1
|
Sathiyan K, Wang J, Williams LM, Huang CH, Sharma VK. Revisiting the Electron Transfer Mechanisms in Ru(III)-Mediated Advanced Oxidation Processes with Peroxyacids and Ferrate(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11822-11832. [PMID: 38899941 PMCID: PMC11223481 DOI: 10.1021/acs.est.4c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
The potential of Ru(III)-mediated advanced oxidation processes has attracted attention due to the recyclable catalysis, high efficiency at circumneutral pHs, and robust resistance against background anions (e.g., phosphate). However, the reactive species in Ru(III)-peracetic acid (PAA) and Ru(III)-ferrate(VI) (FeO42-) systems have not been rigorously examined and were tentatively attributed to organic radicals (CH3C(O)O•/CH3C(O)OO•) and Fe(IV)/Ru(V), representing single electron transfer (SET) and double electron transfer (DET) mechanisms, respectively. Herein, the reaction mechanisms of both systems were investigated by chemical probes, stoichiometry, and electrochemical analysis, revealing different reaction pathways. The negligible contribution of hydroxyl (HO•) and organic (CH3C(O)O•/CH3C(O)OO•) radicals in the Ru(III)-PAA system clearly indicated a DET reaction via oxygen atom transfer (OAT) that produces Ru(V) as the only reactive species. Further, the Ru(III)-performic acid (PFA) system exhibited a similar OAT oxidation mechanism and efficiency. In contrast, the 1:2 stoichiometry and negligible Fe(IV) formation suggested the SET reaction between Ru(III) and ferrate(VI), generating Ru(IV), Ru(V), and Fe(V) as reactive species for micropollutant abatement. Despite the slower oxidation rate constant (kinetically modeled), Ru(V) could contribute comparably as Fe(V) to oxidation due to its higher steady-state concentration. These reaction mechanisms are distinctly different from the previous studies and provide new mechanistic insights into Ru chemistry and Ru(III)-based AOPs.
Collapse
Affiliation(s)
- Krishnamoorthy Sathiyan
- Program
for Environment and Sustainability, Department of Environmental and
Occupational Health, School of Public Health, Texas A&M University, College
Station, Texas 77843-8371, United States
| | - Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lois M. Williams
- Program
for Environment and Sustainability, Department of Environmental and
Occupational Health, School of Public Health, Texas A&M University, College
Station, Texas 77843-8371, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Virender K. Sharma
- Program
for Environment and Sustainability, Department of Environmental and
Occupational Health, School of Public Health, Texas A&M University, College
Station, Texas 77843-8371, United States
| |
Collapse
|
2
|
Wang Z, Yang X, Du Q, Liu T, Dai X, Du Y, Zhang H, Zhou P, Xiong Z, Lai B. Ferrate(VI)/percarbonate for the oxidation of micropollutants: Interactive activation and release of low-concentration hydrogen peroxide for efficient electron utilization. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134029. [PMID: 38492403 DOI: 10.1016/j.jhazmat.2024.134029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
A novel "ferrate/percarbonate (Fe(VI)/SPC) co-oxidation process" was used to treat ciprofloxacin (CIP) and various micropollutants (MPs), which owned better performance than mixture of Fe(VI), Na2CO3 and H2O2. The mechanism investigation found that the low-concentration H2O2 (1-2 µM) released by SPC can promote the high-valent iron intermediates (Fe(IV)/Fe(V)) of Fe(VI) to the MP oxidation, and Fe(VI) products can also activate SPC to produce hydroxyl radical (·OH). The interactive activation of Fe(VI) and SPC was realized, which retained the high selectivity of Fe(VI) to electron-rich pollutants, and also made up the oxidation of electron-deficient pollutants through •OH, improving the degradation effect of various MPs by 20-30%, and the rate constant was increased by 1 to 3 times. Moreover, non-purgeable organic carbon (NPOC) determination confirmed that •OH participation reduced the NPOC value of CIP from 5.43 mg/L to 4.37 mg/L. The transformation pathway of CIP showed that Fe(VI)/SPC resulted in more hydroxylation intermediates of CIP than Fe(VI) alone. Acute toxicity assays found that the photoinhibition rate of CIP treated with Fe(VI) alone was 14.5%, while the sample treated with Fe(VI)/SPC showed no significant photoinhibition effect, which proved that the new process had good detoxification properties for CIP.
