1
|
Chen H, Yin R, Zhu M. How to enhance persulfate processes by external-field effects: From fundamentals to applications. WATER RESEARCH 2025; 274:123026. [PMID: 39740330 DOI: 10.1016/j.watres.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) are considered as efficient techniques for the degradation of contaminants, whereas the effective activation methods for reactive oxygen species (ROS) generation play vital roles in PS-AOPs. However, the internal electric field mediated activation methods, like introducing chemicals and materials, are often restricted by their intrinsic properties. Conversely, the introduction of external fields can provide extra energy to remarkably enhance the PS activation performance from outside, acting as an additional impetus to promote the cleavage of OO bond and thus improve the generation efficiency of ROS. In this review, a comprehensive overview of the external field enhanced PS-AOPs from fundamentals to applications was introduced. Specifically, the activation mechanisms under different external fields, recent advances and their influencing factors, as well as potential practical applications of the external field enhanced PS-AOPs were summarized. The perspectives from the opportunity to challenge were thus made for future investigation. Therefore, this review is expected to give a systematic overview of external-field enhanced PS-AOPs, providing a new direction towards the improvement on catalytic efficiency of PS-AOPs through the rational utilization of external fields.
Collapse
Affiliation(s)
- Huiru Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
2
|
Xie C, Zhang P, Pan F, Hu Y, Yang D, Li Y, Li Y, Lu J, Wu Z, He J, Hong P, Kong L. Interfacial hydrophilicity induced CoAl-LDH/Ti 3C 2T x@PVDF Fenton-like catalytic filtration membrane for efficient anti-fouling and water decontamination. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137275. [PMID: 40087826 DOI: 10.1016/j.jhazmat.2025.137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 03/17/2025]
Abstract
The catalytic filtration membrane, combining the interfacial hydrophilic effect with PMS based Fenton-like oxidation processes, demonstrates great potential as an advanced solution for alleviating membrane fouling and removing contaminants. Herein, a novel type of hollow fiber CoAl-LDH/Ti3C2Tx@PVDF membranes was successfully fabricated. The well-designed hybrid membrane incorporating 0.5 wt% of CoAl-LDH/Ti3C2Tx (denoted as M-0.5) as PMS activator exhibited excellent anti-fouling behavior and remarkable TC degradation efficiency. The anchored hetero-structural CoAl-LDH/Ti3C2Tx was pivotal in driving the reaction, where the synergistic redox cycles (Ti+/Ti2+, Ti2+/Ti3+ and Co2+/Co3+) facilitated the activation of PMS. Concurrently, the plentiful hydrophilic groups especially -OH of CoAl-LDH/Ti3C2Tx endowed M-0.5 with robust interfacial hydrophilicity, extremely boosting interactions among CoAl-LDH/Ti3C2Tx, PMS and TC at the surface of M-0.5. Mechanism analysis revealed that the formed ∙OH, SO4·-, ·O2- and 1O2 collectively contributed to the non-selective degradation of TC. Moreover, the M-0.5 +PMS system showed exceptional stability in the presence of various environmental interferences and continuous flow device. Ultimately, the degradation pathways and toxicological assessment of TC and its intermediates further substantiated the impressive catalytic oxidation performance of the M-0.5 +PMS system. This insightful work cleverly integrates the macro/micro-scale design of membrane structure, promising to unlock novel opportunities for the development of water treatment.
Collapse
Affiliation(s)
- Chao Xie
- University of Science and Technology of China, Hefei 230026, China; Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Pengyu Zhang
- University of Science and Technology of China, Hefei 230026, China; Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Fankang Pan
- University of Science and Technology of China, Hefei 230026, China; Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Yi Hu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Energy Engineering, Korea Institute of Energy Technology, Naju 58330, South Korea.
| | - Dandan Yang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Yahui Li
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Yulian Li
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Jiandong Lu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Zijian Wu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Junyong He
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Peidong Hong
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| | - Lingtao Kong
- University of Science and Technology of China, Hefei 230026, China; Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
3
|
Fang H, Yu Q, Jiang Y, Cai Y, Sun J, Chen B, Huang H, Li X, Dai S, Shi S, Wu Y, Cheng F. A high-flux, photocatalytic wood-derived filter for high-efficiency water purification. Int J Biol Macromol 2024; 279:135490. [PMID: 39255882 DOI: 10.1016/j.ijbiomac.2024.135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Wastewater purification has evolved into a global problem in the face of increasing scarcity of freshwater resources. Photocatalysis technology possesses prominent advantages in treating pollutants in water because of its low cost and mild reaction conditions, which provides an effective way to treat multiple pollutants and reduce membrane fouling. Herein, we combine photocatalysis technology with filtration technology via in situ reduction Bi0 with Bi2SiO5 strategy incorporating a carbonized wood filter to synthesize carbon/Bi2SiO5@Bi bi-functional composite. Thus, simultaneous filtration and photocatalytic degradation of Rhodamine B and tetracycline were achieved. After filtrating for 30 min, the degradation rate of RhB and TC were 94.23 % and 81.39 %, respectively. Especially, the flux of RhB and TC were up to 2162.16 L m-2 h-1 and 1811.32 L m-2 h-1. In addition, the composite filter also has good recyclability and reusability, after 5 cycles, the degradation efficiency of RhB remains at 91 %. This study utilized photocatalytic technology combined with membrane filtration technology to successfully solve the contradiction between catalytic efficiency and water flux, which realized rapid and dynamic removal of organic pollutants from water. Besides, the use of carbonized wood-based materials provides a potential biomass technology for the preparation of bifunctional photocatalytic filters.
