1
|
Zhao Q, Yang J, Xia J, Zhao G, Yang Y, Zhang Z, Li J, Wei F, Song W. Biomass Cellulose-Derived Carbon Aerogel Supported Magnetite-Copper Bimetallic Heterogeneous Fenton-like Catalyst Towards the Boosting Redox Cycle of ≡Fe(III)/≡Fe(II). NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:614. [PMID: 40278479 PMCID: PMC12029258 DOI: 10.3390/nano15080614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
To degrade high-concentration and toxic organic effluents, we developed Fe-Cu active sites loaded on biomass-source carbon aerogel (CA) to produce a low-cost and high-efficiency magnetic Fenton-like catalyst for the catalytic oxidative decomposition of organic pollutants. It exhibits excellent performance in catalytic Fenton-like reactions for RhB removal at an ultrahigh initial concentration of up to 1000 ppm. To be specific, Fe3O4 and Cu nanoparticles are generated in situ on a mesoporous CA support, denoted as an Fe3O4-Cu/CA catalyst. Experimentally, factors including initial dye concentration, catalyst dosage, H2O2 dosage, pH, and temperature, which significantly influence the oxidative degradation rate of RhB, are carefully studied. The RhB (1000 ppm) degradation ratio reaches 93.7% within 60 min under low catalyst and H2O2 dosage. The catalyst also shows slight metal leaching (almost 1.4% of total Fe and 4.0% of total Cu leached after a complete degradation of 25 μmol RhB under conditions of 15 mg catalyst dosage, 20 mL RhB solution (600 ppm), and 200 μL 30 wt% H2O2 dosage, at pH of 2.5, at 40 °C), good catalytic activity for degrading organic pollutants, excellent reusability, and good catalytic stability (the degradation ratio is nearly 82.95% in the 8th cycle reaction). The synergistic effect between Fe and Cu species plays a vital role in promoting the redox cycle of Fe(III)/Fe(II) and enhancing the generation of ·OH. It is suitable for ultrahigh-concentration organic pollutant degradation in practical wastewater treatment applications.
Collapse
Affiliation(s)
- Qiang Zhao
- College of Science, Civil Aviation University of China (CAUC), Tianjin 300300, China
- College of Aerospace Engineering, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Jiawei Yang
- College of Aerospace Engineering, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Jiayi Xia
- College of Science, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Gaotian Zhao
- College of Aerospace Engineering, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Yida Yang
- Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongwei Zhang
- Science and Technology Innovation Research Institute, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Jing Li
- Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fang Wei
- College of Science, Civil Aviation University of China (CAUC), Tianjin 300300, China
- College of Aerospace Engineering, Civil Aviation University of China (CAUC), Tianjin 300300, China
| | - Weiguo Song
- Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Li Y, Lu Y, Li X, Zhong W, Zhu B, Tang X, Liu K. Activation of peroxymonosulfate by iron tailings for degradation of tetracycline hydrochloride: Identification of active minerals and study on catalytic mechanism. ENVIRONMENTAL RESEARCH 2025; 276:121515. [PMID: 40180261 DOI: 10.1016/j.envres.2025.121515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/11/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Cost-effective Fe tailings were utilized to activate peroxymonosulfate (PMS) for the removal of persistent antibiotics such as tetracycline hydrochloride (TC) from water. In this study, ilmenite-containing tailings served as raw material for preparing a magnetic Fe tailings catalyst (MFT) through magnetic separation, which increased the concentration of active components. The MFT catalyst efficiently activates PMS for rapid TC degradation. It achieves a 24.05 % adsorption ratio within 20 min. Within 35 min, it achieves a 91 % degradation ratio. After six cycles, the catalyst maintained an 86 % degradation ratio despite a slight decline in adsorption. The outstanding adsorption performance of the catalyst for TC was primarily attributed to calcite and chlorite. Importantly, ilmenite, magnetite, anatase, calcite, and chlorite served as active minerals in the catalyst. Ilmenite, magnetite, chlorite, and anatase activated PMS to generate a large amount of SO4•- and O2•-, while and calcite activated PMS to produce a significant quantity of 1O2. TC underwent rapid mineralization through the action of both free and non-free radicals. A 0.5-1 mm granular catalyst maintained a 75 % degradation ratio after treating 40 L of TC wastewater, with low heavy metal ion leaching, preventing secondary pollution. This method presents a sustainable solution for water remediation and waste valorization.
