1
|
El Hafidi EM, Mortadi A, Chahid EG, Laasri S. Effect of trichloroisocyanuric acid concentration on the electrical properties of swimming pool water. Sci Rep 2025; 15:5223. [PMID: 39939398 PMCID: PMC11821816 DOI: 10.1038/s41598-024-80521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 02/14/2025] Open
Abstract
Swimming pools, a globally popular recreational activity, necessitate effective disinfection to mitigate potential health risks arising from water contamination. Trichloroisocyanuric acid (TCCA), a prominent disinfectant, is pivotal in pool water treatment. This paper investigates the impact of trichloroisocyanuric acid concentration on the electrical properties of swimming pool water. Water samples were collected from a covered pool in El Jadida, Morocco, disinfected with varying concentrations of trichloroisocyanuric acid, and analyzed using electrical impedance measurements. The pool's water treatment system, including pre-filters and pressure filters with multi-layer beds, was described. Thorough examinations of bromate, chlorate, and chlorite were conducted. The obtained water quality parameters met standard limits, indicating favorable conditions. The complex impedance and conductivity of samples with different trichloroisocyanuric acid concentrations were explored. An equivalent circuit model successfully described the relaxation behavior, emphasizing the intricate relationship between trichloroisocyanuric acid concentrations and the physicochemical properties of pool water. Changes in relaxation times and DC conductivity were observed with increasing concentrations, providing valuable insights for water treatment optimization. The nuanced understanding of relaxation dynamics and conductivity variations contributes to optimizing pool maintenance strategies, ensuring a safe and enjoyable swimming environment.
Collapse
Affiliation(s)
- El Mokhtar El Hafidi
- Laboratory of Engineering Science for energy (labSIPE) ENSA, Chouaib Doukkali University, El-Jadida, Morocco.
| | - Abdelhadi Mortadi
- Laboratory Physics of Condensed Matter (LPMC), Chouaib Doukkali University, El-Jadida, Morocco
| | - El Ghaouti Chahid
- Polydisciplinary Faculty of Sidi Bennour, Chouaib Doukkali University, El-Jadida, Morocco
| | - Said Laasri
- Laboratory of Engineering Science for energy (labSIPE) ENSA, Chouaib Doukkali University, El-Jadida, Morocco
| |
Collapse
|
2
|
Peng F, Wang Y, Lu Y, Yang Z, Li H. Formation and control of disinfection by-products during the trichloroisocyanuric acid disinfection in swimming pool water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123536. [PMID: 38365079 DOI: 10.1016/j.envpol.2024.123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
The increasing demand for trichloroisocyanuric acid (TCCA) in swimming pool disinfection highlights the need to evaluate its applicability in terms of disinfection by-product (DBP) formation. Nevertheless, there is limited understanding of DBP formation and control during TCCA disinfection, particularly concerning the effects of various management parameters. This study aimed to fill this knowledge gap by comprehensively investigating DBP formation during TCCA chlorination, with a particular focus on assessing the contribution and interaction of influencing factors using Box-Behnken Design and response surface methodology. Results indicated that the concentrations of trichloroacetaldehyde, chloroform, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile produced by TCCA disinfectant were 42.5%, 74.0%, 48.1%, 94.7% and 42.6% of those by the conventional sodium hypochlorite disinfectant, respectively. Temperature exhibited the most significant impact on chloroform formation (49%), while pH played a major role in trichloroacetaldehyde formation (44%). pH2 emerged as the primary contributor to dichloroacetic acid (90%) and trichloroacetic acid (93%) formation. The optimum water quality conditions were determined based on the minimum total DBPs (pH = 7.32, Temperature = 23.7 °C, [Cl-] = 437 mg/L). Chlorine dosage and contact time exhibited greater influence than precursor concentration on chloroform, dichloroacetonitrile, trichloroacetaldehyde, trichloroacetic acid, and total DBPs. Although the interaction between water quality parameters was weak, the interaction between disinfection operating parameters demonstrated substantial effects on DBP formation (8.56-19.06%). Furthermore, the DBP predictive models during TCCA disinfection were provided for the first time, which provides valuable insights for DBP control and early warning programs.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
3
|
Joseph TM, Al-Hazmi HE, Śniatała B, Esmaeili A, Habibzadeh S. Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. ENVIRONMENTAL RESEARCH 2023; 238:117114. [PMID: 37716387 DOI: 10.1016/j.envres.2023.117114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Water pollution poses significant threats to both ecosystems and human health. Mitigating this issue requires effective treatment of domestic wastewater to convert waste into bio-fertilizers and gas. Neglecting liquid waste treatment carries severe consequences for health and the environment. This review focuses on intelligent technologies for water and wastewater treatment, targeting waterborne diseases. It covers pollution prevention and purification methods, including hydrotherapy, membrane filtration, mechanical filters, reverse osmosis, ion exchange, and copper-zinc cleaning. The article also highlights domestic purification, field techniques, heavy metal removal, and emerging technologies like nanochips, graphene, nanofiltration, atmospheric water generation, and wastewater treatment plants (WWTPs)-based cleaning. Emphasizing water cleaning's significance for ecosystem protection and human health, the review discusses pollution challenges and explores the integration of wastewater treatment, coagulant processes, and nanoparticle utilization in management. It advocates collaborative efforts and innovative research for freshwater preservation and pollution mitigation. Innovative biological systems, combined with filtration, disinfection, and membranes, can elevate recovery rates by up to 90%, surpassing individual primary (<10%) or biological methods (≤50%). Advanced treatment methods can achieve up to 95% water recovery, exceeding UN goals for clean water and sanitation (Goal 6). This progress aligns with climate action objectives and safeguards vital water-rich habitats (Goal 13). The future holds promise with advanced purification techniques enhancing water quality and availability, underscoring the need for responsible water conservation and management for a sustainable future.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Hussein E Al-Hazmi
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Bogna Śniatała
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, and Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran 1599637111, Iran.
| |
Collapse
|
4
|
Lee BA. Effects of disinfection by-products in swimming pool environments on the immunological mechanisms of respiratory diseases. JOURNAL OF WATER AND HEALTH 2023; 21:1600-1610. [PMID: 37902213 PMCID: wh_2023_335 DOI: 10.2166/wh.2023.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Swimming in pools is a popular and healthy recreational activity. However, potential adverse health effects from disinfection byproduct (DBP) exposure in pool water are concerning. This study evaluated how such DBP exposure affects the respiratory system. DBP exposure was simulated with an animal-specific pool environment model. Experimental animals were exposed to DBPs for a specified duration and frequency over 4 weeks. The wet and dry weights of murine lungs were measured, with no significant differences observed. There were no significant differences in interkeukin (IL)-2/4/10, and interferon-γ levels. However, IL-6 expression decreased in the experimental group. To investigate the effects of DBP exposure on immune cell response, various samples, such as bronchoalveolar lavage fluid, lymph nodes, spleen, and thymus, were collected for T-cell isolation and fluorescence-activated cell sorting. Asthma-related blood cell distribution was analyzed using a complete blood count test; no significant differences were found. Thus, DBP exposure through this model did not induce substantial lung tissue damage, major alterations in cytokine expression (besides IL-6), significant immune cell responses, or changes in asthma-associated blood cell distribution. However, considering earlier results, future studies should focus on specific types, intensity, and duration of exercise that could affect DBP exposure-related immune-inflammatory responses.
Collapse
Affiliation(s)
- Bo-Ae Lee
- Department of Sport Science, College of Liberal Arts, Dongguk University, 38066, Gyeongsangbuk-do, Gyeongju, South Korea E-mail:
| |
Collapse
|