Collapse
Affiliation(s)
- Haohang Fang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qianqian Yu
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, College of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Yuheng Jiang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yiyan Cai
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianping Sun
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Boxi Chen
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Houkai Huang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xin Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, College of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Siyang Dai
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, College of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Shaohong Shi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Yiqiang Wu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Fangchao Cheng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Li N, Wang J, Liao T, Ma B, Chen Y, Li Y, Fan X, Peng W. Facilely tuning the coating layers of Fe nanoparticles from iron carbide to iron nitride for different performance in Fenton-like reactions. J Colloid Interface Sci 2024; 672:688-699. [PMID: 38865882 DOI: 10.1016/j.jcis.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
In this study, a series of Fe-based materials are facilely synthesized using MIL-88A and melamine as precursors. Changing the mass ratio of melamine and MIL-88A could tune the coating layers of generated zero-valent iron (Fe0) particles from Fe3C to Fe3N facilely. Compared to Fe/Fe3N@NC sample, Fe/Fe3C@NC exhibits better catalytic activity and stability to degrade carbamazepine (CBZ) with peroxymonosulfate (PMS) as oxidant. Free radical quenching tests, open-circuit potential (OCP) test and electron paramagnetic resonance spectra (EPR) prove that hydroxyl radicals (OH) and superoxide radical (O2-) are dominant reactive oxygen species (ROSs) with Fe/Fe3C@NC sample. For Fe/Fe3N@NC sample, the main ROSs are changed into sulfate radicals (SO4-) and high valent iron-oxo (Fe (IV)=O) species. In addition, the better conductivity of Fe3C is beneficial for the electron transfer from Fe0 to the Fe3C, thus could keep the activity of the surface sites and obtain better stability. DFT calculation reveals the better adsorption and activation ability of Fe3C than Fe3N. Moreover, PMS can also be adsorbed on the Fe sites of Fe3N with shorter FeO bonds and longer SO bonds than on Fe3C, the Fe (IV)=O is thus present in the Fe/Fe3N@NC/PMS system. This study provides a novel strategy for the development of highly active Fe-based materials for Fenton-like reactions and thus could promote their real application.
Collapse
Affiliation(s)
- Ningyuan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Tao Liao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Biao Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ying Chen
- Department of Chemical Engineering, Tianjin Renai College, Tianjin 301636, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, China.
| |
Collapse
|
5
|
Liu J, Huang Y, Zhang G, Wang Q, Shen S, Liu D, Hong Y, Wyman I. Dialdehyde cellulose (DAC) and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for simultaneously removing emulsified oils and anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134341. [PMID: 38642496 DOI: 10.1016/j.jhazmat.2024.134341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Developing high-efficiency membrane for oil and dye removal is very urgent, because wastewater containing them can cause great damage to human and environment. In this study, a coated membrane was fabricated by applying DAC and PEI onto the commercial PVDF microfiltration membrane for supplying the demand. The coated membrane presents superhydrophlic and superoleophobic properties with a water contact angle of 0o and underwater oil contact angle exceed 150°, as well as excellent low underwater oil adhesion performance. The coated membrane shows high separation efficiency exceeded 99.0% and flux 350.0 L·m-2·h-1 when used for separating for six kinds of oil including pump oil, sunflower oil, n-hexadecane, soybean oil, diesel and kerosene in water emulsions. Additionally, the coated membrane can effectively remove anionic dyes, achieving rejection rates of 94.7%, 93.4%, 92.3%, 90.7% for the CR, MB, RB5, AR66, respectively. More importantly, the membrane was able to simultaneously remove emulsified oil and soluble anionic dyes in wastewater containing both of them. Therefore, this novel coated membrane can be a promising candidate for treating complex wastewater.