Collapse
Affiliation(s)
- Yifan Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| | - Yao Lu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; CAWALSON Intelligent Technology (Nanjing) Co., LTD, Nanjing, 211135, China
| | - Xinglan Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| | - Wanling Zhong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| | - Binnan Zhu
- CAWALSON Intelligent Technology (Nanjing) Co., LTD, Nanjing, 211135, China
| | - Xuekun Tang
- School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Kun Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China.
| |
Collapse
|
3
|
Li J, Le Q, Nan Z. Improvement Catalytic Efficiency of the Fenton-Like Reaction via the Interaction among Fe Species Encapsulated in N-Doped Carbon Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7684-7696. [PMID: 40075555 DOI: 10.1021/acs.langmuir.4c05366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The Fenton-like reaction has been widely used for environmental modification. However, improvement of the catalytic efficiency is still a challenge. In this study, a series of core-shell-shaped catalysts (FeNC-x, x presents the calcination temperature) for the Fenton-like reaction was fabricated through the pyrolysis of the Fe-based metal-organic frameworks (Fe-MOF). The Fe species were encapsulated by the N-doped carbon materials and changed from Fe3O4 to Fe3C, α-Fe, and Fe-N4 with the temperature increasing from 500 to 800 °C. Simultaneously, the electron density of the Fe atom obviously increased. FeNC-650 exhibited high efficiency, as more than 85.6% TC (40 mg/L) instantaneous removal through the H2O2-based Fenton-like reaction. The turnover number is about 70 and 64 times higher than that of Fe-MOF and FeNC-500. The synergistic interaction among Fe3C, α-Fe, and Fe-N4 induced electron distribution around the Fe atom and excellent catalytic performances. Moreover, FeNC-650 exhibited excellent interference resistance toward different anions and humic acid. The toxicity of intermediate products decreased during the TC degradation. This research may give a strategy for the synthesis of catalysts used in wastewater purification.
Collapse
Affiliation(s)
- Jiaru Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qiang Le
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhaodong Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
4
|
Zhang X, Liu Y, Yuan J. Amino-functionalized Fe/Co bimetallic MOFs for accelerated Fe (III)/Fe (II) cycling and efficient degradation of sulfamethoxazole in Fenton-like system. Front Chem 2025; 13:1579108. [PMID: 40224220 PMCID: PMC11986425 DOI: 10.3389/fchem.2025.1579108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 04/15/2025] Open
Abstract
Metal-organic frameworks (MOFs) are recognized as important Fenton-like materials for environmental remediation. However, their applications are often hindered by slow cycling between Fe (III) and Fe (II). This study aimed to address the slow Fe (III)/Fe (II) cycling limitation of Fe-MOFs through dual modification strategy: bimetallic modification and amino functionalization. A series of NH2-MOF(Fe, Co) catalysts with varying Fe/Co ratios were synthesized via a hydrothermal method and evaluated for sulfamethoxazole (SMX) degradation. The optimized NH2-MOF(Fe, Co) catalyst (Fe/Co ratio = 7:3) exhibited substantially enhanced catalytic performance, with SMX removal rate and rate constant in the H2O2 system being 3.2 and 43.5 times higher than those of the Fe-MOF/H2O2 system, respectively. The catalyst demonstrated robust performance across a wide pH range (3.05-7.00), addressing a common limitation of Fenton-like systems. Physicochemical characterization revealed that the enhanced performance was attributed to two key factors: the synergistic effect between Co and Fe in the bimetallic active center, and improved electron transfer to the central metal due to -NH2 functionalization. These modifications effectively addressed the Fe (III)/Fe (II) redox cycling limitation. The proposed reaction mechanism provides insights into SMX degradation pathways in the NH2-MOF(Fe, Co)/H2O2 system. This study presents an efficient and stable MOF-based Fenton-like catalyst with potential applications in wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Xianbing Zhang
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Key Laboratory of Ecological Waterway, Chongqing Jiaotong University, Chongqing, China
| | - Yuheng Liu
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Key Laboratory of Ecological Waterway, Chongqing Jiaotong University, Chongqing, China
| | - Jiajia Yuan
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, China
| |
Collapse
|
5
|
Fan D, Li X, Yang S, Zhao D. Superior selectivity for efficiently reductive degradation of hydrophobic organic pollutants in strongly competitive systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136963. [PMID: 39724718 DOI: 10.1016/j.jhazmat.2024.136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Highly toxic halo-/nitro-substituted organics, often in low concentrations and with high hydrophobicity, make it difficult to obtain electrons for reduction when strongly electron-competing substances (e.g., O2, H+/H2O, NO3-) coexist. To address this barrier, we devised a new strategy to modify microscale zero-valent aluminum (mZVAl) with graphene (GE) by one-pot ball-milling for GE@mZVAl, which exhibits 99 % selective removal of halo-/nitro-substituted organic pollutants (e.g., carbon tetrachloride (CT), trichloroethylene (TCE), p-nitrophenol (PNP) and p-nitrochlorobenzene (p-NCB)) in the presence of multiple competing inorganics (O2, H+/H2O, Cr(VI), NO3- and BrO3-) and interfering ions (Cl-, CO32-, SO42- and PO43-). Notably, due to the fact that the side-reaction of H2 evolution and second-passivation are significantly suppressed, the electron utilization efficiency for organics degradation reaches an impressive 96 %, even under harsh pH conditions (3-11). GE@mZVAl contains an Al-C interface with a high concentration of C-O, which can form active sites for organics and perform selective electron transfer. Meanwhile, the organophilic catalyst GE also hinders the exposure of AlOH+/Al0 sites to shield the competing and interfering of inorganic substances. As a highly selective reduction system, this work may yield innovative insights for the selective removal of hydrophobic refractory pollutants in complex water matrices.
