1
|
Gan G, Shen H, Cheng Q, Li Y, Zhang G. Unveiling mechanistic insight into boosting oxygen species activation over CeO 2/Mn 2O 3 p-n heterojunction for efficient photothermal mineralization of toluene. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137423. [PMID: 39892128 DOI: 10.1016/j.jhazmat.2025.137423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
The activation mechanism of oxygen species activation (including lattice oxygen and gaseous oxygen) in the photothermal catalytic reaction process is important for boosting the efficient removal of VOCs. Herein, we have successfully synthesized a p-n heterojunction photothermal catalyst CeO2/Mn2O3 for exploring the activation of molecular oxygen and lattice oxygen in toluene catalytic reaction under full spectrum conditions. Various characterization tests and theoretical calculations showed that the formed composite has enhanced light absorption ability, oxygen species migration and transformation ability as well as nice redox cycles, which is conducive to the fast replenishment of surface lattice oxygen and continuous capture and activation of molecular oxygen. Meanwhile, the results of in-situ DRIFTS tests not only confirmed the enhanced activation process of surface lattice oxygen and molecular oxygen under the synergistic effect of light and heat, but also revealed the pathway and mechanism of photothermal catalytic toluene over CeO2/Mn2O3.
Collapse
Affiliation(s)
- Guangmei Gan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Han Shen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Qiang Cheng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China; College of Urban and Environmental Sciences, Huangshi Key Laboratory of Prevention and Control of Soil Pollution, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China.
| |
Collapse
|
2
|
Bai X, Qi X, Liu Y, Sun J, Shen T, Pan L. Photothermal Catalytic Degradation of VOCs: Mode, System and Application. Chem Asian J 2025; 20:e202400993. [PMID: 39466004 DOI: 10.1002/asia.202400993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
Human production and living processes emit excessive VOCs into the atmosphere, posing significant threats to both human health and the environment. The photothermal catalytic oxidation process is an organic combination of photocatalysis and thermocatalysis. Utilizing photothermal catalytic degradation of VOCs can achieve better catalytic activity at lower temperatures, resulting in more rapid and thorough degradation of these compounds. Photothermal catalysis has been increasingly applied in the treatment of atmospheric VOCs due to its many advantages. A brief introduction on the three modes of photothermal catalysis is presented. Depending on the main driving force of the reactions, they can be categorized into thermal-assisted photocatalysis (TAPC), photo-assisted thermal catalysis (PATC) and photo-driven thermal catalysis (PDTC). The commonly used catalyst design methods and reactor types for photothermal catalysis are also briefly introduced. This paper then focuses on recent developments in specific applications for photothermal catalytic oxidation of different types of VOCs and their corresponding principles. Finally, the problems and challenges facing VOC degradation through this method are summarized, along with prospects for future research.
Collapse
Affiliation(s)
- Xiang Bai
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Xinyu Qi
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Yunchao Liu
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Tingting Shen
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Lijun Pan
- Shandong Wanjia Environmental Engineering Co., Ltd, Jinan, 250013, China
| |
Collapse
|
3
|
Zhang Y, Li Z, Zhao B, Guo Z, Shi Q, Xie K, Wang Z. Rational Design of Porous Y 2O 3-MnO x/Carbon Heterostructures with Abundant Oxygen Vacancies for High-Efficiency and Ultrastable Zinc-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69507-69518. [PMID: 39630479 DOI: 10.1021/acsami.4c18461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Manganese oxides have been considered as the most competitive cathode materials for aqueous zinc-ion batteries (ZIBs) on account of their inherent safety, high operating voltage, environmental friendliness, and cost-effectiveness. Unfortunately, the manganese dissolution, inherently poor electronic conductivity, and the sluggish reaction kinetics of commercial manganese-based oxides severely hinder their practical applications. To address the above issues, we creatively developed hierarchical porous Y2O3-MnOx/C nanorods (named OV-YMO/C) with unique heterostructures and abundant oxygen vacancies via a facile MOF-assisted synthetic process and employed as the advanced cathode. Owing to the well-constructed porous structure, larger surface areas, abundant oxygen vacancies, and strong synergetic coupling effect at the heterogeneous interface, the as-obtained OV-YMO/C cathode exhibited