1
|
Hu X, Xu Z, Xu J, Ma G, Pan Y, Cai M, Lin Z, Ji T, Wang K. Impact of Atrazine on Sucrose Sensitivity in Honey Bees. INSECTS 2025; 16:491. [PMID: 40429204 PMCID: PMC12112258 DOI: 10.3390/insects16050491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
Honey bees (Apis mellifera) are essential pollinators, responsible for the pollination of over 80% of crops and flowering plants globally. However, there is concern that the extensive use of pesticides, particularly atrazine, can harm pollinators. Despite the widespread use of atrazine, the sublethal effects on honey bees remain unclear. This study investigated the effects of atrazine on honey bee sucrose sensitivity and clarified the underlying molecular mechanisms using transcriptomic analyses. Atrazine exposure reduced the sucrose sensitivity of honey bees substantially, likely through the inhibition of functional genes associated with cognition in the brain. Genes related to neurodegenerative diseases and behavior were differentially expressed in response to atrazine. These findings provide novel insights into the neurophysiological and behavioral effects of atrazine on honey bees, contributing to a better understanding of pesticide risks and informing future environmental regulations.
Collapse
Affiliation(s)
- Xiexin Hu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China;
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zixuan Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiachen Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guiyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yiren Pan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minqi Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zheguang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kang Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China;
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Morrison B, Newburn LR, Fitch G. Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees. INSECTS 2025; 16:414. [PMID: 40332845 PMCID: PMC12027951 DOI: 10.3390/insects16040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025]
Abstract
Bees rely on pollen and nectar for nutrition, but floral products provide more than just macronutrients; many also contain an array of plant secondary metabolites (PSMs). These compounds are generally thought to serve primarily defensive purposes but also appear to promote longevity and immune function, protect against disease agents, and detoxify toxicants. This review presents a comprehensive overview of PSMs, as well as some fatty acids, with documented health benefits for eusocial bees at ecologically relevant exposure levels and the plant species whose floral products and/or resin are known to contain them. We find medicinal metabolites to be widespread but unevenly distributed across the plant phylogeny, with a few families containing a majority of the species known to produce PSMs with documented health benefits. We discuss the current state of knowledge and identify gaps in our understanding. The existing literature on the health benefits of metabolites, and particularly PSMs, to bees is spread across multiple fields; our hope is that this review will bring these fields closer together and encourage further investigation of the role of metabolites in promoting bee health in ecological contexts.
Collapse
Affiliation(s)
| | - Laura R. Newburn
- Centre for Bee Ecology, Evolution and Conservation, York University, Toronto, ON M3J 1P3, Canada
| | - Gordon Fitch
- Centre for Bee Ecology, Evolution and Conservation, York University, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
3
|
Polidori C, Trisoglio CF, Ferrari A, Romano A, Bonasoro F. Contaminant-driven midgut histological damage in bees and other aculeate Hymenoptera: A quantitative review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104670. [PMID: 40049307 DOI: 10.1016/j.etap.2025.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/09/2025]
Abstract
We present a review about histological sub-lethal effects due to anthropogenic contaminants on the midgut of bees and other aculeate hymenopterans. Contaminant types, damage types, and methodology were extracted and summarized from 74 published articles, and then quantitatively analyzed. We found that the Western honeybee (Apis mellifera) is by far the most widely used model. Contaminants have largely been tested under laboratory conditions, particularly insecticides and fungicides. Tissue-level damage (e.g., degradation of epithelium and of peritrophic membrane) were often detected together with cell-level damage (e.g., cell vacuolisation, karyorrhexis). Descriptive statistics and mixed models suggested that herbicides may cause a specific mix of alterations with an overall lower severity compared with other pesticides, while the combined use of light and electron microscopy seemed to detect more damage types. We claim for efforts to reduce biases in future studies on such histological effects, allowing their clearer use as markers of human activities.