Collapse
Affiliation(s)
- Danyang Fan
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shiying Yang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
6
|
Qian J, Zhang X, Jia Y, Xu H, Pan B. Oxidative Polymerization in Water Treatment: Chemical Fundamentals and Future Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1060-1079. [PMID: 39761191 DOI: 10.1021/acs.est.4c10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
For several decades, the methodology of complete destruction of organic pollutants via oxidation, i.e., mineralization, has been rooted in real water treatment applications. Nevertheless, this industrially accepted protocol is far from sustainable because of the excessive input of chemicals and/or energy as well as the unregulated carbon emission. Recently, there have been emerging studies on the removal of organic pollutants via a completely different pathway, i.e., polymerization, meaning that the target pollutants undergo oxidative polymerization reactions to generate polymeric products. These studies have collectively shown that compared to the conventional mineralization pathway, the polymerization pathway allows more efficient removal of target pollutants, largely reduced input of chemicals, and suppressed carbon emission. In this review, we aim to provide a comprehensive examination of the fundamentals of the oxidative polymerization process, current state-of-the-art strategies for regulation of the polymerization pathway from both kinetic and thermodynamic perspectives, and resource recovery of the formed polymeric products. In the end, the limitations of the polymerization process for pollutant removal are discussed, with perspectives for future studies. Hopefully, this review could not only provide critical insight for the advancement of polymerization-oriented technologies for removal of more organic pollutants in a greener manner but also stimulate more paradigm innovations for low-carbon water treatment.
Collapse
Affiliation(s)
- Jieshu Qian
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuqian Jia
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
| | - Hui Xu
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Malefane ME, Managa M, Nkambule TTI, Kuvarega AT. s-scheme3D/3D Bi 0/BiOBr/P Doped g-C3 N4 with Oxygen Vacancies (Ov) for Photodegradation of Pharmaceuticals: In-situ H 2O 2 Production and Plasmon Induced Stability. CHEMSUSCHEM 2025; 18:e202401471. [PMID: 39147701 PMCID: PMC11739848 DOI: 10.1002/cssc.202401471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Complications accompanying photocatalyst stability and recombination of exciton charges in pollutants degradation has been addressed through the construction of heterojunctions, especially S-scheme heterojunction with strong and distinctive redox centres. Herein, an S-scheme BiOBr (BOR) and g-C3N4PO4 (CNPO) catalyst (BORCNPO) with oxygen vacancy (Ov) was synthesized for levofloxacin (LVX) and oxytetracycline (OTC) photodegradation under visible light. The 3D/3D BORCNPO catalyst possessed C-O-Br bridging bonds for efficient charge transfer during the fabrication of S-scheme heterojunction. In-situ H2O2 formation affirmed by potassium titanium (IV) oxalate spectrophotometric method improved the mineralization ability of BORCNPO7.5 catalyst. Bi0 surface plasmon resonance (SPR) enhanced formation and involvement of ⋅O2 - and the stability of the catalyst which increased reaction rate with increasing cycling experiments. XPS and radical trapping experiments supported the S-scheme charge transfer mechanism formation with high degradation rate of LVX which was 3 times higher than OTC degradation rate. Mineralization of pollutants and their intermediates were demonstrated with florescence excitation and emission matrix (FEEM) and quadruple time of flight high performance liquid chromatography (QTOF-HPLC). This work advances development of highly stable and efficient catalysts for photodegradation of pollutants through the formation of S-scheme heterostructure.
Collapse
Affiliation(s)
- Mope E. Malefane
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and TechnologyUniversity of South AfricaFlorida, Johannesburg1709South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and TechnologyUniversity of South AfricaFlorida, Johannesburg1709South Africa
| | - Thabo T. I. Nkambule
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and TechnologyUniversity of South AfricaFlorida, Johannesburg1709South Africa
| | - Alex T. Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and TechnologyUniversity of South AfricaFlorida, Johannesburg1709South Africa
| |
Collapse
|
8
|
Tian Q, Jiang Y, Duan X, Li Q, Gao Y, Xu X. Low-peroxide-consumption fenton-like systems: The future of advanced oxidation processes. WATER RESEARCH 2025; 268:122621. [PMID: 39426044 DOI: 10.1016/j.watres.2024.122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Conventional heterogeneous Fenton-like systems employing different peroxides have been developed for water/wastewater remediation. However, a large population of peroxides consumed during various Fenton-like systems with low utilization efficiency and associated secondary contamination have become the bottlenecks for their actual applications. Recent strategies for lowering the peroxide consumptions to develop economic Fenton-like systems are primarily devoted to the effective radical generation and subsequent high-efficiency radical utilization through catalysts/systems engineering, leveraging emerging nonradical oxidation pathways with higher selectivity and longer life of the reactive intermediate, as well as reactor designs for promoting the mass transfer and peroxides decomposition to improve the yield of radicals/nonradicals. However, a comparative review summarizing the mechanisms and pathways of these strategies has not yet been published. In this review, we endeavor to showcase the designated systems achieving the reduction of peroxides while ensuring high catalytic activity from the perspective of the above strategic mechanisms. An in-depth understanding of these aspects will help elucidate the key mechanisms for achieving economic peroxide consumption. Finally, the existing problems of these strategies are put forward, and new ideas and research directions for lowering peroxide consumption are proposed to promote the application of various Fenton-like systems in actual wastewater purification.