Collapse
Affiliation(s)
- Junliang Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yixuan Huang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ganwei Zhang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Qianhui Wang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shusu Shen
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dapeng Liu
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaoliang Hong
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|
6
|
Dai N, Liu X, Yang L, Huang X, Song D, Wang S, Zhang K, Liu X, Dong W, Zhang Y. Cetyltrimethylammonium Bromide-Modified Laponite@Diatomite Composites for Enhanced Adsorption Performance of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8427-8439. [PMID: 38607689 DOI: 10.1021/acs.langmuir.3c03938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
This work aims to enhance the adsorption performance of Laponite @diatomite for organic pollutants by modifying it with cetyltrimethylammonium bromide (CTAB). The microstructure and morphology of the CTAB-modified Laponite @diatomite material were characterized using SEM, XRD, FTIR, BET, and TG. Furthermore, the influences of key parameters, containing pH, adsorbent dosage, reaction time, and reaction temperature, on the adsorption process were investigated. The kinetics, thermodynamics, and isotherm models of the adsorption process were analyzed. Finally, potential adsorption mechanisms were given based on the characterization. The research findings indicate that CTAB-La@D exhibits good adsorption performance toward Congo red (CR) over a broad pH range. The maximum adsorption capacity of CR was 451.1 mg/g under the optimum conditions (dosage = 10 mg, contact time = 240 min, initial CR concentration = 100 mg/L, temperature = 25 °C, and pH = 7). The adsorption process conformed to the pseudo-second-order kinetic model, and the adsorption isotherms indicated that the adsorption process of CR was more in line with the Langmuir model, and it was physical adsorption. Thermodynamic analysis illustrates that the adsorption process is exothermic and spontaneous. Additionally, the mechanisms of electrostatic adsorption and hydrophobic effect adsorption of CR were investigated through XPS and FTIR analysis. This work provides an effective pathway for designing high-performance adsorbents for the removal of organic dye, and the synthesized materials hold great capability for practical utilization in the treatment of wastewater.
Collapse
Affiliation(s)
- Nan Dai
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xinyi Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
| | - Lei Yang
- Department of Chemistry, Fudan University, Shanghai 200438, PR China
| | - Xi Huang
- College of Chemistry, Chongqing Normal University, Chongqing 400047, PR China
| | - Dan Song
- Chongqing Academy of Eco-Environmental Sciences, Chongqing 401147, PR China
| | - Song Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Kai Zhang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
| | - Xiaoying Liu
- Army Logistics Academy of PLA, Chongqing 401331, PR China
| | - Wenxin Dong
- School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
7
|
Meng D, Xiang Y, Yang Z, Yuan H, Tang L, Li S. The Piezocatalytic Degradation of Sulfadiazine by Lanthanum-Doped Barium Titanate. Molecules 2024; 29:1719. [PMID: 38675540 PMCID: PMC11051747 DOI: 10.3390/molecules29081719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Piezocatalysis, a heterogeneous catalytic technique, leverages the periodic electric field changes generated by piezoelectric materials under external forces to drive carriers for the advanced oxidation of organic pollutants. Antibiotics, as emerging trace organic pollutants in water sources, pose a potential threat to animals and drinking water safety. Thus, piezoelectric catalysis can be used to degrade trace organic pollutants in water. In this work, BaTiO3 and La-doped BaTiO3 were synthesized using an improved sol-gel-hydrothermal method and used as piezocatalytic materials to degrade sulfadiazine (SDZ) with ultrasound activation. High-crystallinity products with nano cubic and spherical morphologies were successfully synthesized. An initial concentration of SDZ ranging from 1 to 10 mg/L, a catalysis dosage range from 1 to 2.5 mg/mL, pH, and the background ions in the water were considered as influencing factors and tested. The reaction rate constant was 0.0378 min-1 under the optimum working conditions, and the degradation efficiency achieved was 89.06% in 60 min. La-doped BaTiO3 had a better degradation efficiency, at 14.98% on average, compared to undoped BaTiO3. Further investigations into scavengers revealed a partially piezocatalytic process for the degradation of SDZ. In summary, our work provides an idea for green environmental protection in dealing with new types of environmental pollution.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiyang Li
- Correspondence: ; Tel./Fax: +86-21-65982592
| |
Collapse
|
8
|
Li Z, Lan S, Zhu M. Piezoelectricity activates persulfate for water treatment: A perspective. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100329. [PMID: 37886032 PMCID: PMC10598685 DOI: 10.1016/j.ese.2023.100329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Advanced oxidation processes (AOPs) utilizing persulfate (PS) offer great potential for wastewater treatment. Yet, the dependency on energy and chemical-intensive activation techniques, such as ultraviolet radiation and transition metal ions, constrains their widespread adoption. Recognizing this limitation, researchers are turning towards the piezoelectric effect-a novel, energy-efficient method for PS activation that capitalizes on the innate piezoelectric characteristics of materials. Intriguingly, this method taps into weak renewable mechanical forces omnipresent in nature, ranging from wind, tides, water flow, sound, and atmospheric forces. In this perspective, we delve into the burgeoning realm of piezoelectric/PS-AOPs, elucidating its fundamental principles, the refinement of piezoelectric materials, potential mechanical force sources, and pertinent application contexts. This emerging technology harbors significant potential as a pivotal element in wastewater pretreatment and may spearhead innovations in future water pollution control engineering.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Shenyu Lan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| |
Collapse
|