Collapse
Affiliation(s)
- Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy.
| | - Chiara Francesca Trisoglio
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Andrea Romano
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| |
Collapse
|
4
|
Hongoeb J, Tantimongcolwat T, Ayimbila F, Ruankham W, Phopin K. Herbicide-related health risks: key mechanisms and a guide to mitigation strategies. J Occup Med Toxicol 2025; 20:6. [PMID: 40001182 PMCID: PMC11863480 DOI: 10.1186/s12995-025-00448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/06/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Herbicides are a group of substances used to control undesired vegetation in both agricultural and non-agricultural settings. They are recorded as the most consumed class among other pesticides, reaching nearly two million tons worldwide. Despite their effectiveness in weed control, the extensive utilization of herbicides has raised concerns regarding adverse effects on human health. However, comprehensive reviews addressing herbicide-related human health risks remain limited. This work aims to compile scientific evidence and possible underlying mechanisms to emphasize the hazards that need to be acknowledged, as well as to explore novel strategies for minimizing the impact on human health. METHOD Scientific data on herbicide-related human health risks, including human-related data and non-human experimental research, were retrieved from databases such as PubMed, Scopus, and Google Scholar. Pre-determined eligibility criteria were applied to select the final studies. RESULT A narrative summary of evidence-based human incidence and laboratory experiments is presented to organize and highlight key findings. This indicates the life-threatening nature of herbicide exposure in humans, ranging from acute toxicity to the development of chronic diseases at any stage of life. CONCLUSION Herbicidal chemicals can harm individuals through various pathways, especially by inducing oxidative stress or directly disrupting molecular and cellular processes. Despite some conflicting findings, effective mitigation strategies are urgently needed to promote a safer society and protect human well-being.
Collapse
Affiliation(s)
- Juthamas Hongoeb
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Francis Ayimbila
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
5
|
Chen J, Dai XY, Malhi KK, Xu XW, Tang YX, Li XW, Li JL. A New Insight into the Mechanism of Atrazine-Induced Neurotoxicity: Triggering Neural Stem Cell Senescence by Activating the Integrated Stress Response Pathway. RESEARCH (WASHINGTON, D.C.) 2024; 7:0547. [PMID: 39679284 PMCID: PMC11638487 DOI: 10.34133/research.0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Atrazine (AT), a widely utilized chemical herbicide, causes widespread contamination of agricultural water bodies. Recently, exposure to AT has been linked to the development of age-related neurodegenerative diseases (NDs), suggesting its neurotoxicity potential. As an endocrine disruptor, AT targets the hypothalamus, a crucial part of the neuroendocrine system. However, the toxicological mechanism of AT exposure to the hypothalamus and its correlation with ND development remain unexplored. Our results indicated that AT exposure caused significant morphological and structural damage to the hypothalamus, leading to the loss of mature and intact neurons and microglial activation. Furthermore, hypothalamic neural stem cells (HtNSCs) were recruited to areas of neuronal damage caused by AT. Through in vivo and in vitro experiments, we clarified the outcomes of AT-induced HtNSC recruitment alongside the loss of mature/intact neurons. Mechanistically, AT induces senescence in these recruited HtNSCs by activating integrated stress response signaling. This consequently hinders the repair of damaged neurons by inhibiting HtNSC proliferation and differentiation. Overall, our findings underscore the pivotal role of the integrated stress response pathway in AT-induced HtNSC senescence and hypothalamic damage. Additionally, the present study offers novel perspectives to understand the mechanisms of AT-induced neurotoxicity and provides preliminary evidence linking AT contamination to the development of NDs.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology,
Jiangxi Agricultural University, Nanchang 330045, P.R. China
| | - Kanwar K. Malhi
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiang-Wen Xu
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi-Xi Tang
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiao-Wei Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment,
Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
6
|