Collapse
Affiliation(s)
- Qingbai Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Jiang
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
9
|
Peng J, Li M, Zhang Q, Li Z, Zhao Z, Ding Y, Du N. Probe on the pivotal role of green rust in improving the enzymatic activity and facilitating the formation of 1O 2 in Fenton-like process for degradation of 4-chlorophenol. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123551. [PMID: 39644551 DOI: 10.1016/j.jenvman.2024.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Iron-based materials have demonstrated significant efficacy in catalyzing hydrogen peroxide (H2O2) for the removal of antibiotics from aquatic environments. Green rust (GR), a hybrid valence state iron-based catalyst, was synthesized. By exploiting the catalytic properties of glucose oxidase (GOx) to generate H2O2 from glucose (Glu), a GR-GOx/Glu system for the removal of recalcitrant organic compound 4-chlorophenol (4-CP) was constructed. In terms of pollutant degradation efficiency, an increase of 30% was observed compared to Fe2+/H2O2 system. Utilizing density functional theory (DFT), we calculated the electrostatic potential energy and charge density distribution, demonstrating the existence of active electron transfer between GR and flavin adenine dinucleotide (FAD), which subsequently enhanced the activity of GOx. The enhancement was pivotal for the sustained generation of preferred oxidative species and rapid degradation of pollutants within the system. Furthermore, the acids and H2O2 generated during enzyme catalysis not only neutralized the alkalinity released by the Fenton-like reaction but also promoted the conversion of superoxide radical (·O2-) to singlet oxygen (1O2). Overall, this study elucidates the fundamental motivation underlying the enhancement of enzymatic activity and highlights the critical role of 1O2 within the system, providing valuable insights into the potential mechanisms by which metal hydroxides catalyze the H2O2 process.
Collapse
Affiliation(s)
- Jie Peng
- School of Civil Engineering and Architecture, Wuhan University of Technology, China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, China.
| | - Zefeng Li
- Central and Southern China Municipal Engineering Design & Research Institute Co., Ltd, China
| | - Ziqi Zhao
- Wuhan HUADET Environmental Protection Engineering & Technology, China
| | - Yuwei Ding
- Hubei Urban Construction Design Institute Co., Ltd, China
| | - Ning Du
- Zhengzhou Municipal Engineering Survey Design & Research Institute Co.Ltd, China
| |
Collapse
|
10
|
Liu S, Kang Y. Synergistic degradation of refractory organic pollutant by underwater bubbling plasma combined with heterogeneous Fenton process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123187. [PMID: 39500164 DOI: 10.1016/j.jenvman.2024.123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/12/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
Excessive discharge of the refractory organic pollutants endangers the development of the society and economy, thus seeking an efficient wastewater abatement method is an urgent need. Herein, Iron (Ⅱ) sulfide (FeS) was employed as the heterogeneous catalyst and coupled with underwater bubbling plasma (UBP) for the elimination of the refractory organic pollutant, malachite green (MG). FeS catalyst was synthesized using the solvothermal method and subsequently characterized comprehensively, focusing on its microstructure, specific surface area, chemical bonds and elements valence states. The UBP system combined with FeS (UBP/FeS) exhibited the robust synergism with a maximum synergistic factor of 1.89. The MG degradation percentage and rate constant were up to 94.7% and 0.237 min-1 within 12 min. The parameter experiments revealed that FeS dosage, pulse frequency, initial MG concentration and solution conductivity of 150 mg/L, 56 Hz, 5 mg/L and 21.8 μS/cm, respective, were more conducive for MG elimination. The MG removal efficiency reached 86.2% after five consecutive applications of FeS. Reactive substances including ·OH, ·O2-, eaq, O3 and H2O2 were confirmed to contribute to MG elimination. Additionally, the conversion circle between ≡ Fe(Ⅱ) and ≡ Fe(Ⅲ) promoted the catalytic conversion of H2O2 and O3 into ∙OH. The comparison of UV-vis spectra and total organic carbon of MG solution before and after reaction revealed the superior degradation of MG in the UBP/FeS system. Hypotheses regarding to the decomposition pathways of MG were formulated based on the identified intermediates. The toxicity level of MG solution was lightened after reaction. The above results indicate that UBP/FeS has the advantages of quick degradation and high efficiency, representing a promising approach for refractory pollutants treatment.
