1
|
Mao Q, Bao J, Du J, Zhang Y, Zhou Y, He T, Cheng B. Comprehensive revealing the destructive effect and inhibitory mechanism of oxytetracycline on aerobic denitrification bacteria Acinetobacter sp. AD1 based on cell state, electron behavior and intracellular environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138058. [PMID: 40168932 DOI: 10.1016/j.jhazmat.2025.138058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/05/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
The wide application and low utilization rate of oxytetracycline (OTC) make it often detected in wastewater, which may cause harmful effects on microbial denitrification. Aerobic denitrification (AD) as a new microbial denitrification technology has obvious advantages. However, systematic studies on the effects of OTC on it are lacking. In this study, the effect of OTC on AD was comprehensively explored from multiple perspectives, the main results are as follows. From the perspective of bacterial performance, OTC inhibited AD bacteria growth, denitrification efficiency, and caused serious damage to cell morphological structure, results of CCK-8 confirmed that bacterial activity was significantly affected. From the perspective of electron behavior, OTC decreased electron-producing capacity of carbon metabolism, reduced activity of the electron transport system, inhibited the electron consumption of NAR and NIR to varying degrees, thus increased the risk of nitrite accumulation. From the perspective of intracellular environment, OTC broke redox balance and antioxidant mechanism, related carbon and nitrogen cycle functional genes were down-regulated, affected amino acid, organic acid and nucleotide metabolic processes. The above results provide important information for evaluating the potential risks of antibiotics on the application of AD, and provide key background and theoretical support for stabilizing the technology.
Collapse
Affiliation(s)
- Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jianguo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yu Zhou
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ting He
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China; Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, PR China
| | - Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
2
|
Nguyen AH, Gunawardhana T, Siddiqui SI, Cho K, Maeng SK, Yang Y, Oh S. An enzymatically modified adsorbent derived from an agro-residue mitigates the environmental risks of toxic antibiotic mixtures. ENVIRONMENTAL RESEARCH 2025; 270:121038. [PMID: 39914717 DOI: 10.1016/j.envres.2025.121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
This study developed an enzymatically modified adsorbent derived from pine bark (PBEM), an agricultural residue feedstock, for the adsorptive removal of antibiotic contaminants. PBEM was synthesized by optimizing the feedstock selection and modifying it using fungal crude enzymes sustainable recoverable from natural sources. PBEM rapidly removed the antibiotics tetracycline and sulfamethoxazole from a mixed solution much more rapidly (4-99 times faster) and in higher quantities (2-5 times higher) than without enzyme modification. The outperforming removal performance was validated using adsorption kinetics and isotherm parameters over five repeated cycles. Analytical chemistry identified four novel byproducts (BPs) generated in the antibiotic mixture. Quantitative structure-activity relationship analysis revealed that two of these BPs with considerable toxicity potential comparable to the parent compounds, but they were transient and eventually removed using PBEM. As a result, PBEM effectively controlled the toxic effects of the original antibiotics and their BPs much more rapidly than the control adsorbent with no enzyme coating, as illustrated by experimental antimicrobial toxicity testing. These results thus demonstrate the potential of PBEM for both removing various antibiotic residuals via physicochemical adsorption and enzymatic breakdown and completely detoxifying solutions containing antibiotics and their BPs.