a fascinating discharge capacity of 389.6 mAh g-1 at 0.1 A g-1. Simultaneously, it demonstrated remarkable rate performance (233 mAh g-1 at 4.0 A g-1) and cycling durability (90.6% capacity retention over 3000 cycles at 4.0 A g-1). The fabricated Zn//OV-YMO/C pouch cell could deliver superior flexibility and electrochemical stability under extreme bending conditions. Furthermore, the electrochemical reaction mechanism was comprehensively explored by kinetic analysis and density functional theory (DFT) calculations. The synergistic strategy by subtly combining the MOF-assisted approach, heterojunction engineering, and oxygen defects engineering provides valuable insights into the construction of cathode materials for high-rate and ultrastable aqueous ZIBs.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
- Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, P. R. China
| | - Zhihua Li
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
- Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, P. R. China
| | - Bo Zhao
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
- Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, P. R. China
| | - Ziteng Guo
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
- Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, P. R. China
| | - Qianqian Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Kang Xie
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
- Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, P. R. China
| | - Ziyi Wang
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
- Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
4
|
Lei P, Wu N, Zhou Y, Dong C, Li M, Shuang S. Simple strategy for dual-responsive ratio electrochemical-colorimetric detection of nitrite in food and environment. Mikrochim Acta 2024; 191:701. [PMID: 39461925 DOI: 10.1007/s00604-024-06793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
A dual-responsive ratio electrochemical-colorimetric method for nitrite (NO2-) is established based on the combination of nanoenzyme (Mn3O4) catalysis with diazotization reactions. The Mn3O4 can oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue TMBox. The NO2- induces the diazotization reaction of TMBox, leading to a decrease of the signal at 652 nm and the generation of a new signal from diazotized TMBox at 445 nm. Furthermore, the presence of NO2- reduces the electrochemical oxidation signal of TMB and simultaneously provides its electrochemical signal. Compared with traditional single-mode detection, dual-mode detection offers higher sensitivity, lower detection limits, and better interference resistance. The inherent advantages of this method make it feasible to detect NO2- in real samples, offering broad prospects for applications in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Peng Lei
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Ni Wu
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Ying Zhou
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Minglu Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
5
|
Hu E, Liu Q, Qian Z, Zhong Q, He J, Xu S, Lu T, Li J, Chen T, Zhu W. Unveiling Mechanistic Insight into Accelerating Oxygen Molecule Activation by Oxygen Defects in Co 3O 4-x/g-C 3N 4 p-n Heterojunction for Efficient Photo-Assisted Uranium Extraction from Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403105. [PMID: 38973107 DOI: 10.1002/smll.202403105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Photo-assisted uranium extraction from seawater (UES) is regarded as an efficient technique for uranium resource recovery, yet it currently faces many challenges, such as issues like biofouling resistance, low charge separation efficiency, slow carrier transfer, and a lack of active sites. Based on addressing the above challenges, a novel oxygen-deficient Co3O4-x/g-C3N4 p-n heterojunction is developed for efficient photo-assisted uranium extraction from seawater. Relying on the defect-coupling heterojunction synergistic effect, the redistribution of molecular charge density formed the built-in electric field as revealed by DFT calculations, significantly enhancing the separation efficiency of carriers and accelerating their migration rate. Notably, oxygen vacancies served as capture sites for oxygen, effectively promoting the generation of reactive oxygen species (ROS), thereby significantly improving the photo-assisted uranium extraction performance and antibacterial activity. Thus, under simulated sunlight irradiation with no sacrificial reagent added, Co3O4-x/g-C3N4 extracted a high uranium extraction amount of 1.08 mg g-1 from 25 L of natural seawater after 7 days, which is superior to most reported carbon nitride-based photocatalysts. This study elaborates on the important role of surface defects and inerface engineering strategies in enhancing photocatalytic performance, providing a new approach to the development and design of uranium extraction material from seawater.