Collapse
Affiliation(s)
- Shuai Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Yong Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
11
|
Li H, Jin X, Owens G, Chen Z. Reconstructing the electron and spin structures of nanoscale iron sulfide through a biosurfactant layer towards radical-nonradical co-dominant regime. J Colloid Interface Sci 2024; 672:299-310. [PMID: 38843682 DOI: 10.1016/j.jcis.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
Radical-nonradical co-dominant pathways have become a hot topic in advanced oxidation, but achieving this on transition metal sulfides (TMS) remains challenging because their inherently higher electron and spin densities always induce radicals rather than nonradicals. Herein, a biosurfactant layer (BLR) was introduced to redistribute the electron and spin structure of nanoscale iron sulfide (FeS), which allowed both radical and nonradical to co-dominate the catalytic reaction. The resulting BLR-encased FeS hybrid (BLR@FeS) exhibited satisfactory removal efficiency (98.5 %) for hydrogen peroxide (H2O2) activation, outperforming both the constituent components [FeS (70.9 %) and BLR (86.2 %)]. Advanced characterizations showed that C, O, N-related sites (-CO and -NC) in BLR attracted electrons in FeS due to their strong electronegativity and electron-withdrawing capacity, which not only decreased electron density in FeS, but also resulted in a shift of the Fe/S sites from the high-spin to the medium-spin state. The reaction routes established by the BLR@FeS/H2O2 system maintained desirable stability against environmental interferences such as common inorganic anions, humic acid and changes in pH. Our study provides a state-of-the-art, molecule-level understanding of tunable co-dominant pathways and expands the targeted applications in the field of advanced oxidation.
Collapse
Affiliation(s)
- Heng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| |
Collapse
|
12
|
Chen Y, Cheng M, Jin L, Yang H, Ma S, Lin Z, Dai G, Liu X. Heterogeneous activation of self-generated H 2O 2 by Pd@UiO-66(Zr) for trimethoprim degradation: Efficiency and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121868. [PMID: 39032257 DOI: 10.1016/j.jenvman.2024.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The Fenton reaction is recognized as an effective technique for degrading persistent organic pollutants, such as the emerging pollutant trimethoprim (TMP). Recently, due to the excellent reducibility of active hydrogen ([H]), Pd-H2 has been preferred for Fenton-like reactions and the specific H2 activation of Pd-based catalysts. Herein, a heterogeneous Fenton catalyst named the hydrogen-accelerated oxygen reduction Fenton (MHORF@UiO-66(Zr)) system was prepared through the strategy of building ships in the bottle. The [H] has been used for the acceleration of the reduction of Fe(III) and self-generate H2O2. The systematic characterization demonstrated that the nano Pd0 particle was highly dispersed into the UiO-66(Zr). The results found that 20 mg L-1 of TMP was thoroughly degraded within 90 min in the MHORF@UiO-66(Zr) system under conditions of initial pH 3, 30 mL min-1 H2, 2 g L-1 Pd@UiO-66(Zr) and 25 μM Fe2+. The hydroxyl radical as well as the singlet oxygen were evidenced to be the main reactive oxygen species by scavenging experiments and electron spin resonance. In addition, both reducing Fe(III) and self-generating H2O2 could be achieved due to the strong metal-support interaction (SMSI) between the nano Pd0 particles and UiO-66(Zr) confirmed by the correlation results of XPS and calculation of density functional theory. Finally, the working mechanism of the MHORF@UiO-66(Zr) system and the possible degradation pathway of the TMP have been proposed. The novel system exhibited excellent reusability and stability after six cyclic reaction processes.
Collapse
Affiliation(s)
- Yijun Chen
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Meina Cheng
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Long Jin
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Meixin Environmental Technology Co., Ltd., Suzhou, 215500, Jiangsu Province, China.
| | - Hailiang Yang
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Sanjian Ma
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Zixia Lin
- Testing Center, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Guoliang Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Xin Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China.
| |
Collapse
|
13
|
Qi J, Li M, Yin E, Zhang H, Wang H, Li X. Degradation of tetracycline under a wide pH range in a heterogeneous photo bio-electro-fenton system using FeMn-LDH/g-C 3N 4 cathode: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121111. [PMID: 38761620 DOI: 10.1016/j.jenvman.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
The widespread use of antibiotics and the inefficiency of traditional degradation treatments pose threats to the environment and human health. Previous studies have reported the potential of bio-electro-Fenton (BEF) processes for antibiotic removal. However, some drawbacks, such as a strict pH range of 2-3 and iron sludge generation, limit their large-scale application. Thus, to overcome the narrow pH range of traditional BEF processes, a photo-BEF (PBEF) system was established using a novel FeMn-layered double hydroxide (LDH)/graphitic carbon nitride (g-C3N4) (FM/CN) composite cathode. The performance of the PBEF system was investigated by degrading tetracycline (TC) under low-power LED lamp irradiation. The results indicated that the pH range of the PBEF system could be expanded to 3-11 using an FM/CN cathode, which exhibited a TC removal efficiency of 63.0%-75.9%. The highest TC removal efficiency was achieved at pH 7. The efficient mineralization of TC by the PBEF system can be high, up to 67.6%. In addition, the TC removal mechanism was discussed in terms of reactive oxygen species, TC degradation intermediate analyses, and density functional theory (DFT) calculations. Strong oxidative hydroxyl radicals (·OH) were the dominant reactive oxidizing species in the PBEF system, followed by ·O2- and h+. Three pathways of TC degradation were proposed based on the analysis of intermediates, and the reactive sites attacked by electrophilic reagents were explored using DFT modeling. In addition, the overall toxicity of TC degradation intermediates effectively decreased in the PBEF system. This work offers deep insights into the TC removal mechanisms and performance of the PBEF system over a wide pH range of 3-11.
