1
|
Tian S, Liu J, Sun L, Yuan X, Sans C. Activation of peroxymonosulfate by CuO-OMS-2 for efficient phenol mineralization: performance, contributions of ROS, and catalytic mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66938-66952. [PMID: 39652300 DOI: 10.1007/s11356-024-35642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
In this paper, copper oxide supported manganese oxide octahedral molecular sieves (CuO-OMS-2) composite was successfully synthesized and subsequently investigated for the degradation and mineralization of phenol via peroxymonosulfate (PMS) activation. It was confirmed that the incorporation of CuO significantly promoted multivalent metals transition and oxygen vacancies generation. At initial pH 5.0, CuO-OMS-2 achieved the optimum catalytic activity with 93.6% of phenol degradation efficiency and 87.6% of mineralization rate in 30 min. Additionally, a probe-based kinetic model was developed to simulate the removal of phenol in CuO-OMS-2/PMS system under different pH conditions, which was a decisive factor to affect the transformation of main active radicals and the oxidation capacity. The quantitative results of the active radicals suggested that 1O2 and O2•- played generally a negligible role in the abatement of phenol, while the contribution of SO4•- gradually increased from 25.17 to 75.60% and that of •OH decreased from 69.23 to 22.80% with the rising of pH from 3 to 9. Meanwhile, the CuO-OMS-2 composite showed excellent stability and reusability for contaminant degradation during five consecutive cycles. Finally, the results of probe-based kinetic model and characterization jointly demonstrated the mechanism of phenol degradation by CuO-OMS-2 activating PMS.
Collapse
Affiliation(s)
- Shuang Tian
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Jing Liu
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, 08028, Barcelona, Spain
| | - Lei Sun
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Xiangjuan Yuan
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China.
| | - Carme Sans
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
2
|
Qin M, Zhang X, Ding H, Chen Y, He W, Wei Y, Chen W, Chan YK, Shi Y, Huang D, Deng Y. Engineered Probiotic Bio-Heterojunction with Robust Antibiofilm Modality via "Eating" Extracellular Polymeric Substances for Wound Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402530. [PMID: 38924628 DOI: 10.1002/adma.202402530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The compact three-dimensional (3D) structure of extracellular polymeric substances (EPS) within biofilms significantly hinders the penetration of antimicrobial agents, making biofilm eradication challenging and resulting in persistent biofilm-associated infections. To address this challenge, a solution is proposed: a probiotic bio-heterojunction (P-bioHJ) combining Lactobacillus rhamnosus with MXene (Ti3C2) quantum dots (MQDs)/FeS heterojunction. This innovation aims to break down the saccharides in EPS, enabling effective combat against biofilm-associated infections. Initially, the P-bioHJ targets saccharides through metabolic processes, causing the collapse of EPS and allowing infiltration into bacterial colonies. Simultaneously, upon exposure to near-infrared (NIR) irradiation, the P-bioHJ produces reactive oxygen species (ROS) and thermal energy, deploying physical mechanisms to combat bacterial biofilms effectively. Following antibiofilm treatment, the P-bioHJ adjusts the oxidative environment, reduces wound inflammation by scavenging ROS, boosts antioxidant enzyme activity, and mitigates the NF-κB inflammatory pathway, thereby accelerating wound healing. In vitro and in vivo experiments confirm the exceptional antibiofilm, antioxidant/anti-inflammatory, and wound-regeneration properties of P-bioHJ. In conclusion, this study provides a promising approach for treating biofilm-related infections.