Liu J, Shi J, Hu Y, Su Y, Zhang Y, Wu X. Flumethrin exposure perturbs gut microbiota structure and intestinal metabolism in honeybees (Apis mellifera). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135886. [PMID: 39298952 DOI: 10.1016/j.jhazmat.2024.135886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Flumethrin mitigates Varroa's harm to honeybee colonies; however, its residues in colonies threaten the fitness of honeybee hosts and gut microbiota. Our previous research has shown that flumethrin induces significant physiological effects on honeybee larvae; but the effects of flumethrin on the gut microbiota and metabolism of adult honeybees are still unknown. In this study, 1-day-old honeybees were exposed to 0, 0.01, 0.1, and 1 mg/L flumethrin for 14 days and the impacts of flumethrin on the intestinal system were evaluated. The results showed that exposure to 1 mg/L flumethrin significantly reduced honeybee survival and the activities of antioxidative enzymes (superoxide dismutase and catalase) and detoxification enzymes (glutathione S-transferase) in honeybee heads. Moreover, exposure to 0.01, 0.1, and 1 mg/L flumethrin significantly decreased the diversity of the honeybee gut microbiota. Results from untargeted metabolomics showed that long-term exposure to 0.01, 0.1, and 1 mg/L flumethrin caused changes in the metabolic pathways of honeybee gut microbes. Furthermore, increased metabolism of phenylalanine, tyrosine, and tryptophan derivatives was observed in honeybee gut microbes. These findings underscore the importance of careful consideration in using pesticides in apiculture and provide a basis for safeguarding honeybees from pollutants, considering the effects on gut microbes.
Collapse
Affiliation(s)
- Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Yueyang Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yuchen Su
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yonghong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China.
| |
Collapse
|
7
|
Wu T, Choi YS, Kim DW, Wei X, Kang Y, Han B, Yang S, Gao J, Dai P. Interactive effects of chlorothalonil and Varroa destructor on Apis mellifera during adult stage. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106107. [PMID: 39277411 DOI: 10.1016/j.pestbp.2024.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
The interaction between environmental factors affecting honey bees is of growing concern due to their potential synergistic effects on bee health. Our study investigated the interactive impact of Varroa destructor and chlorothalonil on workers' survival, fat body morphology, and the expression of gene associated with detoxification, immunity, and nutrition metabolism during their adult stage. We found that both chlorothalonil and V. destructor significantly decreased workers' survival rates, with a synergistic effect observed when bees were exposed to both stressors simultaneously. Morphological analysis of fat body revealed significant alterations in trophocytes, particularly a reduction in vacuoles and granules after Day 12, coinciding with the transition of the bees from nursing to other in-hive work tasks. Gene expression analysis showed significant changes in detoxification, immunity, and nutrition metabolism over time. Detoxification genes, such as CYP9Q2, CYP9Q3, and GST-D1, were downregulated in response to stressor exposure, indicating a potential impairment in detoxification processes. Immune-related genes, including defensin-1, Dorsal-1, and Kayak, exhibited an initially upregulation followed by varied expression patterns, suggesting a complex immune response to stressors. Nutrition metabolism genes, such as hex 70a, AmIlp2, VGMC, AmFABP, and AmPTL, displayed dynamic expression changes, reflecting alterations in nutrient utilization and energy metabolism in response to stressors. Overall, these findings highlight the interactive and dynamic effects of environmental stressor on honey bees, providing insights into the mechanisms underlying honey bee decline. These results emphasize the need to consider the interactions between multiple stressors in honey bee research and to develop management strategies to mitigate their adverse effects on bee populations.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Soo Choi
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Dong Won Kim
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Xiaoping Wei
- Modern Agricultural Development Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yuxin Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Deng S, Chen C, Wang Y, Liu S, Zhao J, Cao B, Jiang D, Jiang Z, Zhang Y. Advances in understanding and mitigating Atrazine's environmental and health impact: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121530. [PMID: 38905799 DOI: 10.1016/j.jenvman.2024.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Atrazine is a widely used herbicide in agriculture, and it has garnered significant attention because of its potential risks to the environment and human health. The extensive utilization of atrazine, alongside its persistence in water and soil, underscores the critical need to develop safe and efficient removal strategies. This comprehensive review aims to spotlight atrazine's potential impact on ecosystems and public health, particularly its enduring presence in soil, water, and plants. As a known toxic endocrine disruptor, atrazine poses environmental and health risks. The review navigates through innovative removal techniques across soil and water environments, elucidating microbial degradation, phytoremediation, and advanced methodologies such as electrokinetic-assisted phytoremediation (EKPR) and photocatalysis. The review notably emphasizes the complex process of atrazine degradation and ongoing scientific efforts to address this, recognizing its potential risks to both the environment and human health.