Collapse
Affiliation(s)
- Jinqiu Qi
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Ming Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Erqin Yin
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hanyu Zhang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haiman Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
14
|
Fu BG, Zhou X, Lu Y, Quan WZ, Li C, Cheng L, Xiao X, Yu YY. Interfacial OOH* mediated Fe(II) regeneration on the single atom Co-N-C catalyst for efficient Fenton-like processes. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134214. [PMID: 38603908 DOI: 10.1016/j.jhazmat.2024.134214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Fe(II) regeneration is decisive for highly efficient H2O2-based Fenton-like processes, but the role of cobalt-containing reactive sites in promoting Fe(II) regeneration was overlooked. Herein, a single atom Co-N-C catalyst was employed in Fe(II)/H2O2 system to promote the degradation of diverse organic contaminants. The EPR and quenching experiments indicated Co-N-C significantly enhanced the generation of superoxide species, and accelerated hydroxyl radical generation for pollutant degradation. The electrochemical and surface composition analyses demonstrated the enhanced H2O2 activation and Fe(III)/Fe(II) recycling on the catalyst. Furthermore, in-situ Raman characterization with shell-isolated gold nanoparticles was employed to visualize the interfacial reactive intermediates and their time-resolved interaction. The accumulation of interfacial CoOOH* was confirmed when Co-N-C activated H2O2 alone, but it rapidly transformed into FeOOH* upon Fe(II) addition. Besides, the temporal variation of OOH* intermediates and the relative intensity of Co(III)-O and Co(IV)=O peaks depicted the dynamic interaction of reactive intermediates along the H2O2 consumption. With this basis, we proposed a mechanism of interfacial OOH* mediated Fe(II) regeneration, which overcame the kinetical limitation of Fe(II)/H2O2 system. Therefore, this study provided a primary effort to elucidate the overlooked role of interfacial CoOOH* in the Fenton-like processes, which may inspire the design of more efficient catalysts.
Collapse
Affiliation(s)
- Bao-Gang Fu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiangtong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yilin Lu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Wen-Zhu Quan
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Liang Cheng
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yang-Yang Yu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
15
|
Mao X, Zhang M, Wang M, Lei H, Dong C, Shen R, Zhang H, Chen C, Hu J, Wu G. Highly efficient catalytic Fenton-Like reactions of bimetallic Fe/Cu chelated on radiation functionalized nonwoven fabric for pollutant control. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133752. [PMID: 38350320 DOI: 10.1016/j.jhazmat.2024.133752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
A remarkably efficient and affordable Fe/Cu bimetallic catalyst featuring a substantial light energy utilization and compatibility with a sizable substrate was developed for Fenton-like reactions aimed at pollutant control. Specifically, a novel strategy was employed to synthesize high-density metal sites (Fe:Cu ≈ 3:1) robustly embedded on polyethylene/polyethylene terephthalate nonwoven fabric (PE/PET NWF) via radiation-induced graft polymerization (RIGP) and subsequent chemical modification, labeled as Fe/Cu-PPAO. Its high effectiveness was demonstrated by degrading 50 mg/L of tetracycline hydrochloride within 30 min in the presence of H2O2 under simulate sunlight irradiation. It was investigated that amidoxime groups regulated the optical gaps and HOMO-LUMO gaps of metal ions to enable the absorption of a broader spectrum light while the Cu2+ facilitated the transfer of electrons between the bimetal ions to achieve an improved reaction path. Furthermore, X-ray absorption fine structure (XAFS) and density functional theory (DFT) calculations further revealed its special complex state and delicate electronic structure between bimetal ions and amidoxime groups. Our study offers a new strategy to synthesize high-density bimetallic sites catalyst for environmental remediation and pushes forward insight into understanding the catalytic mechanism of bimetallic Fenton-like catalysts.
Collapse
Affiliation(s)
- Xuanzhi Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Maojiang Zhang
- College of Materials and Environmental Engineering, Chizhou University, Chizhou, Anhui 247000, PR China
| | - Minglei Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China; Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.
| | - Heng Lei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China; School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, PR China
| | - Chunlei Dong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China; College of Materials and Environmental Engineering, Chizhou University, Chizhou, Anhui 247000, PR China
| | - Rongfang Shen
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, RP China
| | - Chaorong Chen
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jiangtao Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China.