Collapse
Affiliation(s)
- Miao Qin
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiumei Zhang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Haiyang Ding
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yanbai Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenxuan He
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| | - Weiyi Chen
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| | - Yau Kei Chan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Yiwei Shi
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Ali N, Khan F, Song W, Khan I, Kareem A, Rahman S, Khan A, Ali F, Al Balushi RA, Al-Hinaai MM, Nawaz A. Robust polymer hybrid and assembly materials from structure tailoring to efficient catalytic remediation of emerging pollutants. CHEMOSPHERE 2024; 360:142408. [PMID: 38789056 DOI: 10.1016/j.chemosphere.2024.142408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
A massive amount of toxic substances and harmful chemicals are released every day into the outer environment, imposing serious environmental impacts on both land and aquatic animals. To date, research is constantly in progress to determine the best catalytic material for the effective remediation of these harmful pollutants. Hybrid nanomaterials prepared by combining functional polymers with inorganic nanostructures got attention as a promising area of research owing to their remarkable multifunctional properties deriving from their entire nanocomposite structure. The versatility of the existing nanomaterials' design in polymer-inorganic hybrids, with respect to their structure, composition, and architecture, opens new prospects for catalytic applications in environmental remediation. This review article provides comprehensive detail on catalytic polymer nanocomposites and highlights how they might act as a catalyst in the remediation of toxic pollutants. Additionally, it provides a detailed clarification of the processing of design and synthetic ways for manufacturing polymer nanocomposites and explores further into the concepts of precise design methodologies. Polymer nanocomposites are used for treating pollutants (electrocatalytic, biocatalytic, catalytic, and redox degradation). The three catalytic techniques that are frequently used are thoroughly illustrated. Furthermore, significant improvements in the method through which the aforementioned catalytic process and pollutants are extensively discussed. The final section summarizes challenges in research and the potential of catalytic polymer nanocomposites for environmental remediation.
Collapse
Affiliation(s)
- Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China; Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| | - Fawad Khan
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Wang Song
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Ibrahim Khan
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Abdul Kareem
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Suhaib Rahman
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra, 21300, Pakistan
| | - Rayya Ahmed Al Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| | - Mohammad M Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| | - Arif Nawaz
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Xu R, Hu S, Wan H, Xie Y, Cai Y, Wen J. A unified deep learning framework for water quality prediction based on time-frequency feature extraction and data feature enhancement. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119894. [PMID: 38154219 DOI: 10.1016/j.jenvman.2023.119894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Deep learning methods exhibited significant advantages in mapping highly nonlinear relationships with acceptable computational speed, and have been widely used to predict water quality. However, various model selection and construction methods resulted in differences in prediction accuracy and performance. Hence, a unified deep learning framework for water quality prediction was established in the paper, including data processing module, feature enhancement module, and data prediction module. In the established model, the data processing module based on wavelet transform method was applied to decomposing complex nonlinear meteorology, hydrology, and water quality data into multiple frequency domain signals for extracting self characteristics of data cyclic and fluctuations. The feature enhancement module based on Informer Encoder was used to enhance feature encoding of time series data in different frequency domains to discover global time dependent features of variables. Finally, the data prediction module based on the stacked bidirectional long and short term memory network (SBiLSTM) method was employed to strengthen the local correlation of feature sequences and predict the water quality. The established model framework was applied in Lijiang River in Guilin, China. The maximum relative errors between the predicted and observed values for dissolved oxygen (DO), chemical oxygen demand (CODMn) were 12.4% and 20.7%, suggesting a satisfactory prediction performance of the established model. The validation results showed that the established model was superior to all other models in terms of prediction accuracy with RMSE values 0.329, 0.121, MAE values 0.217, 0.057, SMAPE values 0.022, 0.063 for DO and CODMn, respectively. Ablation tests confirmed the necessity and rationality of each module for the established model framework. The established method provided a unified deep learning framework for water quality prediction.