Collapse
Affiliation(s)
- Shijie Deng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cairu Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuhang Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanqi Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiaying Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Duo Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
9
|
Vommaro ML, Giglio A. Cytotoxic and genotoxic effects of a pendimethalin-based herbicide in Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116565. [PMID: 38870738 DOI: 10.1016/j.ecoenv.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Public concern about the effects of pesticides on non-target organisms has increased in the recent years. Nevertheless, there is a limited number of studies that address the actual toxic effects of herbicides on insects. This study investigated the side effects of herbicides on non-target organisms inhabiting agroecosystems and performing essential ecological and economic functions such as crop pollination. We analysed morphological alterations in the gut, Malpighian tubules and circulating haemocytes of Apis mellifera workers as markers of exposure effects. A commercial formulation of a pendimethalin-based herbicide (PND) was administered orally under laboratory conditions at a realistic concentration admitted in the field (330gL-1 of active ingredient., 4 L ha-1 for cereal and vegetable crops). The worker bees were exposed to a single application of PND for a period of one week, to simulate the exposure that can occur when foraging bees accidentally drink drops of contaminated water upon treatments. Histopathological analyses of the midgut, ileum and Malpighian tubules showed alterations over time (from 24 to 72 h after the beginning of exposure) such as loss of epithelial organisation, cellular vacuolisation and altered pyknotic nuclei as well as disruption of the peritrophic membrane over time. Semiquantitative analyses of the midgut showed a significant increase in the organ injury index 24 and 72 h after the initial exposure in PND-exposed bees compared to control bees. In addition, a change in positivity to Gram staining was observed in the midgut histological sections. A recovery of cytotoxic effects was observed one week after the initial exposure, which was favoured by the periodic renewal of the intestinal epithelium and the herbicide dissipation time. Cytochemical staining with Giemsa of haemocytes from PND-treated workers over 24 and 72 h showed significant nuclear alterations such as lobed or polymorphic nuclei and micronuclei compared to bees in the control group. These results show that the dose of PND used to protect crops from weeds can lead to significant cytotoxic and genotoxic effects in non-target organisms such as honey bees. In croplands, the sublethal effects on cell morphology can impair vital physiological processes such as nutrition, osmoregulation, and resistance to pathogens, contributing to the decline in biodiversity and abundance of species that play a prominent ecological role, such as pollinators.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy
| | - Anita Giglio
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy.
| |
Collapse
|
10
|
Chen X, Wang F, Guo H, Liu X, Wu S, Lv L, Tang T. Uncovering hidden dangers: The combined toxicity of abamectin and lambda-cyhalothrin on honey bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173126. [PMID: 38734105 DOI: 10.1016/j.scitotenv.2024.173126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Studying the toxic effects of pesticides on bees has consistently been a prominent area of interest for researchers. Nonetheless, existing research has predominantly concentrated on individual toxicity assessments, leaving a gap in our understanding of mixed toxicity. This study delves into the individual and combined toxic effects of abamectin (ABA) and lambda-cyhalothrin (LCY) on honey bees (Apis mellifera) in laboratory settings. We discovered that ABA (96 h-LC50 value of 0.079 mg/L) exhibited greater acute toxicity to honey bees compared to LCY (96 h-LC50 value of 9.177 mg/L). Moreover, the mixture of ABA and LCY presented an acute antagonistic effect on honey bees. Additionally, our results indicated that exposure to LCY, at medium concentration, led to a reduction in the abundance of gut core bacterium Snodgrassella. However, an increase in the abundance of Bifidobacterium was noted when exposed to a medium concentration of LCY and its mixture with ABA. Transcriptomic analysis revealed significant regulation of certain genes in the medium concentration of all three treatments compared to the control group, primarily enriching in metabolism and immune-related pathways. Following chronic exposure to field-relevant concentrations of ABA, LCY, and their mixture, there were significant alterations in the activities of immunity-related enzyme polyphenol oxidase (PPO) and detoxification enzymes glutathione S-transferase (GST) and carboxylesterase (CarE). Additionally, the expression of four genes (abaecin, cyp9e2, cyp302a1, and GstD1) associated with immune and detoxification metabolism was significantly altered. These findings suggest a potential health risk posed by the insecticides ABA and LCY to honey bees. Despite exhibiting acute antagonistic effect, mixed exposure still induced damage to bees at all levels. This study advances our knowledge of the potential adverse effects of individual or combined exposure to these two pesticides on non-target pollinators and offers crucial guidance for the use of insecticides in agricultural production.