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China; School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, PR China.
| |
Collapse
|
16
|
Jiao M, Yang Z, Xu W, Zhan X, Ren X, Zhang Z. Elucidating carbon conversion and bacterial succession by amending Fenon-like systems during co-composting of pig manure and branch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170279. [PMID: 38280577 DOI: 10.1016/j.scitotenv.2024.170279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The essential point of current study was to investigate the effect of a Fenton-like system established by oxalic acid and Fe(II) on gas emission, organic matter decomposition and humification during composting. Branches were pretreated with Fenton reagents (0.02 M FeCl2·4H2O + 1.5 M H2O2) and then adding 10 % oxalic acid (OA). The treatments were marked as B1 (control), B2 (Fenton reagent), B3 (10% OA) and B4 (Fenton-like reagent). The results collected from 80 d of composting showed that adding Fenton-like reagent benefited the degradation of organic substances, as reflected by the total organic carbon and dissolved organic carbon, and the maximum decomposition rate was observed in B4. In addition, the Fenton-like reagent could improve the synthesis of humus characterized by complex and stable compounds, which was consistent with the spectral parameters (SUVA254, SUVA280, E253/E203 and Fourier transform-infrared indicators) of DOC. Furthermore, the functional microbial succession performance and linear discriminant effect size analyses provided microbial evidence of humification improvement. Notably, compared with the control, the minimum value of CH4 cumulation was reported in B4, which decreased by 30.44 %. Concluded together, the addition of a Fenton-like reagent composed by OA and Fe(II) is a practical way to improve the humification. Furthermore, the mechanisms related to the promotion of humification should be investigated from free radicals, functional genes, and metabolic pathways.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhaowen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
17
|
Qi F, Peng J, Liang Z, Guo J, Yin J, Song A, Li Z, Liu J, Fang T, Zhang J, Wu L, Zhang Q, Wang T, Du Z, Mao H. Transforming waste brake pads from automobiles into Nano-Catalyst: Synergistic Fe-C-Cu triple sites for efficient fenton-like oxidation of organic pollutants. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:225-234. [PMID: 38218093 DOI: 10.1016/j.wasman.2023.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
The arbitrary disposal of used brake pads from motor vehicles has resulted in severe heavy metal pollution and resource wastage, highlighting the urgent need to explore the significant untapped potential of these discarded materials. In this study, The in-situ growth of highly dispersed Fe2O3 nanocrystals was achieved by simple oxidation annealing of brake pad debris(BPD). Interestingly, Cu remained unoxidized and acted as a "valence state transformation bridge of Fe2O3" to construct the "triple Fe-C-Cu sites". The Fenton degradation experiment of pollutants was conducted under constant temperature conditions at 40 °C, a stirring rate of 1300 rpm, a pH value of 3, a catalyst dosage of 0.5 g/L, pollutant dosage ranging from 50 to 400 mg/L, and H2O2 dosage of 0.25 g/L. Experimental results showed that BPD treated at 300 °C for 2 h exhibited optimal Fenton-like oxidation activity, achieving rapid degradation of over 90 % of refractory antibiotics, such as tetracycline and ciprofloxacin, in organic wastewater within 10 min. This remarkable performance was mainly attributed to the synergistic effect of "Fe-C-Cu triple sites", where the electron-donating role of C in the Fe-C and Cu-C interfaces facilitated the conversion of the Fe(III) to Fe(II) and Cu(II) to Cu(I). In addition, the ability of Cu2+ to accept electrons at the Fe-Cu interface promoted the transition from Fe (II) to Fe (III). This "balance of electron gain and loss" accelerated the interfacial electron transfer and the recycle of dual Fenton sites, Fe(II)/Fe(III) and Cu(I)/Cu(II), to generate more ·OH from H2O2. Therefore, this strategy of functionalizing BPD as Fenton-like catalysts without the addition of external Fe provides intriguing prospects for understanding the construction of Fe-based Fenton catalysts and resource utilization of Fe-containing solid waste materials.
Collapse
Affiliation(s)
- Fuyuan Qi
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zilu Liang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiliang Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiawei Yin
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ainan Song
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zongxuan Li
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiayuan Liu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jinsheng Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Wu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qijun Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhuofei Du
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Rabbani D, Dehghani R, Akbari H, Rahmani H, Ahmadi E, Bagheri A, Allahi S. Study on diazinon toxicity reduction by electro-Fenton process: A bioassay using daphnia magna. Heliyon 2024; 10:e25928. [PMID: 38380001 PMCID: PMC10877300 DOI: 10.1016/j.heliyon.2024.e25928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The realm of diazinon reduction from polluted water has witnessed a surge in the significance of advanced oxidation processes (AOPs) in recent times. However, there is a dearth of research focusing on the mitigation of its toxicity through AOPs. Thus, the primary objective of this study was to evaluate the effectiveness of the Electro-Fenton process (EFP) in the eradication and detoxification of diazinon in aqueous solutions. Synthetic wastewater samples with concentrations of 2, 2.5 and 3 mg/L were prepared. A total of 27 samples were determined using Box Behnken Design. Reaction time, pH and iron to hydrogen peroxide ratio (Fe2+/H2O2) were examined as operational parameters under a constant current of 5.4 amps. The quantification of diazinon concentration was performed using High-Performance Liquid Chromatography (HPLC). To evaluate the detoxification of diazinon, the Daphnia magna bioassay was employed as a methodology in this study. According to the results, the EFP could reduce the diazinon to zero and the LC50 values are increased by applying the process. The LC50 values for diazinon were determined using the Daphnia magna bioassay, considering initial concentrations of 2, 2.5, and 3 mg/L at a pH of 5, a reaction time of 15 min, and an iron to hydrogen peroxide molar ratio of 2. The recorded LC50 values were 3.039, 3.076, and 3.106, respectively, indicating the lowest frequency of cumulative death in Daphnia magna. In this case, after 96 h, only 3 cases (30%) of Daphnia magna death were observed. However, for all the mentioned concentrations of diazinon, after 96 h of exposure to samples without applying the Daphnia Magna death process, it was observed between 60 and 100%. Reducing the diazinon concentration and increasing the 96-h LC50 showed that the EFP can reduce the toxicity of diazinon on Daphnia Magna at the same time. Therefore, EFP can be considered a superior method with low ecotoxicity.