Collapse
Affiliation(s)
- Rui Xu
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Shengri Hu
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Hang Wan
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yulei Xie
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanpeng Cai
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianhui Wen
- Ecological and Environmental Monitoring Center of Guangxi, Guilin, 541002, China
| |
Collapse
|
5
|
Song J, Bao S, Bai J, Dang Y, Zeng X, Zhou J, Shen Y, Yue S, Li S. Modelling future climate effects on N 2O emission and soil carbon storage in maize fields under controlled-release urea and straw incorporation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119854. [PMID: 38128212 DOI: 10.1016/j.jenvman.2023.119854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Controlled-release urea application and straw incorporation have been conducted in recent years as environmental-friendly and sustainable farming strategies, but the long-term effects of controlled-release urea application and combination with straw on the dryland maize yield, soil fertility and the environment under future climate scenarios remain unclear. Hence, based on a six-year field experiment, four treatments were used to calibrate and validate the DeNitrification-DeComposition (DNDC) model, including non-nitrogen (CK), split applications of conventional urea (UR), single basal application of conventional urea and controlled-release urea at a ratio of 2:1 (CU), and CU combined with straw (CUS). Subsequently, coupled the well-validated model with future climate to evaluate suitable agricultural production practices under two shared socioeconomic pathways (SSP)-SSP245 and SSP585. The validation results indicated a good fit between the simulated and observed data of greenhouse gas emissions, soil organic carbon (SOC) contents and maize yields. With the anticipation of warmer temperatures and increased precipitation in the future, the yields of UR, CU, and CUS treatment significantly rose. Under SSP585 scenario, the positive impacts of CU treatment on maize yields reduced after the 2050s, exhibiting an average decline of 12.03%. Compared with the UR treatment, the CU treatment markedly reduced cumulative N2O emissions, and both treatments maintained the original state of SOC storages in the 2030s, furthermore, the CUS treatment reduced N2O emissions by 47.10%, 35.07%, 23.80% and 10.04% in the 2030s, 2050s, 2070s and 2090s, respectively. SOC storages for the CUS treatment gradually increased with an average of 464.58, 350.22, 250.87 and 177.75 kg C ha-1 y-1 for two SSP scenarios in the 2030s, 2050s, 2070s and 2090s, which excellently offset the CO2 equivalent of emissions caused by N2O emissions. Therefore, in dryland maize production, combined controlled-release urea with straw incorporation could achieve the best comprehensive effect among increase of yield, improvement of SOC storages and alleviation of greenhouse gas emissions under future climate scenario.
Collapse
Affiliation(s)
- Jingrong Song
- College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 12100, China
| | - Shushang Bao
- College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 12100, China
| | - Ju Bai
- Shanxi Agricultural University, Taiyuan, 030031, China
| | - Yaai Dang
- College of Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiang Zeng
- College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 12100, China
| | - Jie Zhou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufang Shen
- College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 12100, China.
| | - Shanchao Yue
- College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 12100, China
| | - Shiqing Li
- College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 12100, China
| |
Collapse
|
6
|
Zhou SP, Tang SQ, Ke X, Zhou HY, Zou SP, Xue YP, Zheng YG. Hyperthermophilic pretreatment significantly accelerates thermophilic composting humification through improving bacterial communities and promoting microbial cooperation. BIORESOURCE TECHNOLOGY 2023:129467. [PMID: 37429549 DOI: 10.1016/j.biortech.2023.129467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Thermophilic composting (TC) can effectively shorten maturity period with satisfactory sanitation. However, the higher energy consumption and lower composts quality limited its widespread application. In this study, hyperthermophilic pretreatment (HP) was introduced as a novel approach within TC, and its effects on humification process and bacterial community during food waste TC was investigated from multiple perspectives. Results showed that a 4-hour pretreatment at 90 °C increased the germination index and humic acid/fulvic acid by 25.52% and 83.08%. Microbial analysis demonstrated that HP stimulated the potential functional thermophilic microbes, and significantly up-regulated the genes related to amino acid biosynthesis. Further network and correlation analysis suggested that pH was the key factor affecting bacterial communities, and higher HP temperatures help to restore bacterial cooperation and showed higher humification degree. In summary, this study contributed to a better understanding of the mechanism towards the accelerated humification by HP.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su-Qin Tang
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, China
| | - Xia Ke
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hai-Yan Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shu-Ping Zou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|