually restricted by low removal efficiency and poor system stability. In this study, TZ biodegradation and nitrate reduction was coupled to improve the removal efficiency of TZ from polluted wastewater. Batch assay was performed with pure culture strain Raoultella sp. NJUST42, which was reported to have the capability to degrade TZ in our previous study. Based on batch assay result, complete removal of TZ could be achieved in the presence of nitrate, whereas only 50% of TZ could be removed in the control system. Long-term stability experiment indicated that the relative abundance of microorganisms (Bacteroidetes_vadinHA17, Georgenia, Anaerolinea, etc) was obviously enhanced under nitrate reduction condition. During long-term period, major intermediates for TZ biodegradation such as [1,2,4]Triazolidine-3,5-diol, hydrazine dibasic carboxylic acid and carbamic acid were detected. A novel TZ biotransformation approach via hydration, TZ-ring cleavage, deamination and oxidation was speculated. PICRUSt1 and KEGG pathway analyses indicated that hydration (dch), oxidation (adhD, oah, pucG, fdhA) of TZ and nitrate reduction (Nar, napA, nrfA, nirBK, norB, nosZ) were significantly enhanced in the presence of nitrate. Moreover, the significant enrichment of TCA cycle (gab, sdh, fum, etc.) indicated that carbon and energy metabolism were facilitated with the addition of nitrate, thus improved TZ catabolism. The proposed mechanism demonstrated that TZ biodegradation coupled with nitrate reduction would be a promising approach for efficient treatment of wastewater contaminated by TZ.
Collapse
Affiliation(s)
- Qiang Chi
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jing Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yong Tu
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210094, China
| | - Jing Xu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ling Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
12
|
Liu Y, Zhao N, Dai S, He R, Zhang Y. Metagenomic insights into phenanthrene biodegradation in electrical field-governed biofilms for groundwater bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133477. [PMID: 38218033 DOI: 10.1016/j.jhazmat.2024.133477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Electrical fields (EFs)-assisted in-situ bioremediation of petroleum-contaminated groundwater, such as polycyclic aromatic hydrocarbons, has drawn increasing attention. However, the long-term stability, the EFs influence, and metabolic pathways are still poorly understood, hindering the further development of robust technology design. Herein, a series of EFs was applied to the phenanthrene-contaminated groundwater, and the corresponding system performance was investigated. The highest removal capacity of phenanthrene (phe) (7.63 g/(m3·d)) was achieved with EF_0.8 V biofilm at a hydrolytic retention time of 0.5 d. All the biofilms with four EFs exhibited a high removal efficiency of phe over 80% during a 100-d continuous-flow operation. Intermediates analysis revealed the main pathways of phe degradation: phthalate and salicylate via hydroxylation, methylation, carboxylation, and ring cleavage steps. Synergistic effects between phe-degraders (Dechloromonas), fermentative bacteria (Delftia), and electroactive microorganisms (Geobacter) were the main contributors to the complete phe mineralization. Genes encoding various proteins of methyl-accepting (mcp), response regulator (cheABDRY), and type IV pilus (pilABCMQV) were dominant, revealing the importance of cell motility and extracellular electron transfer. Metagenomics analysis unveiled phe-degrading genes, including ring reduction enzymes (bamBCDE), carboxylase of aromatics (ubiD), and methyltransferase protein (ubiE, pcm). These findings offered a molecular understanding of refractory organics' decompositions in EFs-governed biotechnology.
Collapse
Affiliation(s)
- Yue Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Shuo Dai
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
13
|
Zeng K, Lei L, Wu C, Wu K. Cobalt-based conjugated coordination polymers with tunable dimensions for electrochemical sensing of p-nitrophenol. Anal Chim Acta 2023; 1279:341772. [PMID: 37827671 DOI: 10.1016/j.aca.2023.341772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Using planar π-conjugated 2,5-diamino-1,4-benzenedithiol as organic ligand, Co-based conjugated coordination polymers (CoCCPs) with different morphology were prepared through controlling the injection rate of Co2+. When the injection rate decreases from 1.00 to 0.25 mL min-1, the obtained CoCCPs change from 2D nanosheets to quasi-1D nanorods. It is found that the different-shaped CoCCPs exhibit varying electrochemical sensing performance. The prepared CoCCPs-1 with quasi-1D nanowires and porous network structure possesses larger active area, faster electron transfer and higher accumulation ability. Moreover, the CoCCPs-1 is more active for the oxidation of p-nitrophenol (PNP), and greatly enhances its oxidation signal. Based on the morphology-tuned sensing performance of CoCCPs, a highly-sensitive electrochemical sensor has been developed for PNP, with detection limit of 0.00986 μM (9.86 nM). It was used in the analysis of wastewater samples, and the results is validated by other instrumental method.
Collapse
Affiliation(s)
- Keni Zeng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ling Lei
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Can Wu
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China.
| | - Kangbing Wu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|