Collapse
Affiliation(s)
- Xiaozhen Chen
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haikun Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
11
|
North HL, Fu Z, Metz R, Stull MA, Johnson CD, Shirley X, Crumley K, Reisig D, Kerns DL, Gilligan T, Walsh T, Jiggins CD, Sword GA. Rapid Adaptation and Interspecific Introgression in the North American Crop Pest Helicoverpa zea. Mol Biol Evol 2024; 41:msae129. [PMID: 38941083 PMCID: PMC11259193 DOI: 10.1093/molbev/msae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population. We investigate these processes in an economically important noctuid crop pest, Helicoverpa zea, which has evolved resistance to a wide range of pesticides. Its sister species Helicoverpa armigera, first detected as an invasive species in Brazil in 2013, introduced the pyrethroid-resistance gene CYP337B3 to South American H. zea via adaptive introgression. To understand whether this could contribute to pesticide resistance in North America, we sequenced 237 H. zea genomes across 10 sample sites. We report H. armigera introgression into the North American H. zea population. Two individuals sampled in Texas in 2019 carry H. armigera haplotypes in a 4 Mbp region containing CYP337B3. Next, we identify signatures of selection in the panmictic population of nonadmixed H. zea, identifying a selective sweep at a second cytochrome P450 gene: CYP333B3. We estimate that its derived allele conferred a ∼5% fitness advantage and show that this estimate explains independently observed rare nonsynonymous CYP333B3 mutations approaching fixation over a ∼20-year period. We also detect putative signatures of selection at a kinesin gene associated with Bt resistance. Overall, we document two mechanisms of rapid adaptation: the introduction of fitness-enhancing alleles through interspecific introgression, and selection on intraspecific variation.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Zhen Fu
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Richard Metz
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Matt A Stull
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Xanthe Shirley
- Animal and Plant Health Inspection Service, United States Department of Agriculture, College Station, TX, USA
| | - Kate Crumley
- Agrilife Extension, Texas A&M University, Wharton, TX, USA
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Plymouth, NC, 27962, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Todd Gilligan
- Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Tom Walsh
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Lin Z, Shen S, Wang K, Ji T. Biotic and abiotic stresses on honeybee health. Integr Zool 2024; 19:442-457. [PMID: 37427560 DOI: 10.1111/1749-4877.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Honeybees are the most critical pollinators providing key ecosystem services that underpin crop production and sustainable agriculture. Amidst a backdrop of rapid global change, this eusocial insect encounters a succession of stressors during nesting, foraging, and pollination. Ectoparasitic mites, together with vectored viruses, have been recognized as central biotic threats to honeybee health, while the spread of invasive giant hornets and small hive beetles also increasingly threatens colonies worldwide. Cocktails of agrochemicals, including acaricides used for mite treatment, and other pollutants of the environment have been widely documented to affect bee health in various ways. Additionally, expanding urbanization, climate change, and agricultural intensification often result in the destruction or fragmentation of flower-rich bee habitats. The anthropogenic pressures exerted by beekeeping management practices affect the natural selection and evolution of honeybees, and colony translocations facilitate alien species invasion and disease transmission. In this review, the multiple biotic and abiotic threats and their interactions that potentially undermine bee colony health are discussed, while taking into consideration the sensitivity, large foraging area, dense network among related nestmates, and social behaviors of honeybees.