Collapse
Affiliation(s)
- Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Rouhullah Dehghani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Akbari
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Public Health and Biostatics, Kashan University of Medical Sciences, Kashan, Iran
| | - Hasan Rahmani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Ahmadi
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Amin Bagheri
- Department of Health, Safety and Environmental Management, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Allahi
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
19
|
Song Y, Ren S, Zhang Y, Zhang Z, Wang A. Facile synthesis of bimetallic ACF/CC@FeOCl-Cu composite cathode for efficient degradation of sulfamethoxazole at neutral pH by a flow-through heterogeneous electro-Fenton process. CHEMOSPHERE 2023; 341:139971. [PMID: 37652245 DOI: 10.1016/j.chemosphere.2023.139971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Flow-through heterogeneous electro-Fenton (FHEF) process shows a broad prospect for refractory organic pollutants removal. However, maintaining a long-term service life of higher catalytic cathode is crucial for the development of cathode materials, especially for iron-functionalized cathode operated under harsh conditions. In this study, a novel bimetallic CC@FeOCl-Cu composite was synthesized through one-step calcination, coupled with a series of microstructure characterization methodology, including XRD, SEM-EDS, XPS, and FTIR. The superior catalytic activity of CC@FeOCl-Cu could be ascribed to Fe-Cu synergy and better dispersion of FeOCl nanosheets. With the optimal Cu:Fe ratio of 1:60, the bifunctional ACF/CC@FeOCl-Cu cathode was employed in FHEF process, exhibiting an outstanding performance for sulfamethoxazole (SMX) removal over a wide pH range (3.0-9.0). Comparison of experimental results indicated that the ACF/CC@FeOCl-Cu-FHEF process showed higher performance than ACF/CC@FeOCl-FHEF and homogeneous EF processes. The average SMX removal efficiency was 98% and TOC removal efficiency was more than 57% even after 10 cycles. Radical quenching experiments and electron spin resonance test confirmed that •OH was the primary active species. More •OH was generated in the ACF/CC@FeOCl-Cu-FHEF process because the doping of Cu could enhance catalytic activity of cathode. In addition, the satisfactory performance could be observed in the ACF/CC@FeOCl-Cu-FHEF process for the treatment of real landfill leachate, indicating its potential for practical application in wastewater treatment.
Collapse
Affiliation(s)
- Yongjun Song
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Songyu Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| |
Collapse
|
20
|
Xia W, Li S, Wu G, Ma J. Recycling waste iron-rich algal flocs as cost-effective biochar activator for heterogeneous Fenton-like reaction towards tetracycline degradation: Important role of iron species and moderately defective structures. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132377. [PMID: 37639790 DOI: 10.1016/j.jhazmat.2023.132377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Harvesting aquatic harmful algal blooms (HABs) and reusing them is a promising way for antibiotic degradation. Herein, a novel iron-rich biochar (Fe-ABC), derived from algal biomass harvested by magnetic coagulation, was successfully designed and fabricated as activator for heterogeneous Fenton-like reaction. The modification methods and pyrolysis temperatures (400-800 °C) were optimized to enhance the formation of rich iron species and moderately defective structure, yielding Fe-ABC-600 with enhanced electron transfer and H2O2 activation capability. Thus, Fe-ABC-600 exhibited superior removal efficiency (95.33%) on tetracycline (TC), where the presence of multiple iron species (Fe3+, Fe2+ and Fe4+) and moderately defective structure accelerating the Fenton-like oxidation. The concentration of leaching Fe after each reaction was all below 0.74 mg/L in five cycles, ensuring the sustained degradation. And •OH was proved to be the major radical contributing to the degradation of TC, as well as the direct electron transfer mechanism together, in which the CO acted as electron regulator and electron donor. Fe-ABC as a cost-effective catalyst has notable application potentials in TC removal from wastewater owing to its remarkable advantages of high resource utilization, enhanced catalytic property, high ecological safe, notable TC degradation efficiency, low cost and environmental-friendliness.
Collapse
Affiliation(s)
- Wei Xia
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Sha Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Genyu Wu
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China.
| |
Collapse
|