Collapse
Affiliation(s)
- Anh H Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Thilini Gunawardhana
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Ramjas College, University of Delhi, New Delhi, 110007, India
| | - Kyungjin Cho
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Fang L, Deng Y, Lakshmanan P, Liu W, Tang X, Zou W, Zhang T, Wang X, Xiao R, Zhang J, Chen X, Su X. Selective increase of antibiotic-resistant denitrifiers drives N 2O production in ciprofloxacin-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135673. [PMID: 39217949 DOI: 10.1016/j.jhazmat.2024.135673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Agricultural systems significantly contribute to global N2O emissions, which is intensified by excessive fertilization and antibiotic residues, attracting global concerns. However, the dynamics and pathways of antibiotics-induced soil N2O production coupled with microbial metabolism remain controversial. Here, we explored the pathways of N2O production in agricultural soils exposed to ciprofloxacin (CIP), and revealed the underlying mechanisms of CIP degradation and the associated microbial metabolisms using 15N-isotope labeling and molecular techniques. CIP exposure significantly increases the total soil N2O production rate. This is attributed to an unexpected shift from heterotrophic and autotrophic nitrification to denitrification and an increased abundance of denitrifiers Methylobacillus members under CIP exposure. The most striking strain M. flagellatus KT is further discovered to harbor N2O-producing genes but lacks a N2O-reducing gene, thereby stimulating denitrification-based N2O production. Moreover, this denitrifying strain is probably capable of utilizing the byproducts of CIP as carbon sources, evidenced by genes associated with CIP resistance and degradation. Molecular docking further shows that CIP is well ordered in the catalytic active site of CotA laccase, thus affirming the potential for this strain to degrade CIP. These findings advance the mechanistic insights into N2O production within terrestrial ecosystems coupled with the organic contaminants degradation.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yue Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4067, Australia
| | - Weibing Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Wenxin Zou
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaozhong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Oh S, Byeon H, Wijaya J. Machine learning surveillance of foodborne infectious diseases using wastewater microbiome, crowdsourced, and environmental data. WATER RESEARCH 2024; 265:122282. [PMID: 39178596 DOI: 10.1016/j.watres.2024.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Clostridium perfringens (CP) is a common cause of foodborne infection, leading to significant human health risks and a high economic burden. Thus, effective CP disease surveillance is essential for preventive and therapeutic interventions; however, conventional practices often entail complex, resource-intensive, and costly procedures. This study introduced a data-driven machine learning (ML) modeling framework for CP-related disease surveillance. It leveraged an integrated dataset of municipal wastewater microbiome (e.g., CP abundance), crowdsourced (CP-related web search keywords), and environmental data. Various optimization strategies, including data integration, data normalization, model selection, and hyperparameter tuning, were implemented to improve the ML modeling performance, leading to enhanced predictions of CP cases over time. Explainable artificial intelligence methods identified CP abundance as the most reliable predictor of CP disease cases. Multi-omics subsequently revealed the presence of CP and its genotypes/toxinotypes in wastewater, validating the utility of microbiome-data-enabled ML surveillance for foodborne diseases. This ML-based framework thus exhibits significant potential for complementing and reinforcing existing disease surveillance systems.
Collapse
Affiliation(s)
- Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea.
| | - Haeil Byeon
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Jonathan Wijaya
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
5
|
Oh S, Nguyen AH, Kim JS, Chung SY, Maeng SK, Jung YH, Cho K. A microbiome-biochar composite synergistically eliminates the environmental risks of antibiotic mixtures and their toxic byproducts. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135474. [PMID: 39173370 DOI: 10.1016/j.jhazmat.2024.135474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
This study developed a continuous reactor system employing a hybrid hydrogel composite synthesized using a complex sludge microbiome and an adsorbent (HSA). This HSA-based system effectively eliminated the environmental risks associated with a mixture of the antibiotics ciprofloxacin and sulfamethoxazole, which exhibited higher toxicity in combination than individually at environmentally relevant levels. Analytical chemistry experiments revealed the in-situ generation of various byproducts (BPs) within the bioreactor system, with two of these BPs recording toxicity levels that surpassed those of their parent compound. The HSA approach successfully prevented the functional microbiome from being washed out of the reactor, while HSA efficiently removed antibiotic residues in their original and BP forms through synergistic adsorptive and biotransformation mechanisms, ultimately reducing the overall ecotoxicity. The use of HSA thus demonstrates promise not only as a mean to reduce the threat posed by toxic antibiotic residues to aquatic ecosystems but also as a practical solution to operational challenges, such as biomass loss/washout, that are frequently encountered in various environmental bioprocesses.
Collapse
Affiliation(s)
- Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Anh H Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ji-Su Kim
- Department of Civil Engineering, University of Seoul, Dongdaemun-gu, Seoul, Republic of Korea
| | - Sang-Yeop Chung
- Department of Civil and Environmental Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Young-Hoon Jung
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kyungjin Cho
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
6
|
Chen Z, Hu Y, Qiu G, Liang D, Cheng J, Chen Y, Zhu X, Wang G, Xie J. Unraveling the effects and mechanisms of antibiotics on aerobic simultaneous nitrogen and phosphorus removal by Acinetobacter indicus CZH-5. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134831. [PMID: 38850942 DOI: 10.1016/j.jhazmat.2024.134831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The effects of antibiotics, such as tetracycline, sulfamethoxazole, and ciprofloxacin, on functional microorganisms are of significant concern in wastewater treatment. This study observed that Acinetobacter indicus CZH-5 has a limited capacity to remove nitrogen and phosphorus using antibiotics (5 mg/L) as the sole carbon source. When sodium acetate was supplied (carbon/nitrogen ratio = 7), the average removal efficiencies of ammonia-N, total nitrogen, and orthophosphate-P increased to 52.46 %, 51.95 %, and 92.43 %, respectively. The average removal efficiencies of antibiotics were 84.85 % for tetracycline, 39.32 % for sulfamethoxazole, 18.85 % for ciprofloxacin, and 23.24 % for their mixtures. Increasing the carbon/nitrogen ratio to 20 further improved the average removal efficiencies to 72.61 % for total nitrogen and 97.62 % for orthophosphate-P (5 mg/L antibiotics). Additionally, the growth rate and pollutant removal by CZH-5 were unaffected by the presence of 0.1-1 mg/L antibiotics. Transcriptomic analysis revealed that the promoted translation of aceE, aarA, and gltA genes provided ATP and proton -motive forces. The nitrogen metabolism and polyphosphate genes were also affected. The expression of acetate kinase, dehydrogenase, flavin mononucleotide enzymes, and cytochrome P450 contributed to antibiotic degradation. Intermediate metabolites were investigated to determine the reaction pathways.