Collapse
Affiliation(s)
- Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Siyi Shen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kang Wang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Zhang B, Zhang J, Wang Y, Qu J, Jiang Z, Zhang X, Tao Y, Wang Y, Kang Z, Han S, Zhang J, Zhang Y. Biodegradation of atrazine with biochar-mediated functional bacterial biofilm: Construction, characterization and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133237. [PMID: 38113741 DOI: 10.1016/j.jhazmat.2023.133237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
The abuse and residue of herbicides in the black soil area had seriously affected the soil structure, function and crop growth, posing severe threats to agricultural soil environment and public health. Given the limitation of routine microbial remediation, innovative and eco-friendly functional bacterial biofilm which could adapt under adverse conditions was developed on the biochar to investigate its enhanced bioremediation and metabolic characteristics of typical herbicide atrazine. Results revealed that the atrazine degrading strain Acinetobacter lwoffii had competitive advantage in soil indigenous microorganisms and formed dense biofilms on the biochar which was beneficial to cell viability maintenance and aggregations. Metatranscriptomics and RT-qPCR analysis demonstrated that the biochar-mediated biofilm improved the frequency of intercellular communications through quorum sensing and two-component signal regulation systems, and enhanced the atrazine biodegradation efficiency through horizontal gene transfer in co-metabolism mode, providing important scientific basis for the biological remediation of farmland soil non-point source pollution.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingdan Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuping Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhonghui Kang
- Longjiang Environmental Protection Group Co.,Ltd., Harbin 150050, PR China
| | - Songting Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingyi Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
14
|
Qi L, Yang J, Li J. Exploring the potential mechanism of atrazine-induced dopaminergic neurotoxicity based on integration strategy. Environ Health Prev Med 2024; 29:46. [PMID: 39231689 PMCID: PMC11391274 DOI: 10.1265/ehpm.24-00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Atrazine (ATR), a commonly used herbicide, is linked to dopaminergic neurotoxicity, which may cause symptoms resembling Parkinson's disease (PD). This study aims to reveal the molecular regulatory networks responsible for ATR exposure and its effects on dopaminergic neurotoxicity based on an integration strategy. METHODS Our approach involved network toxicology, construction of protein-protein interaction (PPI) networks, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as molecular docking techniques. Subsequently, we validated the predicted results in PC12 cells in vitro. RESULTS An integrated analysis strategy indicating that 5 hub targets, including mitogen-activated protein kinase 3 (Mapk3), catalase (Cat), heme oxygenase 1 (Hmox1), tumor protein p53 (Tp53), and prostaglandin-endoperoxide synthase 2 (Ptgs2), may play a crucial role in ATR-induced dopaminergic injury. Molecular docking indicated that the 5 hub targets exhibited certain binding activity with ATR. Cell counting kit-8 (CCK8) results illustrated a dose-response relationship in PC12 cells. Real-time quantitative polymerase chain reaction (RT-qPCR) displayed notable changes in the expression of hub targets mRNA levels, with the exception of Mapk3. Western blotting results suggested that ATR treatment in PC12 cells resulted in an upregulation of the Cat, Hmox1, and p-Mapk3 protein expression levels while causing a downregulation in Tp53, Ptgs2, and Mapk3. CONCLUSION Our findings indicated that 5 hub targets identified could play a vital role in ATR-induced dopaminergic neurotoxicity in PC12 cells. These results provide preliminary support for further investigation into the molecular mechanism of ATR-induced toxicity.
Collapse
Affiliation(s)
- Ling Qi
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University
| | - Jingran Yang
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University
| | - Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University
| |
Collapse
|