Collapse
Affiliation(s)
- Zhongjuan Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xi Yang
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Qi Du
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tong Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xin Dai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Wang Z, Du Y, Liu T, Li J, He CS, Liu Y, Xiong Z, Lai B. How Should We Activate Ferrate(VI)? Fe(IV) and Fe(V) Tell Different Stories about Fluoroquinolone Transformation and Toxicity Changes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4812-4823. [PMID: 38428041 DOI: 10.1021/acs.est.3c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Many studies have investigated activation of ferrate (Fe(VI)) to produce reactive high-valent iron intermediates to enhance the oxidation of micropollutants. However, the differences in the risk of pollutant transformation caused by Fe(IV) and Fe(V) have not been taken seriously. In this study, Fe(VI)-alone, Fe3+/Fe(VI), and NaHCO3/Fe(VI) processes were used to oxidize fluoroquinolone antibiotics to explore the different effects of Fe(IV) and Fe(V) on product accumulation and toxicity changes. The contribution of Fe(IV) to levofloxacin degradation was 99.9% in the Fe3+/Fe(VI) process, and that of Fe(V) was 89.4% in the NaHCO3/Fe(VI) process. The cytotoxicity equivalents of levofloxacin decreased by 1.9 mg phenol/L in the Fe(IV)-dominant process while they significantly (p < 0.05) increased by 4.7 mg phenol/L in the Fe(V)-dominant process. The acute toxicity toward luminescent bacteria and the results for other fluoroquinolone antibiotics also showed that Fe(IV) reduced the toxicity and Fe(V) increased the toxicity. Density functional theory calculations showed that Fe(V) induced quinolone ring opening, which would increase the toxicity. Fe(IV) tended to oxidize the piperazine group, which reduced the toxicity. These results show the different-pollutant transformation caused by Fe(IV) and Fe(V). In future, the different risk outcomes during Fe(VI) activation should be taken seriously.
Collapse
Affiliation(s)
- Zhongjuan Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Tong Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jie Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - ZhaoKun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Li X, Liu M, Wu N, Sharma VK, Qu R. Enhanced removal of phenolic compounds by ferrate(VI): Unveiling the Bi(III)-Bi(V) valence cycle with in situ formed bismuth hydroxide as catalyst. WATER RESEARCH 2024; 248:120827. [PMID: 37956606 DOI: 10.1016/j.watres.2023.120827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
The use of 2-hydroxybenzophenone (2-HBP) in personal care products is of great concern due to its potential negative effects on the ecosystem and public health. This paper presents the degradation of 2-HBP by bismuth(III) (Bi3+)-ferrate(VI) (FeVIO42-, Fe(VI)) (Bi3+-Fe(VI) system). Experimental studies at different pH and dosages of Bi3+ and Fe(VI) showed that the Bi3+-Fe(VI) system increased the degradation rate and removal efficiency of 2-HBP compared to Fe(VI) alone. The in situ formed flake-like white flocculent precipitate of Bi(OH)3 showed catalytic performance through the Bi(III)-Bi(V)-Bi(III) valence cycle which was demonstrated through spectroscopic measurements. The hydrogen transfer-mediated reactions between Fe(VI) and Bi(OH)3 as well as subsequent formation of Bi(V) were supported by performing density functional theoretical (DFT) calculations. Seventeen identified transformation products of 2-HBP by Fe(VI) with and without Bi3+ revealed hydroxylation, bond breaking, carboxylation, and polymerization reaction pathways. Significantly, Bi3+ facilitated the polymerization reaction and the dioxygen transfer-mediated hydroxylation reaction pathways. The ions (anions and cations) and humic acids (HA) present in the Bi3+-Fe(VI) system had minimal influence on the removal efficiency of 2-HBP. Reusability tests and use of real water samples as well as toxicity assessments of transformation products unveiled the practical application aspect of the Bi3+-Fe(VI) system. Finally, the results showed that the system exhibits good removal efficiency for all 12 phenolic compounds, indicating theuniversality. The Bi3+-Fe(VI) system may be an easy-to-implement cost-effective method for the catalytic degradation of benzophenones by Fe(VI).
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Virender K Sharma
- Program of Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|