Collapse
Affiliation(s)
- Zuhao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
7
|
Wijaya J, Park J, Yang Y, Siddiqui SI, Oh S. A metagenome-derived artificial intelligence modeling framework advances the predictive diagnosis and interpretation of petroleum-polluted groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134513. [PMID: 38735183 DOI: 10.1016/j.jhazmat.2024.134513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Groundwater (GW) quality monitoring is vital for sustainable water resource management. The present study introduced a metagenome-derived machine learning (ML) model aimed at enhancing the predictive understanding and diagnostic interpretation of GW pollution associated with petroleum. In this framework, taxonomic and metabolic profiles derived from GW metagenomes were combined for use as the input dataset. By employing strategies that optimized data integration, model selection, and parameter tuning, we achieved a significant increase in diagnostic accuracy for petroleum-polluted GW. Explanatory artificial intelligence techniques identified petroleum degradation pathways and Rhodocyclaceae as strong predictors of a pollution diagnosis. Metagenomic analysis corroborated the presence of gene operons encoding aminobenzoate and xylene biodegradation within the de novo assembled genome of Rhodocyclaceae. Our genome-centric metagenomic analysis thus clarified the ecological interactions associated with microbiomes in breaking down petroleum contaminants, validating the ML-based diagnostic results. This metagenome-derived ML framework not only enhances the predictive diagnosis of petroleum pollution but also offers interpretable insights into the interaction between microbiomes and petroleum. The proposed ML framework demonstrates great promise for use as a science-based strategy for the on-site monitoring and remediation of GW pollution.
Collapse
Affiliation(s)
- Jonathan Wijaya
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yuyi Yang
- Key laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
8
|
Zhang X, Han Z, Wang Y, Cui K, Li Y, Xie X, Zhang X. Biotic pathways of reciprocal responses between antibiotic resistance genes and inorganic nitrogen cycling genes in amoxicillin-stressed compost ecosystems. BIORESOURCE TECHNOLOGY 2024; 397:130478. [PMID: 38387840 DOI: 10.1016/j.biortech.2024.130478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
This study explored the transformation of inorganic nitrogen, the expression levels of antibiotic resistance genes (ARGs), and the regulatory mechanisms of key species on ARGs and inorganic nitrogen cycling genes (INCGs) under different levels of amoxicillin (AMX) stress. High level of AMX inhibited the accumulation of NH4+-N, which increased by 531 % relative to the initial. Moreover, AMX to some extent increased the levels of nirS and nirK, which could potentially result in nitrogen loss and the accumulation of NO2-. Actinobacteria might serve as potential hosts for ARGs during sludge composting. This stress induced a complex response between INCGs and ARGs more complex due to key species. Under high-level AMX pressure, most species associated with ARGs likely derived from nitrogen cycling functional species. To conclude, high levels of AMX stress might lead to nitrogen cycling imbalance and the dissemination of antibiotic resistance genes in composting systems.