Collapse
Affiliation(s)
- Enmin Hu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Qian Liu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Zishu Qian
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Qian Zhong
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Junhui He
- Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang, Sichuan, 618000, P. R. China
| | - Shicheng Xu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Tianming Lu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Jin Li
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| |
Collapse
|
6
|
Dai H, Zhou P, Yang S, Yang L, Bai H, Dai C, Xu G, Fan W. Highly Self-Healing Co 3+/Ni 3+ Dual-Active Species for the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural. Inorg Chem 2024; 63:16541-16553. [PMID: 39166921 DOI: 10.1021/acs.inorgchem.4c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Electrocatalytic conversion of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is significant for the sustainable production of value-added chemicals. Active sites of catalysts could enhance the activity and selectivity of the HMF oxidation reaction (HMFOR), but the self-healing ability of active sites has been commonly ignored. In this work, Co(OH)2/Ni-MOF was successfully fabricated for efficient oxidation of HMF to FDCA under mild conditions. Electrochemical and cyclic stability experiments demonstrated the high self-healing properties of the dual active sites (Co3+/Ni3+). So, the retention rate of FDCA yield can still reach 98.5%, even after 90 days. HMFOR was further coupled with 4-nitrophenol hydrogenation, which promotes the yield and Faradaic efficiency of FDCA to about 100%. Therefore, this study explores the self-healing properties of species and provides new insights for designing efficient catalysts.
Collapse
Affiliation(s)
- Hongliang Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Pengjie Zhou
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Shenming Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lili Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongye Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Cui Dai
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Guohai Xu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
7
|
Wang H, Zhao Q, Li D, Zhang Z, Liu Y, Guo X, Li X, Liu Z, Wang L, Ma J, He H. Boosting Photothermocatalytic Oxidation of Toluene Over Pt/N-TiO 2: The Gear Effect of Light and Heat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7662-7671. [PMID: 38578018 DOI: 10.1021/acs.est.3c10459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Photothermal catalysis is extremely promising for the removal of various indoor pollutants owing to its photothermal synergistic effect, while the low light utilization efficiency and unclear catalytic synergistic mechanism hinder its practical applications. Here, nitrogen atoms are introduced, and Pt nanoparticles are loaded on TiO2 to construct Pt/N-TiO2-H2, which exhibits 3.5-fold higher toluene conversion rate than the pure TiO2. Compared to both photocatalytic and thermocatalytic processes, Pt/N-TiO2-H2 exhibited remarkable performance and stability in the photothermocatalytic oxidation of toluene, achieving 98.4% conversion and 98.3% CO2 yield under a light intensity of 260 mW cm-2. Furthermore, Pt/N-TiO2-H2 demonstrated potential practical applicability in the photothermocatalytic elimination of various indoor volatile organic compounds. The synergistic effect occurs as thermocatalysis accelerates the accumulation of carboxylate species and the degradation of aldehyde species, while photocatalysis promotes the generation of aldehyde species and the consumption of carboxylate species. This ultimately enhances the photothermocatalytic process. The photothermal synergistic effect involves the specific conversion of intermediates through the interplay of light and heat, providing novel insights for the design of photothermocatalytic materials and the understanding of photothermal mechanisms.