Collapse
Affiliation(s)
- Xinlin Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziyi Han
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yumeng Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Kunxue Cui
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyu Xie
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
9
|
Nguyen AH, Oh S. Side effects of the addition of an adsorbent for the nitrification performance of a microbiome in the treatment of an antibiotic mixture. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133034. [PMID: 38035522 DOI: 10.1016/j.jhazmat.2023.133034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
This work determined the effect of biochar (BC) as an adsorbent on the nitrifying microbiome in regulating the removal, transformation, fate, toxicity, and potential environmental consequences of an antibiotic mixture containing oxytetracycline (OTC) and sulfamethoxazole (SMX). Despite the beneficial role of BC as reported in the literature, the present study revealed side effects for the nitrifying microbiome and its functioning arising from the presence of BC. Long-term monitoring revealed severe disruption to nitratation via the inhibition of both nitrite oxidizers (e.g., Nitrospira defluvii) and potential comammox species (e.g., Ca. Nitrospira nitrificans). Byproducts (BPs) more toxic than the parent compounds were found to persist at a high relative abundance, particularly in the presence of BC. Quantitative structure-activity relationship modeling determined that the physicochemical properties of the toxic BPs significantly differed from those of OTC and SMX. The results suggested that the BPs tended to mobilize and accumulate on the surface of the solids in the system (i.e., the BC and biofilm), disrupting the nitrifiers growing at the interface. Collectively, this study provides novel insights, demonstrating that the addition of adsorbents to biological systems may not necessarily be beneficial; rather, they may generate side effects for specific bacteria that have important ecosystem functions.
Collapse
Affiliation(s)
- Anh H Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea.
| |
Collapse
|
10
|
Nguyen HT, Maeng SK, Lee TK, Oh S. Environmental consequences of transformation products from an antibiotic mixture and their mitigation in a wastewater microbiome using an HCl-modified adsorbent. BIORESOURCE TECHNOLOGY 2024; 395:130402. [PMID: 38295960 DOI: 10.1016/j.biortech.2024.130402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/18/2024]
Abstract
This study enhanced our understanding of antibiotic mixtures' occurrence, transformation, toxicity, and ecological risks. The role of acid-modified biochar (BC) in treating antibiotic residues was explored, shedding light on how BC influences the fate, mobility, and environmental impact of antibiotics and transformation products (TPs) in an activated sludge (AS) microbiome. A mixture of oxytetracycline and sulfamethoxazole was found to synergistically (or additively) inhibit cell growth of AS and disrupt the microbiome structure, species richness/diversity, and function. The formation of TPs with potentially higher toxicity and persistence than the original compounds was identified, explaining the microbiome disruption. Agricultural waste-derived BC was optimized for contaminant adsorption, leading to a reduction in toxicity when added to AS by sequestering TPs on its surface. This work highlighted adsorbents as a practical engineering strategy for mitigating liquid-phase contaminants' toxicological consequences, proactively controlling the fate and effects of antibiotics and TPs.
Collapse
Affiliation(s)
- Hiep T Nguyen
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
11
|
Oh S, Nguyen HT. Activated sludge microbiome with H 2O 2-modified biochar enhances the treatment resilience and detoxification of oxytetracycline and its toxic byproducts. ENVIRONMENTAL RESEARCH 2023; 236:116832. [PMID: 37543124 DOI: 10.1016/j.envres.2023.116832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
The widespread presence of oxytetracycline (OTC) in aquatic ecosystems poses both health risks and ecological concerns. The present study revealed the beneficial role of hydrogen peroxide (H2O2)-pretreated biochar (BC) derived from agricultural hardwood waste in an activated sludge (AS) bioprocess. The BC addition significantly enhanced the removal and detoxification of OTC and its byproducts. BC was initially modified using H2O2 to improve its OTC adsorption. Two AS reactors were then established, one with H2O2-modified BC and one without, and both were exposed to OTC. The BC-added reactor exhibited significantly higher OTC removal rates during both the start-up (0.97 d-1) and steady-state (0.98 d-1) phases than the reactor without BC (0.54 d-1 and 0.83 d-1, respectively). Two novel transformation pathways for OTC were proposed, with four byproducts originating from OTC identified, some of which were found to be more toxic than OTC itself. The BC-added reactor had significantly higher system functioning in terms of its heterotrophic activity and the reduction of the toxicity of OTC and its byproducts, as illustrated by structure-based toxicity simulations, antimicrobial susceptibility experiments, analytical chemistry, and bioinformatics analysis. Bioinformatics revealed two novel bacterial populations closely related to the known OTC-degrader Pandoraea. The ecophysiology and selective enrichment of these populations suggested their role in the enzymatic breakdown and detoxification of OTC (e.g., via demethylation and hydrogenation). Overall, the present study highlighted the beneficial role of H2O2-modified BC in combination with the AS microbiome in terms of enhancing treatment performance and resilience, reducing the toxicological disruption to biodiversity, and detoxifying micropollutants.
Collapse
Affiliation(s)
- Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Hiep T Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|