Collapse
Affiliation(s)
- Huihui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Daiqiang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhilin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Criminology, People's Public Security University of China, Beijing 100038, China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueli Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xiaotong Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhi Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lian Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Ge H, Zheng L, Yuan G, Shi W, Liu J, Zhang Y, Wang X. Polyoxometallate Cluster Induced High-Entropy Oxide Sub-1 nm Nanosheets as Photoelectrocatalysts for Zn-Air Batteries. J Am Chem Soc 2024; 146:10735-10744. [PMID: 38574239 DOI: 10.1021/jacs.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The lack of highly efficient and inexpensive catalysts severely hinders the large-scale application of Zn-air batteries (ZABs). High-entropy oxides (HEOs) exhibit unique structures and attractive properties; thus, they are promising to be used in ZABs. However, conventional high-temperature synthesis methods tend to obtain microscale HEOs with a lower exposure rate of active sites. Here, we report a facile solvothermal strategy for preparing two-dimensional (2D) HEO sub-1 nm nanosheets (SNSs) induced by polyoxometalate (POM) clusters. Taking advantage of the special 2D sub-1 nm structure and precise element regulation, these 2D HEOs-POM SNSs exhibit enhanced bifunctional oxygen evolution and oxygen reduction reaction activity under light irradiation. Further applying these 2D HEOs-POM SNSs to ZABs as cathode catalysts, the CoFeNiMnCuZnOx-phosphomolybdic acid SNSs-based ZABs deliver a low charge/discharge voltage gap of 0.25 V at 2 mA cm-2 under light irradiation. Meanwhile, it could maintain an ultralong-term stability for 1600 h at 2 mA cm-2 and 930 h at 10 mA cm-2. The 2D sub-1 nm structure and fine element control in HEOs provide opportunities to solve the problems of low intrinsic activity, limited active sites, and instability of air cathodes in ZABs.
Collapse
Affiliation(s)
- Huaiyun Ge
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Guobao Yuan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Wenxiong Shi
- School of Materials Science and Engineering, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Junli Liu
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Yu Zhang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Lv T, Wang R. Materials Enabling Methane and Toluene Gas Treatment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:301. [PMID: 38255469 PMCID: PMC10820036 DOI: 10.3390/ma17020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
This paper summarizes the latest research results on materials for the treatment of methane, an important greenhouse gas, and toluene, a volatile organic compound gas, as well as the utilization of these resources over the past two years. These materials include adsorption materials, catalytic oxidation materials, hydrogen-reforming catalytic materials and non-oxidative coupling catalytic materials for methane, and adsorption materials, catalytic oxidation materials, chemical cycle reforming catalytic materials, and degradation catalytic materials for toluene. This paper provides a comprehensive review of these research results from a general point of view and provides an outlook on the treatment of these two gases and materials for resource utilization.
Collapse
Affiliation(s)
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Wang H, Huang S, Liao L, Mo S, Zhou X, Fan Y. Performance and mechanism analysis of sludge-based biochar loaded with Co and Mn as photothermal catalysts for simultaneous removal of acetone and NO at low temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2891-2906. [PMID: 38082041 DOI: 10.1007/s11356-023-31401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Replacing NH3 in NH3-SCR with VOCs provides a new idea for the simultaneous removal of VOCs and NOx, but the technology still has urgent problems such as high cost of catalyst preparation and unsatisfactory catalytic effect in the low-temperature region. In this study, biochar obtained from sewage sludge calcined at different temperatures was used as a carrier, and different Co and Mn injection ratios were selected. Then, a series of sludge-based biochar (SBC) catalysts were prepared by a one-step hydrothermal synthesis method for the simultaneous removal of acetone and NO in a low-temperature photothermal co-catalytic system with acetone replacing NH3. The characterization results show that heat is the main driving force of the reaction system, and the abundance of Co and Mn atoms in high valence states, surface-adsorbed oxygen, and oxygen lattice defects in the catalyst are the most important factors affecting the performance of the catalyst. The performance test results showed that the optimal pyrolysis temperature of sludge was 400 °C, the optimal dosing ratio of Co and Mn was 4:1, and the catalyst achieved 42.98% and 52.41% conversion of acetone and NO, respectively, at 240 °C with UV irradiation. Compared with the pure SBC without catalytic effect, the SBC loaded with Co and Mn gained the ability of simultaneous removal of acetone and NO through the combined effect of multiple factors. The key reaction steps for the catalytic conversion of acetone and NO on the catalyst surface were investigated according to the Mars-van Krevelen (MvK) mechanism, and a possible mechanism was proposed. This study provides a new strategy for the resource utilization of sewage sludge and the preparation of photothermal catalysts for the simultaneous removal of acetone and NO at low cost.
Collapse
Affiliation(s)
- Hongqiang Wang
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Sheng Huang
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Lei Liao
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Shengpeng Mo
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Xiaobin Zhou
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Yinming Fan
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China.
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541000, China.
| |
Collapse
|